JPH0766989B2 - Functional element - Google Patents

Functional element

Info

Publication number
JPH0766989B2
JPH0766989B2 JP62117353A JP11735387A JPH0766989B2 JP H0766989 B2 JPH0766989 B2 JP H0766989B2 JP 62117353 A JP62117353 A JP 62117353A JP 11735387 A JP11735387 A JP 11735387A JP H0766989 B2 JPH0766989 B2 JP H0766989B2
Authority
JP
Japan
Prior art keywords
phase transition
functional element
tcnq
electron
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62117353A
Other languages
Japanese (ja)
Other versions
JPS63283059A (en
Inventor
暉夫 山下
進 吉村
宗次 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62117353A priority Critical patent/JPH0766989B2/en
Priority to US07/170,025 priority patent/US5009958A/en
Publication of JPS63283059A publication Critical patent/JPS63283059A/en
Priority to US07/604,534 priority patent/US5185208A/en
Publication of JPH0766989B2 publication Critical patent/JPH0766989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気、光、磁気、圧力、温度などの外部エネル
ギーによって電気伝導度の急激な変化(スイッチング現
象)や光吸収スペクトルの変化や帯磁率の変化や誘電率
の変化などを生じ、スイッチング素子、電気及び光のメ
モリ素子、ディスプレイ、センサーなどに利用される機
能素子に関するものである。
TECHNICAL FIELD The present invention relates to a rapid change in electrical conductivity (switching phenomenon), a change in optical absorption spectrum, and a change in magnetic susceptibility due to external energy such as electricity, light, magnetism, pressure, and temperature. The present invention relates to a functional element that causes a change or a change in dielectric constant and is used as a switching element, an electric / optical memory element, a display, a sensor, or the like.

従来の技術 ある種の有機分子結晶が温度、圧力あるいは電気などの
外部エネルギーによってファンデルワールス結晶的な中
性結晶から、構成分子が大部分イオン化したようなイオ
ン結晶へと相転移する現象についてはすでに知られてい
る。例えばテトラチアフルバレン(TTF)とクロラニル
(CA)の電荷移動(CT)錯体の単結晶は10Kbar程度の比
較的低圧で相転移するだけでなく、常圧下でも80K以下
の温度に下げることによっても中性−イオン性相転移す
ることが見出されている。この中性−イオン性相転移の
基本的原理の考え方は電子供与体(D)と電子受容体
(A)が中性状態(D°A°)からイオン性状態(D
+A-)となる場合のエネルギー損ID(イオン化ポテンシ
アル)−EA(電子親和力)とマーデルングエネルギーの
利得αV(αはマーデルング定数、VはD+A-対のクーロ
ンエネルギー)が拮抗することになり ID−EA>αVならば中性 ID−EA<αVならばイオン性 が実現されることになる。しかし、この中性−イオン性
相転移は単純なマーデルングエネルギーの変化によるだ
けでなく、DA分子間のCT相互作用や電子−格子相互作用
が本質的に重要な影響を与えていることが明らかになっ
てきている。例えばTTF−CA結晶での中性(N)−イオ
ン性(I)相転移は温度、圧力による場合ともに二量体
化格子歪みを伴うことからク−ロン力によるエネルギー
均衡の機構の他に、パイエルス変形をひき起すような電
子−格子相互作用が重要である。
BACKGROUND ART Regarding a phenomenon in which a kind of organic molecular crystal undergoes a phase transition from a van der Waals crystalline neutral crystal due to external energy such as temperature, pressure, or electricity to an ionic crystal in which the constituent molecules are mostly ionized, Already known. For example, a single crystal of a charge transfer (CT) complex of tetrathiafulvalene (TTF) and chloranil (CA) not only undergoes a phase transition at a relatively low pressure of about 10 Kbar, but also at normal pressure by reducing the temperature to below 80K. It has been found to undergo a sexual-ionic phase transition. The basic principle of this neutral-ionic phase transition is that the electron donor (D) and the electron acceptor (A) are changed from the neutral state (D ° A °) to the ionic state (D).
+ A -) and the energy loss I D (ionization Potenshiaru) -E A (gain electron affinity) and Madelung constant alpha] V (alpha is Maderungu constant when made, V is D + A - versus Coulomb energy) antagonist If I D −E A > αV, the neutrality is realized if I D −E A <αV. However, this neutral-ionic phase transition is not only due to a simple change of Madelung's energy, but also CT interaction between DA molecules and electron-lattice interaction have an essential effect. It's becoming clear. For example, since the neutral (N) -ionic (I) phase transition in TTF-CA crystal is accompanied by dimerization lattice strain both in the case of temperature and pressure, in addition to the mechanism of energy balance by Coulomb force, The electron-lattice interaction that causes Peierls deformation is important.

一方、室温、常圧でこのようなN−I相転移をおこして
いると考えられるものにCu。TCNQ錯体がある。この錯体
はテトラシアノキノザメタン(TCNQ)をアセトニトリル
中に溶解し、室温でCuと反応してCu。TCNQ錯体を形成す
る。この錯体をCuとAlの二電極ではさんで電圧を印加す
ると最初は高抵抗状態にあり、ある電圧で低抵抗状態に
うつるスイッチング現象がみられるという。これは が電圧によってCux°と(TCNQ°)xの中性相に変化した
ためといわれている。また、このイオン性相から中性相
への相転移は光によってもおこすことができる。
On the other hand, Cu is considered to be one that is considered to undergo such an NI phase transition at room temperature and atmospheric pressure. There is a TCNQ complex. This complex dissolves tetracyanoquinozamethane (TCNQ) in acetonitrile and reacts with Cu at room temperature to form Cu. Form a TCNQ complex. When a voltage is applied across the complex between the two electrodes of Cu and Al, it is initially in a high resistance state, and at a certain voltage there is a switching phenomenon that transfers to a low resistance state. this is Is said to have changed to Cu x ° and (TCNQ °) x neutral phase by the voltage. The phase transition from the ionic phase to the neutral phase can also be caused by light.

発明が解決しようとする問題点 TTF−CAの例でみられる有機分子結晶の場合には低温に
するか、或いは高圧を印加するかの条件が必要であり、
しかも温度でN−I相転移を生じるのはTTF−CAのみし
かまだ知られていない。したがって機能素子として用い
るには使用条件が問題である。
Problems to be solved by the invention In the case of the organic molecular crystal seen in the example of TTF-CA, it is necessary to set a low temperature or apply a high voltage,
Moreover, only TTF-CA is known to cause the NI phase transition at temperature. Therefore, the use condition is a problem in using it as a functional element.

また、 の例でみられる場合は結晶の安定性が悪く、再現性に乏
しい。特にスイッチング現象で中性相へ転移して電気伝
導度が大きくなる原因としてTCNQ分子のジュール熱によ
る蒸発がおこり、Cu組成が増加するためとも言われてい
る。このためスイッチング現象の再現性も乏しく機能素
子としての実用性に問題がある。
Also, In the case of Example 2, the crystal stability is poor and the reproducibility is poor. In particular, it is said that TCNQ molecules vaporize due to Joule heat and increase the Cu composition, which causes the electrical conductivity to increase due to the switching phenomenon. Therefore, the reproducibility of the switching phenomenon is poor and there is a problem in practicality as a functional element.

本発明は従来の上記問題点を解決するもので、安定で再
現性の良い中性(N)−イオン性(I)相転移をおこす
新規な機能素子の提供を目的とするものである。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a novel functional element which causes a stable (N) -ionic (I) phase transition with good reproducibility.

問題点を解決するための手段 本発明は上記目的を達成するためになされたもので、そ
の技術的手段は、基板と、前記基板上に形成された一方
の電極部と、前記一方の電極部上に形成された電子供与
体と電子受容体とを含む固体層と、前記固体層上に形成
された他方の電極部とを有し、外部エネルギーを印加さ
れることにより電荷移動度の変化を生じる機能素子であ
って、前記固体層の電子供与体と電子受容体の少なくと
も一方は炭素数が10から22の長鎖アルキル基を付加され
ている機能素子にある。
Means for Solving the Problems The present invention has been made in order to achieve the above object, and its technical means is to provide a substrate, one electrode portion formed on the substrate, and the one electrode portion. It has a solid layer containing an electron donor and an electron acceptor formed thereon, and the other electrode part formed on the solid layer, and changes the charge mobility by applying external energy. The resulting functional device is a functional device in which at least one of the electron donor and the electron acceptor of the solid layer is added with a long-chain alkyl group having 10 to 22 carbon atoms.

作用 本発明は室温、常圧でN−I相転移を安定に再現性良く
生じせしめるためには、電子供与体(D)と電子受容体
(A)の少くとも一方が炭素数が10から22の長鎖アルキ
ルをつけた分子で、前記電子供与体と電子受容体との組
み合せからなる固体を用いると良いという知見に基づい
ている。このねらいはパイエルス変形をおこしてマーデ
ルングエネルギーの変化を効果的に再現性よく生ぜしめ
るために長鎖アルキルによって自由空間を確保すると同
時に固体薄膜のフィルム性の向上にも役立てることにあ
る。
Action In the present invention, at least one of the electron donor (D) and the electron acceptor (A) has 10 to 22 carbon atoms in order to stably and reproducibly generate the NI phase transition at room temperature and atmospheric pressure. It is based on the finding that it is preferable to use a solid having a combination of the long-chain alkyl and the electron donor and the electron acceptor. This aim is to secure the free space by the long-chain alkyl in order to cause Peierls deformation and effectively produce the change of Madelung energy with good reproducibility, and at the same time to improve the film property of the solid thin film.

実施例 以下に本発明の実施例を図面に基づき詳細に説明する。Embodiments Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例における機能素子の断面図で
ある。図において1はガラス基板、2はガラス基板1上
に設けられた透明電極であるITO膜、3は後に詳細に説
明する 4は対極であるITO膜、5,6はITO膜2,4と電気的接続をと
るための銀ペースト、A,Bはリード端子である。
FIG. 1 is a sectional view of a functional element according to an embodiment of the present invention. In the figure, 1 is a glass substrate, 2 is an ITO film which is a transparent electrode provided on the glass substrate 1, and 3 is described in detail later. Reference numeral 4 is an ITO film which is a counter electrode, 5 and 6 are silver pastes for electrically connecting with the ITO films 2 and 4, and A and B are lead terminals.

即ち、透明電極ITO膜2をつけたガラス基板1を用い
て、このITO膜2上に10-5Torrの真空中で下記のTCNQ(C
18)を加熱蒸着し、 3000Åの膜厚につける。さらにこのTCNQ(C18)膜上に
続けてCuを真空蒸着し、50Åの膜厚につける。そのまま
真空を破らずにTCNQ(C18)とCu膜のついたガラス基板
を加熱上昇時間を含め40分間加熱し、 を形成する。この錯体が形成されたかどうかの確認は可
視吸収スペクトルで600nmから900nmにわたる巾広いCT帯
吸収と395nmのTCNQによる吸収の長波長側に イオンラジカルにもとずくゆるやかな吸収から判断でき
る。また、赤外吸収スペクトルでもTCNQ°による吸収22
28cm-1が2202cm-1と2162cm-1に分離して低エネルギー側
にシフトし、しかも2162cm-1の吸収が巾広くなっている
ことから のコンプレックス塩ができていることが判断できる。こ
のような錯体膜上に再び対極としてITO膜4をイオンプ
レーティングによって形成し、第1図に示す構造の機能
素子とした。
That is, by using the glass substrate 1 carrying thereon an ITO transparent electrode film 2, on the ITO film 2 10 -5 Torr in a vacuum of below TCNQ (C
18 ) is deposited by heating, Apply to a film thickness of 3000Å. Cu is then vacuum-deposited on the TCNQ (C 18 ) film to a thickness of 50Å. Without breaking the vacuum, heat the glass substrate with TCNQ (C 18 ) and Cu film for 40 minutes including the heating rise time, To form. Whether or not this complex was formed was confirmed by the visible absorption spectrum in the broad CT band absorption from 600 nm to 900 nm and the absorption by TCNQ at 395 nm on the long wavelength side. It can be judged from the gentle absorption based on the ion radicals. In the infrared absorption spectrum, the absorption by TCNQ ° 22
28cm -1 is separated into 2202Cm -1 and 2162cm -1 shifted to the lower energy side, moreover since the absorption of 2162cm -1 is wider width It can be judged that the complex salt of is formed. The ITO film 4 was again formed as a counter electrode on such a complex film by ion plating to obtain a functional element having the structure shown in FIG.

このデバイスは安定でこのまゝ空気中に放置しても変化
しないことが可視吸収スペクトルから確認できる。長鎖
アルキルのついていない従来のTCNQを用いたデバイスで
は作成後数時間で一部Cux°と(TCNQ°)xにもどってい
ることが可視吸収スペクトルからみられる。次に第1図
のデバイスの電流−電圧特性をとると第2図に示すよう
にN型の負性抵抗特性が得られた。この特性は図にも示
すように印加電圧の極性に関係なく対称に得られる。ま
た電圧を切ればもとの状態、即ち低抵抗状態にもどる。
この負性抵抗特性は次のように のイオン性相−中性相転移が生じたことによる。しかも
従来のようにTCNQがジュール熱でとばないので可逆性も
良い。さらにこの相転移は光、例えば半導体レーザーに
よっても生じ、可視吸収スペクトルでCT帯がなくなるの
で光書き込みもできる。さらに圧力をさげたり、温度を
あげたりして との距離を大きくすると同様に相転移が生じる。また、
CT錯体はイオン性相と中性相とで帯磁率の変化が鋭くお
きる。したがって磁場によっても相転移をおこすことも
可能である。
It can be confirmed from the visible absorption spectrum that this device is stable and does not change even if left in this air. Visible absorption spectra show that the devices using conventional TCNQ without long-chain alkyl partially returned to Cu x ° and (TCNQ °) x within a few hours after fabrication. Next, when the current-voltage characteristics of the device shown in FIG. 1 were taken, N-type negative resistance characteristics were obtained as shown in FIG. As shown in the figure, this characteristic is obtained symmetrically regardless of the polarity of the applied voltage. When the voltage is turned off, the original state, that is, the low resistance state is restored.
This negative resistance characteristic is as follows The ionic phase-neutral phase transition of Moreover, since TCNQ does not burn with Joule heat as in the past, reversibility is also good. Furthermore, this phase transition is also caused by light, for example, a semiconductor laser, and since the CT band disappears in the visible absorption spectrum, optical writing is possible. Further reduce the pressure, raise the temperature If the distance between and is increased, a phase transition similarly occurs. Also,
The magnetic susceptibility of the CT complex changes sharply between the ionic phase and the neutral phase. Therefore, it is also possible to cause a phase transition by a magnetic field.

こゝで電子供与体としてCuを用いたが、その他Ag,Tiな
ど遷移系列の金属を用いてもよく、また一般に周知のTT
Fなどの電子供与体分子を用いてもよい。この電子供与
体分子となれば長鎖アルキルがつけられる利点が生じ
る。一方、実施例で用いたTCNQではこの長鎖アルキルは
C18H37であるが、その他C10H21,C12H25,C22H45などで
もよく、長さに制限はないがある程度長い方が、具体的
には炭素数が上記例のように10以上の方が、自由空間が
でき易く、パイエルス変形をおこし易く相転移をおこし
易くなる。又、あまり長鎖が長くなると溶解性が落ちた
り、実際問題として入手が困難になってしまうため、具
体的には炭素数が上記例のように22以下の方がよい。ま
た、TCNQ以外の電子受容体、例えばハロゲンなどを用い
るときは電子供与体側に長鎖アルキルをつけた分子を用
いればよいし、その他、電子親和力の異なる電子受容体
に長鎖アルキルをつけてもよい。できるだけ低エネルギ
ーで相転移をおこすには、相転移の境界領域に近いD°
A°の組み合わせを選択すればよい。
Although Cu is used as an electron donor here, other transition series metals such as Ag and Ti may also be used.
Electron donor molecules such as F may be used. This electron donor molecule has an advantage that long-chain alkyl can be attached. On the other hand, in TCNQ used in the examples, this long-chain alkyl is
Although it is C 18 H 37 , it may be C 10 H 21 , C 12 H 25 , C 22 H 45, etc., but the length is not limited, but the one with a certain length is specifically the carbon number as in the above example. If it is 10 or more, a free space is likely to be formed, Peierls deformation is likely to occur, and a phase transition is likely to occur. In addition, if the long chain becomes too long, the solubility will decrease, and as a practical matter, it will be difficult to obtain it. Therefore, specifically, the carbon number is preferably 22 or less as in the above example. Further, when using an electron acceptor other than TCNQ, for example, a halogen or the like, a molecule having a long-chain alkyl attached to the electron donor side may be used, or if a long-chain alkyl is attached to an electron acceptor having a different electron affinity. Good. In order to cause a phase transition with the lowest possible energy, D ° near the boundary region of the phase transition
A combination of A ° may be selected.

また錯体のつくり方として実施例では真空蒸着法でのべ
たが、その他溶媒中に溶解してのち塗布する溶液塗布法
も簡単で同様の効果の膜が得られる。
Further, as the method of forming the complex, the vacuum vapor deposition method was used in the examples, but a solution coating method in which the complex is dissolved in a solvent and then coated is simple and a film having the same effect can be obtained.

発明の効果 以上要するに電子供与体(D)と電子受容体(A)の少
なくとも一方に炭素数が10から22の長鎖アルキルをつけ
ることにより安定で再現性よくN−I相転移を生ぜしめ
ることができ、スイッチング素子、光メモリ、ディスプ
レイ、センサーなど室用面でもその効果が大きい。
EFFECTS OF THE INVENTION In summary, by attaching a long-chain alkyl having 10 to 22 carbon atoms to at least one of the electron donor (D) and the electron acceptor (A), stable and reproducible NI phase transition is caused. The effect is great also in the room side such as switching elements, optical memories, displays and sensors.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における機能素子の断面図、
第2図は同機能素子の電源−電圧特性図である。
FIG. 1 is a sectional view of a functional element in one embodiment of the present invention,
FIG. 2 is a power supply-voltage characteristic diagram of the same functional element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板と、前記基板上に形成された一方の電
極部と、前記一方の電極部上に形成された電子供与体と
電子受容体とを含む固体層と、前記固体層上に形成され
た他方の電極部とを有し、外部エネルギーを印加される
ことにより電荷移動度の変化を生じる機能素子であっ
て、前記固体層の電子供与体と電子受容体の少なくとも
一方は炭素数が10から22の長鎖アルキル基を付加されて
いる機能素子。
1. A solid layer containing a substrate, one electrode portion formed on the substrate, an electron donor and an electron acceptor formed on the one electrode portion, and a solid layer on the solid layer. A functional element having the other electrode part formed therein, which causes a change in charge mobility when external energy is applied, wherein at least one of the electron donor and the electron acceptor of the solid layer has a carbon number. Is a functional element in which 10 to 22 long-chain alkyl groups are added.
JP62117353A 1987-03-06 1987-05-14 Functional element Expired - Fee Related JPH0766989B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62117353A JPH0766989B2 (en) 1987-05-14 1987-05-14 Functional element
US07/170,025 US5009958A (en) 1987-03-06 1988-03-04 Functional devices comprising a charge transfer complex layer
US07/604,534 US5185208A (en) 1987-03-06 1990-10-29 Functional devices comprising a charge transfer complex layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62117353A JPH0766989B2 (en) 1987-05-14 1987-05-14 Functional element

Publications (2)

Publication Number Publication Date
JPS63283059A JPS63283059A (en) 1988-11-18
JPH0766989B2 true JPH0766989B2 (en) 1995-07-19

Family

ID=14709589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62117353A Expired - Fee Related JPH0766989B2 (en) 1987-03-06 1987-05-14 Functional element

Country Status (1)

Country Link
JP (1) JPH0766989B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345431A (en) * 2000-05-31 2001-12-14 Japan Science & Technology Corp Organic ferroelectric thin film and semiconductor device
JP2002365662A (en) * 2001-06-11 2002-12-18 Rohm Co Ltd Display medium, display element and display device
JP2003283004A (en) 2002-03-26 2003-10-03 Rohm Co Ltd Switching device and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295876A (en) * 1985-10-23 1987-05-02 Canon Inc Electrical memory

Also Published As

Publication number Publication date
JPS63283059A (en) 1988-11-18

Similar Documents

Publication Publication Date Title
US5171373A (en) Devices involving the photo behavior of fullerenes
US5185208A (en) Functional devices comprising a charge transfer complex layer
US5009958A (en) Functional devices comprising a charge transfer complex layer
EP0335630B1 (en) Switching device and method of preparing it
KR100336283B1 (en) Method of making an organic thin film transistor and article made by the method
US20180014359A1 (en) Heating device, in particular a semi-transparent heating device
KR880001545A (en) Electric Chromium Adjustable Floodlight Glass
JP2636341B2 (en) Organic thin film EL device
JPS63160385A (en) Switching element
Jones et al. Electrical conductivity in Langmuir-Blodgett films of porphyrins: in-plane and through-the-film studies
JPS6327692B2 (en)
US6548836B1 (en) Solid state light-emitting device
WO2002015294A2 (en) High efficiency solid state light-emitting device and method of generating light
Liu et al. Electrically bistable memory device based on spin-coated molecular complex thin film
JPH0766989B2 (en) Functional element
JP3199430B2 (en) Semiconductor element
JP2008094781A (en) Tetrathiafulvalene derivative and electronic device using the same
JP2000012922A (en) Organic thin-film element
Kever et al. Preparation and characterisation of amorphous Cu: 7, 7, 8, 8-tetracyanoquinodimethane thin films with low surface roughness via thermal co-deposition
JPH0774377A (en) Photoelectric transducer
Biler et al. Soluble phthalocyanines—new materials for optoelectronics
Dey et al. A dye/polymer based solid state thin film photoelectrochemical cell used for light detection
JPH0629556A (en) Tunnel diode
JP3283916B2 (en) Charge transfer complex
JPH0435066A (en) Organic compound semiconductor electric element and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees