JPH0766793A - Receiver for encoded orthogonal frequency-divided multiplex signal - Google Patents

Receiver for encoded orthogonal frequency-divided multiplex signal

Info

Publication number
JPH0766793A
JPH0766793A JP5212576A JP21257693A JPH0766793A JP H0766793 A JPH0766793 A JP H0766793A JP 5212576 A JP5212576 A JP 5212576A JP 21257693 A JP21257693 A JP 21257693A JP H0766793 A JPH0766793 A JP H0766793A
Authority
JP
Japan
Prior art keywords
signal
voltage
offset
orthogonal frequency
baseband
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5212576A
Other languages
Japanese (ja)
Inventor
Yasuhiro Hamaguchi
泰弘 浜口
Minoru Kubota
稔 窪田
Masao Miyazaki
正夫 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP5212576A priority Critical patent/JPH0766793A/en
Publication of JPH0766793A publication Critical patent/JPH0766793A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/061Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing hard decisions only; arrangements for tracking or suppressing unwanted low frequency components, e.g. removal of dc offset
    • H04L25/063Setting decision thresholds using feedback techniques only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)

Abstract

PURPOSE:To make it possible to remove DC offset in accordance with average voltage in a null symbol. CONSTITUTION:An RF-IF frequency conversion part 1 converts the frequency of a COFDM signal in an RF band into an IF band, a divider 2 divides the converted signal and mixers 5, 6 respectively convert respective divided signals into base band signals by loacal oscillation signals whose phases are mutually different by 90 deg.. These base band signals are passed through low pass filters 7, 8 and converted into digital base band signals by respective A/D converters 9, 10. Null symbol average voltage measuring circuits respectively detect average voltage in null symbols, offset adjusting circuits 15, 16 respectively adjust the offset voltage, voltage control circuits 17, 18 respectively adjust the reference voltage of the A/D converters 9, 10 to remove DC offset voltage. The base band signals passed through the circuits 13, 14 are applied and calculated to/by an FFT computing part 11 and a data processing part 12 executes data processing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は符号化直交周波数分割
多重(Coded OrthogonalFreque
ncy Division Multiplexin
g:以下、COFDM信号と称する)受信機に関し、特
に、変調されたデータを時系列的に送信するときの単位
であるフレーム内に無信号状態のシンボルであるヌルシ
ンボルを有するCOFDM信号を受信し、その受信信号
をベースバンド帯域に変換し、そのベースバンド信号を
高速フーリエ変換(Fast Fourier Tra
nsform:以下、FFTと称する)して変調データ
を復調するようなCOFDM信号受信機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to coded orthogonal frequency division multiplexing (Coded Orthogonal Frequency Division Multiplexing).
ncy Division Multiplexin
g: hereinafter referred to as COFDM signal), in particular, a COFDM signal having a null symbol that is a non-signal state symbol in a frame that is a unit when transmitting modulated data in time series is received. , The received signal is converted to a baseband band, and the baseband signal is converted to a fast Fourier transform (Fast Fourier Transform).
nsform: hereinafter referred to as FFT) to demodulate modulated data and to a COFDM signal receiver.

【0002】[0002]

【従来の技術】図3は従来のCOFDM信号受信機の概
略ブロック図である。図3において、RF帯域のCOF
DM信号はRF−IF周波数変換部1に入力されてIF
帯域の周波数信号に変換され、ディバイダ2によって2
つの経路に分割され、ミキサ5,6に送られる。一方、
局部発振器3で発生された局部発振信号は位相変換器4
によって位相が互いに90°異なる局部発振信号に変換
され、それぞれがミキサ5,6に与えられる。ミキサ5
は、ディバイダ2から入力された中間周波信号と位相変
換器4からの位相が0°の局部発振信号とを混合し、第
1のベースバンド信号に変換する。他方のミキサ6は、
ディバイダ2から入力されてきた中間周波信号と位相変
換器4からの位相が90°の局部発振信号と混合し、第
2のベースバンド信号に変換する。
2. Description of the Related Art FIG. 3 is a schematic block diagram of a conventional COFDM signal receiver. In FIG. 3, the COF in the RF band
The DM signal is input to the RF-IF frequency conversion unit 1 and IF
Converted to a frequency signal in the band and divided by divider 2 to 2
It is divided into two paths and sent to mixers 5 and 6. on the other hand,
The local oscillator signal generated by the local oscillator 3 is supplied to the phase converter 4
Are converted into local oscillation signals whose phases are different from each other by 90 ° and are supplied to mixers 5 and 6, respectively. Mixer 5
Mixes the intermediate frequency signal input from the divider 2 and the local oscillation signal from the phase converter 4 having a phase of 0 °, and converts the mixed signal into a first baseband signal. The other mixer 6 is
The intermediate frequency signal input from the divider 2 and the local oscillation signal having a phase of 90 ° from the phase converter 4 are mixed and converted into a second baseband signal.

【0003】第1および第2のベースバンド信号はそれ
ぞれローパスフィルタ7,8によって高周波成分が除去
され、アナログ/ディジタル(以下、A/Dと称する)
変換器9,10に与えられる。そして、A/D変換器
9,10によってディジタルベースバンド信号S1 ,S
2 に変換され、FFT演算部11に入力される。このデ
ィジタル化されたベースバンド信号S1 ,S2 をそれぞ
れ図4の(a),(b)に示す。FFT演算部11にお
いては、入力されてきた2つのベースバンド信号を高速
フーリエ変換し、COFDM信号の各キャリアに重畳さ
れている変調データを復調し、データ処理部12に出力
する。
High-frequency components are removed from the first and second baseband signals by low-pass filters 7 and 8, respectively, and analog / digital (hereinafter referred to as A / D).
It is provided to the converters 9, 10. Then, the A / D converters 9 and 10 cause the digital baseband signals S 1 and S
It is converted to 2 and input to the FFT calculation unit 11. The digitized baseband signals S 1 and S 2 are shown in FIGS. 4A and 4B, respectively. The FFT calculation unit 11 performs fast Fourier transform on the two input baseband signals, demodulates the modulated data superimposed on each carrier of the COFDM signal, and outputs the demodulated data to the data processing unit 12.

【0004】[0004]

【発明が解決しようとする課題】一例として、図4に示
したディジタル化されたベースバンド信号S1 ,S
2 は、各キャリアにQPSK(直交位相変調)を施した
COFDM信号のベースバンド帯域における変調波形で
ある。一般に、COFDM信号を構成している各変調波
はすべて等しい振幅を有する信号であり、それらを合成
したCOFDM信号においては、図4に示すように直流
成分を変調した変調データによるCOFDM信号のDC
レベルの変化はCOFDM信号の振幅に比べると非常に
小さいものである。
As an example, the digitized baseband signals S 1 and S shown in FIG. 4 are used.
Reference numeral 2 is a modulation waveform in the baseband of a COFDM signal in which each carrier is QPSK (quadrature phase modulation). In general, all the modulated waves forming the COFDM signal are signals having the same amplitude, and in the COFDM signal obtained by combining them, as shown in FIG.
The change in level is very small compared to the amplitude of the COFDM signal.

【0005】一方、このような送受信システムでは、送
信側および受信側の回路においてDCオフセットが生じ
ることがある。このDCオフセットはFFTによる演算
結果のDC成分に影響を与え、誤りの原因となる。
On the other hand, in such a transmitting / receiving system, DC offset may occur in the circuits on the transmitting side and the receiving side. This DC offset affects the DC component of the calculation result by the FFT and causes an error.

【0006】たとえば、各キャリアがQPSK変調され
たCOFDM波の場合、本来変調データに対応してDC
成分が+になったり−になったりするものである。しか
し、DCオフセットが生じていると、DC成分が+の
み、あるいは−のみとなる。この結果として、DC成分
に対応する変調データが正しく復調されないことにな
る。また、DCオフセットによりCOFDM信号がA/
D変換器9,10の入力電圧範囲を超えるような場合に
は、他の復調データにも誤りが生じることがある。各キ
ャリアの変調法は、他の位相変調あるいはQAM(直交
振幅変調:Quadrature Amplitude
Modulation)の場合にも同様の悪影響を及
ぼす。
For example, in the case of a QPSK-modulated COFDM wave for each carrier, DC is originally associated with the modulated data.
A component becomes + or-. However, when the DC offset is generated, the DC component is only + or −. As a result, the modulated data corresponding to the DC component will not be demodulated correctly. Also, due to the DC offset, the COFDM signal is A /
When the input voltage range of the D converters 9 and 10 is exceeded, an error may occur in other demodulated data. The modulation method of each carrier is other phase modulation or QAM (Quadrature Amplitude Modulation).
Modulation) also has the same adverse effect.

【0007】それゆえに、この発明の主たる目的は、D
Cオフセットによる悪影響を取り除き、変調データを正
しく復調できるような符号化直交周波数分割多重信号受
信機を提供することである。
Therefore, the main object of the present invention is to
An object of the present invention is to provide a coded orthogonal frequency division multiplex signal receiver capable of removing the adverse effect of C offset and demodulating modulated data correctly.

【0008】[0008]

【課題を解決するための手段】請求項1に係る発明は、
フレーム内に無信号状態のシンボルを有する符号化直交
周波数分割多重信号を受信し、その受信信号をベースバ
ンド帯域に変換し、そのベースバンド信号を高速フーリ
エ変換して変調データを復調する符号化直交周波数分割
多重信号受信機において、ベースバンドに付加されてい
る直流電圧無信号状態での平均電圧に基づいて直流オフ
セット電圧を補正する補正手段を備えて構成される。
The invention according to claim 1 is
Coded orthogonal that receives a coded orthogonal frequency division multiplexed signal that has a signalless symbol in a frame, converts the received signal to a baseband band, and fast Fourier transforms the baseband signal to demodulate modulated data. The frequency division multiplex signal receiver is configured to include a correction unit that corrects the DC offset voltage based on the average voltage in the no DC signal state added to the baseband.

【0009】請求項2に係る発明は、請求項1の補正手
段が、ベースバンド信号から無信号状態での平均電圧を
検出するための検出手段と、検出手段の検出出力に応じ
てベースバンド信号に付加されている直流オフセット電
圧を減殺するための制御手段とを備えて構成される。
According to a second aspect of the present invention, the correcting means of the first aspect detects the average voltage in the no-signal state from the baseband signal, and the baseband signal according to the detection output of the detecting means. Control means for reducing the DC offset voltage added to the.

【0010】[0010]

【作用】この発明に係る符号化直交周波数分割多重信号
受信機は、ベースバンド信号に付加されている直流電圧
を無信号状態での平均電圧に基づいて減殺されるよう
に、変調データの復調の際に補正を与える補正手段を設
けることにより、直流オフセット電圧による悪影響を取
り除くことができる。
The coded orthogonal frequency division multiplex signal receiver according to the present invention demodulates the modulated data so that the DC voltage added to the baseband signal is reduced based on the average voltage in the no signal state. By providing a correction means for providing correction at that time, the adverse effect of the DC offset voltage can be eliminated.

【0011】[0011]

【実施例】図1はこの発明の一実施例のCOFDM信号
受信機の概略ブロック図である。図1において、RF−
IF周波数変換器1とディバイダ2と局部発振器3と位
相変換器4とミキサ5,6とA/D変換器9,10とF
FT演算部11とデータ処理部12は前述の図3と同じ
であり、以下の点が異なっている。すなわち、A/D変
換器9,10の出力とFFT演算部11との間にヌルシ
ンボル平均電圧測定回路13と14が接続される。ヌル
シンボル平均電圧測定回路13,14はA/D変換器
9,10の出力であるディジタルのベースバンド信号S
1 ,S2 に含まれるヌルシンボル(無信号状態のシンボ
ル)での平均電圧を測定するものであり、測定された電
圧はオフセット調整回路15,16に与えられ、オフセ
ット電圧が調整されて電圧制御回路17,18に与えら
れる。電圧制御回路17はA/D変換器9の基準電圧を
調整し、電圧制御回路18はA/D変換器10の基準電
圧を調整し、それぞれベースバンド信号に付加されるD
Cオフセットを減殺する。このように、ヌルシンボル平
均電圧測定回路13,14とオフセット調整回路15,
16と電圧制御回路17,18とを設けることにより、
DCオフセットによる影響を除去でき、変調データを正
しく復調することができる。
1 is a schematic block diagram of a COFDM signal receiver according to an embodiment of the present invention. In FIG. 1, RF-
IF frequency converter 1, divider 2, local oscillator 3, phase converter 4, mixers 5, 6, A / D converters 9, 10 and F
The FT calculation unit 11 and the data processing unit 12 are the same as those in FIG. 3 described above, and are different in the following points. That is, the null symbol average voltage measuring circuits 13 and 14 are connected between the outputs of the A / D converters 9 and 10 and the FFT calculator 11. The null symbol average voltage measuring circuits 13 and 14 output digital baseband signals S output from the A / D converters 9 and 10.
The average voltage of the null symbols (symbols in no signal state) included in 1 and S 2 is measured, and the measured voltage is given to the offset adjusting circuits 15 and 16, and the offset voltage is adjusted to control the voltage. It is provided to the circuits 17 and 18. The voltage control circuit 17 adjusts the reference voltage of the A / D converter 9, the voltage control circuit 18 adjusts the reference voltage of the A / D converter 10, and D added to the baseband signal, respectively.
C offset is reduced. In this way, the null symbol average voltage measuring circuits 13 and 14 and the offset adjusting circuit 15,
By providing 16 and voltage control circuits 17 and 18,
The influence of the DC offset can be removed, and the modulated data can be demodulated correctly.

【0012】図2はこの発明の第2実施例のCOFDM
信号受信機のブロック図である。前述の図1に示した実
施例では、オフセット調整回路15,16の出力を電圧
制御回路17,18に与え、それぞれA/D変換器9,
10の基準電圧を調整するようにしたが、この図2に示
した実施例では、ローパスフィルタ7,8とA/D変換
器9,10の間にオペアンプ21,22を挿入し、オフ
セット調整回路15,16によって制御されるDC制御
部19,20を設け、DC制御部19,20の出力によ
りオペアンプ21,22の出力電圧を調整するようにし
たものである。このように、オフセット調整回路15,
16によって制御されるDC制御部19,20を制御
し、このDC制御部19,20からオペアンプ21,2
2に出力される電圧を調整することにより、DCオフセ
ットを減殺し、変調データを正しく復調することができ
る。
FIG. 2 shows a COFDM according to a second embodiment of the present invention.
It is a block diagram of a signal receiver. In the embodiment shown in FIG. 1 described above, the outputs of the offset adjusting circuits 15 and 16 are given to the voltage control circuits 17 and 18, and the A / D converter 9 and
Although the reference voltage of 10 is adjusted, in the embodiment shown in FIG. 2, the operational amplifiers 21 and 22 are inserted between the low pass filters 7 and 8 and the A / D converters 9 and 10 to adjust the offset adjustment circuit. DC control units 19 and 20 controlled by 15 and 16 are provided, and the output voltages of the operational amplifiers 21 and 22 are adjusted by the outputs of the DC control units 19 and 20. In this way, the offset adjustment circuit 15,
The DC control units 19 and 20 controlled by 16 are controlled by the DC control units 19 and 20.
By adjusting the voltage output to 2, the DC offset can be canceled and the modulated data can be demodulated correctly.

【0013】[0013]

【発明の効果】以上のように、この発明によれば、ヌル
シンボルにおける平均電圧の結果により、変調データ復
調の際にDCオフセットを減殺できるので、DCオフセ
ットの影響を受けることなく、変調データを正しく復調
することができる。
As described above, according to the present invention, the DC offset can be canceled during the demodulation of the modulation data by the result of the average voltage in the null symbol, so that the modulation data is not affected by the DC offset. Can be demodulated correctly.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はこの発明の一実施例のCOFDM信号受
信機のブロック図である。
FIG. 1 is a block diagram of a COFDM signal receiver according to an embodiment of the present invention.

【図2】この発明の第2実施例のCOFDM信号受信機
のブロック図である。
FIG. 2 is a block diagram of a COFDM signal receiver according to a second embodiment of the present invention.

【図3】従来のCOFDM信号受信機のブロック図であ
る。
FIG. 3 is a block diagram of a conventional COFDM signal receiver.

【図4】図3に示したCOFDM信号受信機におけるベ
ースバンド信号を示す図である。
FIG. 4 is a diagram showing a baseband signal in the COFDM signal receiver shown in FIG.

【符号の説明】[Explanation of symbols]

1 RF−IF周波数変換部 2 ディバイダ 3 局部発振器 4 位相変換器 5,6 ミキサ 7,8 ローパスフィルタ 9,10 A/D変換器 11 FFT演算部 12 データ処理部 13,14 ヌルシンボル平均電圧測定回路 15,16 オフセット調整回路 17,18 電圧制御回路 19,20 DC制御部 21,22 オペアンプ 1 RF-IF Frequency Converter 2 Divider 3 Local Oscillator 4 Phase Converter 5,6 Mixer 7,8 Low Pass Filter 9,10 A / D Converter 11 FFT Calculator 12 Data Processor 13,14 Null Symbol Average Voltage Measuring Circuit 15, 16 Offset adjustment circuit 17, 18 Voltage control circuit 19, 20 DC control unit 21, 22 Operational amplifier

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フレーム内に無信号状態のシンボルを有
する符号化直交周波数分割多重信号を受信し、その受信
信号をベースバンド帯域に変換し、そのベースバンド信
号を高速フーリエ変換して変調データを復調する符号化
直交周波数分割多重信号受信機において、 前記ベースバンドに付加されている直流電圧無信号状態
での平均電圧に基づいて直流オフセット電圧を補正する
補正手段を備えた、符号化直交周波数分割多重信号受信
機。
1. A coded orthogonal frequency division multiplexed signal having a signalless symbol in a frame is received, the received signal is converted into a baseband band, and the baseband signal is subjected to fast Fourier transform to obtain modulated data. In the coded orthogonal frequency division multiplex signal receiver for demodulation, the coded orthogonal frequency division is provided with a correction means for correcting the DC offset voltage based on the average voltage in the no DC voltage signal state added to the baseband. Multiple signal receiver.
【請求項2】 前記補正手段は、 前記ベースバンド信号から前記無信号状態での平均電圧
を検出するための検出手段と、 前記検出手段の検出出力に応じて、前記ベースバンド信
号に付加されている直流オフセット電圧を減殺するため
の制御手段を含む、請求項1の符号化直交周波数分割多
重信号受信機。
2. The correcting means detects the average voltage in the no-signal state from the baseband signal, and is added to the baseband signal according to the detection output of the detecting means. 2. The coded orthogonal frequency division multiplex signal receiver of claim 1 including control means for canceling the DC offset voltage present.
JP5212576A 1993-08-27 1993-08-27 Receiver for encoded orthogonal frequency-divided multiplex signal Withdrawn JPH0766793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5212576A JPH0766793A (en) 1993-08-27 1993-08-27 Receiver for encoded orthogonal frequency-divided multiplex signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5212576A JPH0766793A (en) 1993-08-27 1993-08-27 Receiver for encoded orthogonal frequency-divided multiplex signal

Publications (1)

Publication Number Publication Date
JPH0766793A true JPH0766793A (en) 1995-03-10

Family

ID=16624993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5212576A Withdrawn JPH0766793A (en) 1993-08-27 1993-08-27 Receiver for encoded orthogonal frequency-divided multiplex signal

Country Status (1)

Country Link
JP (1) JPH0766793A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2735636A1 (en) * 1995-06-16 1996-12-20 Thomson Csf METHOD AND DEVICE FOR OVER-SAMPLING AND FREQUENCY TRANSPOSITION OF A DIGITAL RADIO SIGNAL
WO1998001981A1 (en) * 1996-07-08 1998-01-15 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for compensating for a varying d.c. offset in a sampled signal
JP2000228638A (en) * 1999-02-08 2000-08-15 Sharp Corp Ss radio receiver
JP2006254289A (en) * 2005-03-14 2006-09-21 Nec Corp Dc offset removal control method, and transmitting and receiving apparatus
JP2007088983A (en) * 2005-09-26 2007-04-05 Sharp Corp Ofdm reception circuit, communication apparatus, and broadcast receiver

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2735636A1 (en) * 1995-06-16 1996-12-20 Thomson Csf METHOD AND DEVICE FOR OVER-SAMPLING AND FREQUENCY TRANSPOSITION OF A DIGITAL RADIO SIGNAL
WO1997000566A2 (en) * 1995-06-16 1997-01-03 Thomson-Csf Digital radio signal frequency translation and oversampling device and method
WO1997000566A3 (en) * 1995-06-16 1997-01-23 Thomson Csf Digital radio signal frequency translation and oversampling device and method
WO1998001981A1 (en) * 1996-07-08 1998-01-15 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for compensating for a varying d.c. offset in a sampled signal
AU723089B2 (en) * 1996-07-08 2000-08-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for compensating for a varying D.C. offset in a sampled signal
JP2000514965A (en) * 1996-07-08 2000-11-07 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) Variable of sampled signal C. Method and apparatus for compensating offset
JP2000228638A (en) * 1999-02-08 2000-08-15 Sharp Corp Ss radio receiver
JP2006254289A (en) * 2005-03-14 2006-09-21 Nec Corp Dc offset removal control method, and transmitting and receiving apparatus
JP4661281B2 (en) * 2005-03-14 2011-03-30 日本電気株式会社 DC offset removal control method and transmitter / receiver
JP2007088983A (en) * 2005-09-26 2007-04-05 Sharp Corp Ofdm reception circuit, communication apparatus, and broadcast receiver

Similar Documents

Publication Publication Date Title
US7203466B2 (en) Transmitting and receiving unit
EP1477005B1 (en) I/q mismatch compensation in an ofdm receiver in presence of frequency offset
US8537934B2 (en) System and method for multi-carrier modulation
EP2120347A1 (en) Phase noise correction device and its method
US8976914B2 (en) Multi-tap IQ imbalance estimation and correction circuit and method
JPH0690261A (en) Method and apparatus for control of gain and phase error between signal channels in direct-conversion receiver
JP2004531168A (en) Method and system for compensating for carrier frequency offset
GB2313270A (en) Digital Broadcasting Receiver
JPH07212421A (en) Afc circuit
JPH07506952A (en) Homodyne receiver and direct conversion method
US5339040A (en) AM demodulation receiver using digital signal processor
JPH09224059A (en) Direct conversion fsk receiver
US10225118B1 (en) Carrier leakage correction method for quadrature modulator
JP2000228656A (en) Afc circuit
JPH06326739A (en) Cofdm signal receiver
EP1724956A1 (en) Radio system and radio communication device
JPH0766793A (en) Receiver for encoded orthogonal frequency-divided multiplex signal
JP2001136223A (en) Demodulator and demodulating method
EP2469740B1 (en) Methods and receiver for positioning of clock related spurious signals
US5371902A (en) Method and apparatus for recovering baseband signals from in-phase and quadrature-phase signal components having phase error therebetween
JPH1041992A (en) Quasi-synchronization detection demodulator
JP2818156B2 (en) AFC circuit
US7149485B2 (en) Method and device for processing mismatches between two quadrature paths of a chain of a reception adapted for example to the reception of a signal modulated according to a modulation of the OFDM type
JP3898839B2 (en) Transmitter
US9049082B2 (en) Carrier frequency and phase recovery in quadrature encoded E-band communications

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031