JPH0766338A - Cooling device for integrated circuit element - Google Patents

Cooling device for integrated circuit element

Info

Publication number
JPH0766338A
JPH0766338A JP21251193A JP21251193A JPH0766338A JP H0766338 A JPH0766338 A JP H0766338A JP 21251193 A JP21251193 A JP 21251193A JP 21251193 A JP21251193 A JP 21251193A JP H0766338 A JPH0766338 A JP H0766338A
Authority
JP
Japan
Prior art keywords
integrated circuit
flow path
circuit element
flow
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21251193A
Other languages
Japanese (ja)
Inventor
Koopurando Deibitsuto
デイビット・コープランド
Heikichi Kuwabara
平吉 桑原
Kenji Takahashi
研二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21251193A priority Critical patent/JPH0766338A/en
Publication of JPH0766338A publication Critical patent/JPH0766338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To highly efficiently cool an integrated circuit element and laser diode element which generate plenty of heat by providing a heat transferring surface for cooling on which a coolant is made to flow through each gap between a plurality of parallel thin fins and a flow passage structure which is brought into contact with the heat transfer surface with a compressive force and has an inlet and outlet counterposed to each other in the horizontal direction. CONSTITUTION:A coolant enters a flow passage structure 20 from its entrance 50 and flows to the outlet 52 of the structure 20 through an inlet flow passage 44, flow passages 32 formed between each fin 34 on the element 10 of a laser diode or computer, and outlet flow passage 44 which is separated from the flow passage 44 by a wall 42. The structure 20 has side faces 54 and an upper surface 48 and the lower surface of the structure 20 is press-contacted with the upper surface 36 of micro flow passages with a compressive force. The surface 30 of the micro flow passages is constituted of the fins 34 and flow passages 32. Therefore, an integrated circuit element and the element of a laser diode which generates plenty of heat can be cooled with a high efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LSI、ダイオード、
IGBT、サイリスタ等の電子機器の素子から発生する
熱を冷却する場合の集積回路の実装構造にかかるもので
ある。
BACKGROUND OF THE INVENTION The present invention relates to an LSI, a diode,
The present invention relates to a mounting structure of an integrated circuit for cooling heat generated from an element of an electronic device such as an IGBT and a thyristor.

【0002】[0002]

【従来の技術】集積回路素子の冷却に、ベローズと冷水
流路を用いた装置は、従来にも行なわれている。例え
ば、ジャ−ナル オブ マイクロメカニックス アンド
マイクロエンジニアリング 9/91の第152頁か
ら第156頁の「ダイレクト ボンディング オブ マ
イクロマシ−ンド シリコン ウエハズ フォ− レ−
ザダイオ−ド ヒ−トイクスチェンジャ アプリケ−シ
ョンズ」(Hunt et al.、“Direct
Bonding of Micromachined
Silicon Wafers for Laser
Diode Heat Exchanger Appl
ications”、 Journalof Micr
omechanics and Microengin
eering、 9/91、 pp. 152−15
6)には、冷水流路と素子の間の熱伝導素子の接触面に
接触熱抵抗を低減するためのHeガスや熱伝導グリスを
用いており、接触熱抵抗は1cm2の素子に対して0.2
℃/W以上であることが記載されている。
2. Description of the Related Art An apparatus using a bellows and a cold water passage for cooling an integrated circuit element has been conventionally used. For example, Journal of Micromechanics and Micro Engineering 9/91, pp. 152 to 156, "Direct Bonding of Micromachined Silicon Wafers Forum".
The Diode Heat Exchanger Applications "(Hunt et al.," Direct
Bonding of Micromachined
Silicon Wafers for Laser
Diode Heat Exchanger Appl
ications ”, Journalof Micr
omechanics and Microengin
eeering, 9/91, pp. 152-15
6) uses He gas or heat conductive grease to reduce the contact thermal resistance on the contact surface of the heat conductive element between the cold water flow path and the element, and the contact thermal resistance is 1 cm 2 for the element. 0.2
It is described that the temperature is C / W or higher.

【0003】[0003]

【発明が解決しようとする課題】コンピュータの素子、
あるいはレーザダイオードの素子では、計算速度を向上
させるために信号伝送時間を短縮すること、及び個々の
素子の温度のばらつきを最小にすることが必要である。
A computer device,
Alternatively, in the laser diode element, it is necessary to shorten the signal transmission time in order to improve the calculation speed, and to minimize the temperature variation among the individual elements.

【0004】また、素子にヒートシンクである冷媒流路
等が、固定して接触している冷却構造体では、素子から
固定する装置及び、熱膨潤率の相違による強度信頼性の
課題が生ずる。また、素子とヒートシンクの間の接触熱
抵抗を低減するため、ある程度の接触力で接する必要が
ある。さらに、高い熱負荷を有する素子を冷却する必要
がある。
Further, in a cooling structure in which a coolant flow path, which is a heat sink, is fixedly in contact with the element, there are problems of a device for fixing from the element and strength reliability due to a difference in thermal swelling rate. Further, in order to reduce the contact thermal resistance between the element and the heat sink, it is necessary to make contact with a certain degree of contact force. In addition, it is necessary to cool elements that have a high heat load.

【0005】本発明の目的は、高発熱する集積回路素子
及びレーザダイオードの素子の冷却を高効率に行うこと
ができる集積回路素子の冷却装置を提供することにあ
る。
An object of the present invention is to provide an integrated circuit element cooling device capable of cooling the integrated circuit element and the laser diode element which generate a large amount of heat with high efficiency.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の集積回路素子の冷却装置は、 微細なフィ
ン間に冷媒を流して冷却を行う集積回路素子の冷却装置
において、平行な複数の微細なフィン間に冷媒を流して
冷却を行う伝熱面を有し、圧縮力にて前記伝熱面の表面
に接するとともに、対向する水平方向に入口と出口を有
する流路構造体を備えたことを特徴とするものである。
In order to achieve the above object, the cooling device for an integrated circuit element according to the present invention is a parallel cooling device for an integrated circuit element, in which a cooling medium is flowed between fine fins for cooling. A flow path structure having a heat transfer surface that cools by flowing a refrigerant between a plurality of fine fins, is in contact with the surface of the heat transfer surface by a compressive force, and has an inlet and an outlet in opposite horizontal directions. It is characterized by having.

【0007】又、前記圧縮力をスプリングあるいは弾性
圧縮構造体の圧縮力にて得ているものである。又、前記
流路構造体が複数備えられている物である。又、前記流
路構造体を複数個の素子を実装した基板上に配置したも
のである。前記流路構造体に接するように二次流体の流
路を設置したものである。
Further, the compression force is obtained by the compression force of a spring or an elastic compression structure. Further, the flow path structure is provided in plural. Further, the flow channel structure is arranged on a substrate on which a plurality of elements are mounted. A flow path for the secondary fluid is installed so as to be in contact with the flow path structure.

【0008】[0008]

【作用】多数の素子あるいはレーザダイオードを搭載し
たマルチチップモジュールの場合、多数の流路構造体が
必要なため、圧力損失の低減は重要な課題である。上記
のように構成しているので、各流路構造体の入口から入
った冷媒は、マイクロ流路上で、素子から発生した熱を
吸熱し、再び流路構造体を経て、出口から流れ出る。こ
の場合、冷媒はポンプによって循環するが、流路長を短
くしてあるのでポンプ動力が低減できる。さらに、微細
なマイクロ流路を通過するので、伝熱が促進され、高熱
負荷で発熱する素子を冷却できる。
In the case of a multi-chip module equipped with a large number of elements or laser diodes, a large number of flow path structures are required, so reducing pressure loss is an important issue. With the above-described structure, the refrigerant that has entered from the inlet of each flow channel structure absorbs the heat generated from the element on the micro flow channel, passes through the flow channel structure again, and flows out from the outlet. In this case, the refrigerant circulates by the pump, but the pump power can be reduced because the flow path length is shortened. Further, since it passes through the fine micro flow paths, heat transfer is promoted, and the element that generates heat with a high heat load can be cooled.

【0009】又、流路長の非常に短い多数の流路を並列
に個々の素子の上に設けることにより、圧力損失を低減
することができる。流路構造体は、マイクロ流路の上
に、スプリングあるいは弾性体により軽い接触力で接し
ている。
Further, the pressure loss can be reduced by providing a large number of flow paths having a very short flow path in parallel on each element. The flow path structure is in contact with the micro flow path with a light contact force by a spring or an elastic body.

【0010】[0010]

【実施例】本発明の一実施例を図1から図6により説明
する。図1は、本発明の一実施例を示すマイクロフィン
及び流路構造を示す部分断面斜視図、図2は図1で示し
たマイクロフィン及び流路構造体の横断面図、図3は図
1で示したマイクロフィン及び流路構造体の別方向から
見た横断面図、図4は本実施例のマルチチップモジュー
ルの冷却系の上面図、図5は図4で示したマルチチップ
モジュールの冷却系の側面図、図6は図4で示したマル
チチップモジュールの横断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. 1 is a partial cross-sectional perspective view showing a microfin and a flow channel structure showing an embodiment of the present invention, FIG. 2 is a cross-sectional view of the microfin and the flow channel structure shown in FIG. 1, and FIG. 4 is a cross-sectional view of the microfins and the flow channel structure seen from another direction, FIG. 4 is a top view of the cooling system of the multichip module of this embodiment, and FIG. FIG. 6 is a side view of the system, and FIG. 6 is a cross-sectional view of the multichip module shown in FIG.

【0011】図1に示すように、冷媒が、流路構造体2
0の入口側50から入り、入口流路44を経て、レーザ
ダイオード、あるいはコンピュータの素子10上のフィ
ン34の間の流路32を経て流れ、さらに入口流路44
と壁面42で隔てられる出口流路46から出口側52へ
流れる。この場合、流路構造体20は側面54と上面4
8を有していて、流路構造体20の下面40は、マイク
ロ流路の上面36と圧縮力で押しつけられる状態で接し
ている。ここではマイクロ流路の表面30は、フィン3
4と流路32で構成されている。
As shown in FIG. 1, the coolant flows through the flow path structure 2
0 through the inlet side 50, through the inlet channel 44, through the channel 32 between the laser diode or the fins 34 on the computer device 10, and further through the inlet channel 44.
From the outlet flow path 46 separated by the wall surface 42 to the outlet side 52. In this case, the flow path structure 20 includes the side surface 54 and the upper surface 4
8, the lower surface 40 of the channel structure 20 is in contact with the upper surface 36 of the microchannel in a state of being pressed by a compressive force. Here, the surface 30 of the microchannel is the fin 3
4 and the flow path 32.

【0012】流路構造体20及び素子10を側面から見
た図2、図3、および流路構造体20及び素子10を上
面から見た図4から分かるように、多数の集積回路素子
及びレーザダイオードの素子10が搭載された基板60
とハンダ球38によって接続されている。
As can be seen in FIGS. 2 and 3 which show the flow channel structure 20 and the device 10 from the side and FIG. 4 which shows the flow channel structure 20 and the device 10 from the top, a number of integrated circuit devices and lasers are shown. Substrate 60 on which diode element 10 is mounted
Are connected by a solder ball 38.

【0013】又、入口流路64と出口流路66の間の流
路構造体20の間にはスペースがあり、その間に弾性体
をいれて入口流路64と出口流路の間の漏れを防いでい
る。
Further, there is a space between the flow passage structure 20 between the inlet flow passage 64 and the outlet flow passage 66, and an elastic body is inserted between them to prevent leakage between the inlet flow passage 64 and the outlet flow passage. It is preventing.

【0014】冷媒は、マルチチップモジュールの入口部
68を通って、モジュールの入口部ダクト64から入
り、マイクロ流路を通り、モジュールの出口部ダクト6
6を経て、マルチチップモジュールの出口部70から出
る。基板60上のマルチチップモジュールの入口部68
は、入口部壁面72に設けられ、マルチチップモジュー
ルの出口部70は、出口部壁面74に設けられている。
図5で示されるように、弾性体76により、流路構造体
20の下面40を素子の列10の上のフィンの上面36
に押し付ける力が発生する。
Refrigerant enters through the inlet 68 of the multichip module, enters through the inlet duct 64 of the module, passes through the microchannels, and exits the duct 6 of the module.
6 and exits from the outlet 70 of the multichip module. Inlet 68 of multichip module on substrate 60
Are provided on the inlet wall surface 72, and the outlet portion 70 of the multichip module is provided on the outlet wall surface 74.
As shown in FIG. 5, the elastic body 76 allows the lower surface 40 of the flow channel structure 20 to move from the upper surface 36 of the fin above the row 10 of elements.
The force to press against is generated.

【0015】又、図6に示されるように、基板60の接
続のために、I/Oピン78付いていて、マルチチップ
モジュールを封止するためにモジュールの上板80があ
り、その上面82は二次系の流体によって冷却される。
Further, as shown in FIG. 6, there is an I / O pin 78 for connecting the substrate 60, and a module upper plate 80 for encapsulating the multi-chip module, and an upper surface 82 thereof. Is cooled by the secondary fluid.

【0016】[0016]

【発明の効果】以上述べたように、本発明の集積回路素
子の冷却装置よれば、集積回路あるいはレーザダイオー
ド素子の冷却のために、マイクロ流路を用いた系の流路
構造体であるので、高発熱する集積回路素子及びレーザ
ダイオードの素子の冷却を高効率に行うことができる。
As described above, according to the cooling device for an integrated circuit element of the present invention, a flow path structure of a system using a micro flow path is provided for cooling the integrated circuit or the laser diode element. It is possible to efficiently cool the integrated circuit device and the laser diode device that generate high heat.

【0017】また、スプリングあるいは弾性体によるマ
イクロフィン上の柔軟接続構造であり、又、冷却系はマ
ルチチップモジュールを冷却する際入口と出口構造を容
易に形成できる。
Further, it is a flexible connection structure on the micro fins by means of springs or elastic bodies, and the cooling system can easily form an inlet and an outlet structure when cooling the multi-chip module.

【0018】[0018]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すマイクロフィン、及び
流路構造を示す部分断面斜視図である。
FIG. 1 is a partial cross-sectional perspective view showing a microfin and a flow channel structure showing an embodiment of the present invention.

【図2】図1で示したマイクロフィン、及び流路構造体
の横断面図である。
FIG. 2 is a cross-sectional view of the micro fin and the flow channel structure shown in FIG.

【図3】図1で示したマイクロフィン、及び流路構造体
の別方向から見た横断面図である。
FIG. 3 is a cross-sectional view of the microfin shown in FIG. 1 and the flow channel structure as viewed from another direction.

【図4】本実施例のマルチチップモジュールの冷却系の
上面図である。
FIG. 4 is a top view of a cooling system of the multi-chip module of this embodiment.

【図5】図4で示したマルチチップモジュールの冷却系
の側面図である。
5 is a side view of a cooling system of the multi-chip module shown in FIG.

【図6】図4で示したマルチチップモジュールの横断面
図である。
6 is a cross-sectional view of the multi-chip module shown in FIG.

【符号の説明】[Explanation of symbols]

10…集積回路素子あるいはレーザダイオードの素子、
20…流路構造体、30…マイクロ流路の表面、32…
マイクロ流路、34…フィン、36…フィンの上面、3
8…ハンダ球、40…流路構造体の下面、42…壁面、
44…流路構造体の入口流路、46…流路構造体の出口
流路、48…流路構造体の上面、50…流路構造体の入
口側、52…流路構造体の出口側、54…流路構造体の
側面、60…基板、62…弾性構造体、64…マルチチ
ップモジュールの流路入口、70…マルチチップモジュ
ールの流路出口、72…入口部壁面、74…出口部壁
面、76…弾性荷重体、78…I/Oピン、80…マル
チチップモジュールの上板、82…マルチチップモジュ
ールの上板の表面。
10 ... Integrated circuit device or laser diode device,
20 ... Channel structure, 30 ... Micro channel surface, 32 ...
Micro channel, 34 ... Fin, 36 ... Fin upper surface, 3
8 ... Solder ball, 40 ... Lower surface of flow path structure, 42 ... Wall surface,
44 ... Inlet flow path of flow path structure, 46 ... Exit flow path of flow path structure, 48 ... Upper surface of flow path structure, 50 ... Inlet side of flow path structure, 52 ... Exit side of flow path structure , 54 ... Side surface of flow path structure, 60 ... Substrate, 62 ... Elastic structure, 64 ... Flow path inlet of multichip module, 70 ... Flow path outlet of multichip module, 72 ... Inlet wall surface, 74 ... Exit part Walls, 76 ... Elastic load bodies, 78 ... I / O pins, 80 ... Multichip module top plate, 82 ... Multichip module top plate surface.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】微細なフィン間に冷媒を流して冷却を行う
集積回路素子の冷却装置において、平行な複数の微細な
フィン間に冷媒を流して冷却を行う伝熱面を有し、圧縮
力にて前記伝熱面の表面に接するとともに、対向する水
平方向に入口と出口を有する流路構造体を備えたことを
特徴とする集積回路素子の冷却装置。
1. A cooling device for an integrated circuit device, which cools by flowing a refrigerant between fine fins, having a heat transfer surface for flowing a coolant between a plurality of parallel fine fins for cooling, and a compressive force. 2. A cooling device for an integrated circuit element, comprising: a flow path structure which is in contact with the surface of the heat transfer surface and has an inlet and an outlet in the horizontal direction facing each other.
【請求項2】前記圧縮力をスプリングあるいは弾性圧縮
構造体の圧縮力にて得ている請求項1に記載の集積回路
素子の冷却装置。
2. A cooling device for an integrated circuit element according to claim 1, wherein the compression force is obtained by a compression force of a spring or an elastic compression structure.
【請求項3】前記流路構造体が複数備えられている請求
項1に記載の集積回路素子の冷却装置。
3. A cooling device for an integrated circuit element according to claim 1, wherein a plurality of the flow path structures are provided.
【請求項4】前記流路構造体を複数個の素子を実装した
基板上に配置した請求項1に記載の集積回路素子の冷却
装置。
4. The cooling device for an integrated circuit element according to claim 1, wherein the flow path structure is arranged on a substrate on which a plurality of elements are mounted.
【請求項5】前記流路構造体に接するように二次流体の
流路を設置した請求項3に記載の集積回路素子の冷却装
置。
5. The cooling device for an integrated circuit element according to claim 3, wherein a flow path for the secondary fluid is installed so as to be in contact with the flow path structure.
JP21251193A 1993-08-27 1993-08-27 Cooling device for integrated circuit element Pending JPH0766338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21251193A JPH0766338A (en) 1993-08-27 1993-08-27 Cooling device for integrated circuit element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21251193A JPH0766338A (en) 1993-08-27 1993-08-27 Cooling device for integrated circuit element

Publications (1)

Publication Number Publication Date
JPH0766338A true JPH0766338A (en) 1995-03-10

Family

ID=16623889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21251193A Pending JPH0766338A (en) 1993-08-27 1993-08-27 Cooling device for integrated circuit element

Country Status (1)

Country Link
JP (1) JPH0766338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151640A (en) * 2000-11-09 2002-05-24 Nec Corp Semiconductor device
DE112009005359T5 (en) 2009-11-11 2012-11-29 Kabushiki Kaisha Toshiba Heatsink, heat sink assembly, semiconductor module and semiconductor device with a cooling device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151640A (en) * 2000-11-09 2002-05-24 Nec Corp Semiconductor device
DE112009005359T5 (en) 2009-11-11 2012-11-29 Kabushiki Kaisha Toshiba Heatsink, heat sink assembly, semiconductor module and semiconductor device with a cooling device
US8558373B2 (en) 2009-11-11 2013-10-15 Kabushiki Kaisha Toshiba Heatsink, heatsink assembly, semiconductor module, and semiconductor device with cooling device

Similar Documents

Publication Publication Date Title
US6557354B1 (en) Thermoelectric-enhanced heat exchanger
US6705089B2 (en) Two stage cooling system employing thermoelectric modules
US5901037A (en) Closed loop liquid cooling for semiconductor RF amplifier modules
JPS6336695Y2 (en)
US6981849B2 (en) Electro-osmotic pumps and micro-channels
US7849914B2 (en) Cooling apparatus for microelectronic devices
US20060133039A1 (en) Fluid cooled integrated circuit module
JPS6132449A (en) Integrated circuit chip cooler
US6619044B2 (en) Heat exchanger for an electronic heat pump
US8987891B2 (en) Heat sink apparatus for microelectronic devices
US4450505A (en) Apparatus for cooling integrated circuit chips
US11967541B2 (en) Liquid-based heat exchanger
JPS61201452A (en) Cooling device for integrated circuit chip
JPH04226058A (en) Fluid-cooling hat
US20050172991A1 (en) Thermoelectric element and electronic component module and portable electronic apparatus using it
JPS5832504B2 (en) Semiconductor chip heat transfer device
CN113793837A (en) Self-sensing temperature control system of chip
US6345506B1 (en) Apparatus for controlling temperature of fluid by use of thermoelectric device
JPS61226946A (en) Cooling device for integrated circuit chip
JPH0766338A (en) Cooling device for integrated circuit element
TW202145470A (en) Spring loaded compliant coolant distribution manifold for direct liquid cooled modules
KR100240938B1 (en) Utilizing of a heat conduction-module
JP2916608B2 (en) Heat dissipation structure of electronic device
US11856728B2 (en) Liquid cooling device
CN113316349B (en) Heat dissipation device