JPH076600B2 - Transformer water supply method and water transformer - Google Patents

Transformer water supply method and water transformer

Info

Publication number
JPH076600B2
JPH076600B2 JP29099586A JP29099586A JPH076600B2 JP H076600 B2 JPH076600 B2 JP H076600B2 JP 29099586 A JP29099586 A JP 29099586A JP 29099586 A JP29099586 A JP 29099586A JP H076600 B2 JPH076600 B2 JP H076600B2
Authority
JP
Japan
Prior art keywords
water
water supply
pressure
vessel
fountain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29099586A
Other languages
Japanese (ja)
Other versions
JPS63145900A (en
Inventor
稔 宮内
Original Assignee
稔 宮内
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 稔 宮内 filed Critical 稔 宮内
Priority to JP29099586A priority Critical patent/JPH076600B2/en
Publication of JPS63145900A publication Critical patent/JPS63145900A/en
Publication of JPH076600B2 publication Critical patent/JPH076600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pipeline Systems (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、送水管路の全部または一部に傾斜がある場
合、その落差を利用して送水圧力を上げて送水効率を高
めるようにした、上水道、農業用かんがい用水、小型発
電等に利用できる変圧送水法および送水変圧器に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) In the present invention, when all or a part of a water supply pipeline has an inclination, the water drop is used to increase the water supply pressure to improve the water supply efficiency. , Water supply method, irrigation water for agriculture, small-scale power generation, etc.

(従来の技術) 従来、管送水法に関しては、断面積の変化による損失、
曲管および肘管による損失、合流または分流などの損
失、更に水撃作用への対策、そして経済直径や流速など
に関する技術についてはいろいろ研究されていたけれど
も、送水路の傾斜面の落差を積極的に利用した送水技術
については考えられていなかった。
(Prior Art) Conventionally, regarding the pipe water supply method, loss due to a change in cross-sectional area,
Although there have been various studies on loss related to curved pipes and elbow pipes, losses such as confluence or shunting, countermeasures against water hammer action, and economic diameter and flow velocity technology, the head of the slope of the water supply channel is actively investigated. No consideration was given to the water supply technology used for the.

(発明が解決しようとする問題点) 管送水法は送水中に異物が混入する心配もなく、工事も
割合簡単であるため、従来から各種用途に広く利用され
ているが、送水管の抵抗が大きいためほとんど動力ポン
プにより加圧して送水することが多く、送水路の自然傾
斜を利用して送水することはあまりなかった。
(Problems to be solved by the invention) The pipe water supply method has been widely used for various purposes since there is no concern that foreign matter may enter the water supply and the construction is relatively simple. Since it is large, it is often pressurized with a power pump to send water, and water was rarely sent using the natural inclination of the water supply channel.

ただし、自家用飲料水の引き込みその他に小規模に利用
される場合はあったが、送水路の自然落差を利用した本
格的な送水技術はなかった。
However, although there were cases where it was used on a small scale such as for drawing in private drinking water, there was no full-fledged water transmission technology that used the natural head of the water supply channel.

この発明は上記した如く従来行われていなかった送水路
の傾斜を利用して効率的な送水を行うための、変圧送水
法および送水変圧器を提供することを目的とするもので
ある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a variable-pressure water supply method and a water-supply transformer for performing efficient water supply by utilizing the inclination of a water supply channel that has not been conventionally performed as described above.

(問題点を解決するための手段) 上記の目的を達するためのこの発明は、管送水におい
て、傾斜を有する送水管路の途中に、ノズルを備えた噴
水筒と、フロート弁とを、密閉した器に内蔵した送水変
圧器を適数個接続し、傾斜の上流側からの流水を、流下
圧力を利用して、上記噴水筒内に噴出させて上記器に溜
め、所定の液面以上に溜った水を、この器の底部から下
流側の送水管に送り込むことで、上記器内に溜った水の
圧力を利用して、送水圧力を高めて送水する変圧送水法
である。
(Means for Solving the Problems) In order to achieve the above object, the present invention is directed to pipe water supply, in which a fountain cylinder provided with a nozzle and a float valve are sealed in the middle of a water pipe having an inclination. Connect an appropriate number of water supply transformers built in the vessel, and use the downflow pressure to eject the running water from the upstream side of the slope into the fountain cylinder and store it in the vessel above the prescribed liquid level. This is a variable displacement water supply method in which the water pressure is increased by using the pressure of the water accumulated in the vessel by sending water from the bottom of the vessel to the water supply pipe on the downstream side.

また、傾斜した送水管路の中途に接続するためのもの
で、上端を開口した縦長の噴水筒を、密閉した器の下端
から挿入固定し、この噴水筒の下部に、上流側からの送
水の入口に連なる上向のノズルを設け、さらに噴水が上
記器内に所定の液面まで溜ったとき、この器の下端に設
けた出口から下流側に送水するためのフロート弁を設け
た送水変圧器である。
In addition, for connecting to the middle of the inclined water supply pipe, a vertically long fountain cylinder with an open upper end is inserted and fixed from the lower end of the sealed vessel, and the water from the upstream side is fed to the lower part of this fountain cylinder. A water supply transformer provided with an upward nozzle connected to the inlet and further provided with a float valve for delivering water downstream from the outlet provided at the lower end of the vessel when fountain collects up to a predetermined liquid level in the vessel. Is.

(作 用) 傾斜を有する送水管路の途中に設けた送水変圧器の噴水
筒内に上流側から流下する水を落差を利用して噴出させ
て、噴水筒の上端開口部から出た水を器の中に落とし
て、この器の中で噴水の頂点にできるだけ近い位置に液
面を保つように設けたフロート弁が、所定液面以上に溜
ったときフロートの浮力によりフロート弁を開いて、水
を器の下方の出口から次の送水管に送り込むことによ
り、液面から出口までの高さの水圧と、器内の空気が水
が溜ることにより圧縮されて生じる。空気圧による液面
加圧力とにより、送水圧力を高めて送水効率を向上させ
るものである。
(Operation) The water flowing down from the upstream side is jetted using the head into the fountain cylinder of the water transformer installed in the middle of the inclined water pipe, and the water discharged from the upper end opening of the fountain cylinder is ejected. The float valve, which was placed in the vessel to keep the liquid level as close as possible to the top of the fountain in this vessel, opened the float valve by the buoyancy of the float when it accumulated above the predetermined level, By sending water from the lower outlet of the container to the next water supply pipe, the water pressure at the height from the liquid surface to the outlet and the air in the container are compressed by the water and are generated. The water surface pressure is increased by the air pressure to increase the water supply pressure and improve the water supply efficiency.

(実施例) 以下、この発明を図面に示す実施例にもとづいて詳細説
明する。
(Embodiment) Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings.

第1図に示すように傾斜面の適当な取水地点に加圧タン
ク(C)を設置して、これに水を引き込むようにパイプ
等で水源に接続する。
As shown in FIG. 1, a pressure tank (C) is installed at an appropriate water intake point on the inclined surface, and is connected to a water source by a pipe or the like so as to draw water into it.

この加圧タンク(C)の下部に設けた出口に送水管(P
1)、送水変圧器(T1)、送水管(P2)、送水変圧器(T
2)、送水管(P3)、送水変圧器(T3)、送水管(P4)
・・・と送水管と送水管の間に同じ構造の送水変圧器を
交互に適数個(1個でもよい)を順次下向に傾斜連結し
て、下流側の受水地方向に延長敷設する。
The water pipe (P
1), water transformer (T1), water pipe (P2), water transformer (T
2), water pipe (P3), water transformer (T3), water pipe (P4)
... and an appropriate number (or even one) of water-supplying transformers of the same structure are alternately connected between the water-supplying pipes and the water-supplying pipes in an inclining downward direction, and extended to the downstream water receiving site. To do.

次に送水変圧器(T1)〔(T2)(T3)・・・も同じ〕の
構成と作用を説明する。
Next, the structure and operation of the water supply transformer (T1) [(T2) (T3) ... Same] will be described.

第2図は送水変圧器(T1)の詳細断面であって、密閉し
た縦長の器(Ca)の底部から、縦長の筒状で上端を開口
した噴水筒(S)を挿入し、この噴水筒(S)の上端と
器(Ca)の頂部との間に、噴水筒(S)の上端から出る
噴水が噴出できるだけの空間を残して、噴水筒(S)の
周囲を器(Ca)の底部に溶接などして密閉固着する。
Fig. 2 is a detailed cross section of the water supply transformer (T1), in which a vertically long tubular fountain cylinder (S) with an open upper end is inserted from the bottom of the vertically long container (Ca). There is a space between the upper end of (S) and the top of the vessel (Ca) so that the fountain from the upper edge of the fountain (S) can be ejected, and the bottom of the vessel (Ca) is surrounded by the fountain (S). Sealed and fixed by welding.

この噴水筒(S)には、下部中心に上向のノズル(N)
を設け、このノズル(N)には送水の入口(I)となる
L形の入口管(Pi)が連結され、他端のフランジ(F)
が取り付けてあって、上流側の送水管(P1)が連結され
ており、また噴水筒(S)はできるだけ大きい直径とし
て、内部の空気が噴水の抵抗とならないので自由に対流
できるようにするとともに、噴水筒(S)内と器(Ca)
内の上部空間とを連通する通気管(B)を設けて、噴水
筒(S)内と器(Ca)内の空気の流通をよくして、噴水
の空気抵抗を一層軽減するようにしてある。
This fountain cylinder (S) has a nozzle (N) that is directed upward toward the bottom center.
An L-shaped inlet pipe (Pi) serving as an inlet (I) for water supply is connected to the nozzle (N), and a flange (F) at the other end is provided.
Is attached, the water pipe (P1) on the upstream side is connected, and the diameter of the fountain cylinder (S) is as large as possible to allow free convection because the air inside does not resist the fountain. , Fountain cylinder (S) and container (Ca)
The ventilation pipe (B) communicating with the upper space of the inside is provided to improve the circulation of air in the fountain cylinder (S) and the vessel (Ca) to further reduce the air resistance of the fountain. .

また、噴水筒(S)の上端には先端を湾曲した噴水案内
板(G)の下端を固着して設けてあって、噴水がこの噴
水案内板(G)に添って器(Ca)内に落ちるようにして
ある。
Further, the lower end of a fountain guide plate (G) having a curved tip is fixedly provided on the upper end of the fountain cylinder (S), and the fountain is placed in the vessel (Ca) along the fountain guide plate (G). I'm trying to fall.

また、噴水筒(S)の下端には、噴水のこぼれ水が溜る
ことがあるが、一定以上溜った場合にフロートが働いて
溜り水を排出するドレン弁(Dv)が設けてある。
Further, although the spilled water of the fountain may accumulate at the lower end of the fountain cylinder (S), a drain valve (Dv) is provided to discharge the accumulated water by a float when the fountain spills over a certain amount.

また、器(Ca)の下端には出口(O)となるL形の出口
管(Po)が、先端にフランジ(F)を持って取り付けて
あって、このフランジ(F)により下流側の送水管(P
2)に連結されており、この出口管(Po)の入口にはフ
ロート(Fl)を備えたフロート弁(Fv)が設けてあっ
て、このフロート弁(Fv)は、器(Ca)内に溜る水が噴
水の頂点にできるだけ近づけた高い位置に水面を保つよ
うに規制して、この水面位以上に溜らんとする水をフロ
ート弁(Fv)が開いて下流側へ送水するものであり、一
定水面まで溜った後は、連続して噴水される限り、フロ
ート弁(Fv)は開いたまゝ噴水量だけ連続して下流側へ
送水することとなる。
Further, an L-shaped outlet pipe (Po) serving as an outlet (O) is attached to the lower end of the container (Ca) with a flange (F) at the tip, and this flange (F) is used to feed the downstream side. Water pipe (P
2), a float valve (Fv) equipped with a float (Fl) is installed at the inlet of this outlet pipe (Po), and this float valve (Fv) is inside the container (Ca). It regulates the accumulated water so that the water surface is kept at a high position as close as possible to the top of the fountain, and the water that collects above this water level is sent to the downstream side by opening the float valve (Fv). After the water reaches a certain level, as long as the water is continuously sprayed, the float valve (Fv) will continue to send water to the downstream side by the amount of the fountain open.

以上の構成において、加圧タンク(C)から送水管(P
1)を通って送水変圧器(T1)の入口(I)から入った
水は、噴水筒(S)の底部に設けたノズル(N)から、
加圧タンク(C)の水圧と、送水管(P1)の傾斜によっ
て生じる水圧との合計からなる入口水圧(Piwp)によっ
て噴水筒(S)内に噴出して、噴水筒(S)の上部で案
内板(G)に導かれて器(Ca)の中に溜り、その液面が
噴水の頂部に近いフロート(Fl)を浮力で浮かせる位置
に達したとき、フロート弁(Fv)が開いて出口(O)か
ら送水管(P2)、送水変圧器(T2)、送水管(P3)、送
水変圧器(T3)・・・を順次経由して受水地方向に送水
されるものである。
In the above configuration, from the pressure tank (C) to the water pipe (P
Water that has passed through 1) through the inlet (I) of the water transformer (T1) passes through the nozzle (N) provided at the bottom of the fountain cylinder (S),
The water pressure in the pressure tank (C) and the water pressure generated by the inclination of the water supply pipe (P1) are combined into the water pressure at the inlet (Piwp) to squirt into the water fountain (S), and at the top of the water fountain (S). When guided by the guide plate (G) and accumulated in the vessel (Ca) and the liquid level reaches a position where the float (Fl) near the top of the fountain can be floated by buoyancy, the float valve (Fv) opens and exits. The water is sent from (O) to the receiving site via the water pipe (P2), water transformer (T2), water pipe (P3), water transformer (T3) ...

ここに、送水変圧器(T1)への入口水圧(Piwp)はノズ
ル(N)から噴出する水が器(Ca)の中に溜ることによ
って、この器(Ca)の中の空気を圧縮して空気圧(Pa)
が発生し、この空気圧(Pa)は送水変圧器(T1)のない
普通の配管によって得られる水圧、つまり送水管(P1)
から次に連結される送水管(P2)に伝達される水圧が空
気圧となって現れるものであって、この空気圧(Pa)が
器(Ca)内に溜った水の液面を圧し、この空気圧(Pa)
と液面から出口(O)口までの落差水圧(Ph)との合計
が出口水圧(Powp)となって現れ、この出口水圧(Pow
p)つまり次の送水管(P2)の入口の水圧は従来の直通
配管の場合よりも器(Ca)に溜った落差水圧(Ph)だけ
高まるものである。
Here, the inlet water pressure (Piwp) to the water supply transformer (T1) compresses the air in this container (Ca) by collecting the water ejected from the nozzle (N) in the container (Ca). Air pressure (Pa)
Occurs, and this air pressure (Pa) is the water pressure obtained by ordinary piping without the water supply transformer (T1), that is, the water supply pipe (P1)
The water pressure transmitted to the water pipe (P2) that is connected from the device appears as air pressure, and this air pressure (Pa) presses the liquid surface of the water that has accumulated in the vessel (Ca). (Pa)
And the drop water pressure (Ph) from the liquid surface to the outlet (O), the total appears as the outlet water pressure (Powp), and this outlet water pressure (Powp)
p) That is, the water pressure at the inlet of the next water pipe (P2) is higher than the conventional direct piping by the drop water pressure (Ph) accumulated in the vessel (Ca).

第3図は本発明の変圧送水法による3段の送水変圧器を
備えた場合に得られる水圧と、従来の単なる管送水によ
る水圧とを同一条件下で比較したグラフであって、この
グラフによれば従来の場合X点からY点まで直線で配管
した破線で示す勾配(Sl)によって得られる送水圧力
(Psl)に対して、本発明の場合、上述の説明の如くX
点からY点の間で、送水変圧器(T1)(T2)(T3)によ
り段階適に圧力が増し、その圧力は鋸刃状の圧力線
(Q)で現わすことができ、この圧力線(Q)は鋸刃状
の斜辺の傾斜を一点鎖線で示すように延長した勾配(S
l′)に沿う直線配管と見做すことができて、X点Y点
間で送水圧力(Psl′)が得られ、従来の配管による送
水圧力(Psl)との差だけ送水圧力が高まって送水効率
が向上するものである。
FIG. 3 is a graph comparing the water pressure obtained when the three-stage water supply transformer according to the variable pressure water supply method of the present invention is provided with the water pressure by conventional simple pipe water supply under the same conditions. According to the conventional method, according to the conventional method, in the case of the present invention, the water supply pressure (Psl) obtained by the gradient (Sl) shown by the broken line in which a straight line is piped from the point X to the point Y is used as described above.
From point to Y point, the pressure is increased stepwise by the water supply transformer (T1) (T2) (T3), and the pressure can be expressed by the sawtooth pressure line (Q). (Q) is a slope (S
It can be regarded as a straight pipe along l '), and the water supply pressure (Psl') can be obtained between the X and Y points, and the water supply pressure increases by the difference from the water supply pressure (Psl) of the conventional pipe. The water transfer efficiency is improved.

こゝに本発明の勾配(Sl′)は送水変圧器(T1)(T2)
(T3)・・・のノズル(N)の直径を変えることにより
噴水の高さが変わり、この噴水の高さに合わせて器(C
a)に溜る水面の高さ(Ht)を加減すれば器(Ca)に溜
った水面から出口(O)までの落差水圧(Ph)を変える
ことができて、送水圧力を種々に変えて大水量小圧力型
から、小水量大圧力型まで送水形式をある程度自由に設
計することができるものである。
Here, the gradient (Sl ') of the present invention is the water supply transformer (T1) (T2)
By changing the diameter of the nozzle (N) of (T3) ..., the height of the fountain changes, and the vessel (C
If the height (Ht) of the water surface accumulated in a) is adjusted, the head water pressure (Ph) from the water surface accumulated in the vessel (Ca) to the outlet (O) can be changed, and the water supply pressure can be variously changed. From a small water pressure type to a small water amount large pressure type, the water supply system can be designed to some extent freely.

次に送水変圧器(T1)〔(T2)、(T3)も同様〕の効率
について説明する。
Next, the efficiency of the water supply transformer (T1) [the same applies to (T2) and (T3)] will be described.

この送水変圧器(T1)の効率は、種々試験した結果80〜
90%であることが確認され、実用上大きな支障のないこ
とが判明した。
As a result of various tests, the efficiency of this water supply transformer (T1) is 80-
It was confirmed to be 90%, and it was found that there was no major problem in practical use.

第4図は本発明送水変圧器(T1)(T2)(T3)・・・に
代わる試験用に製作した同様構造の送水変圧器(T)を
用いた試験装置を示す図であって、送水管(P1)(P2)
は内径9mm、長さ150cmのビニールホースを使用し、落差
(Hc)を1m、送水変圧器(T)内のノズルの直径3.7m
m、下端の試験ノズル(Nt)の直径3mmである。
FIG. 4 is a diagram showing a test apparatus using a water-transforming transformer (T) of the same structure, which was manufactured for a test in place of the water-transforming transformers (T1) (T2) (T3) of the present invention. Water pipe (P1) (P2)
Uses a vinyl hose with an inner diameter of 9 mm and a length of 150 cm, the head (Hc) is 1 m, and the diameter of the nozzle in the water transformer (T) is 3.7 m
m, the diameter of the test nozzle (Nt) at the bottom is 3 mm.

この試験装置による試験ノズル(Nt)から噴出する噴水
の高さ(Hs)は約58cmであり、送水変圧器(T)を取り
外して送水管(P1)(P2)を直通に連結した場合の噴水
の高さは63cmであった。
The height (Hs) of the fountain ejected from the test nozzle (Nt) by this test device is about 58 cm. The fountain when the water supply transformer (T) is removed and the water supply pipes (P1) (P2) are directly connected. The height was 63 cm.

この数値から送水変圧器(T)の効率を計算すると、 (58×58/63)÷63≒0.84 となり、効率は約84%である。Calculating the efficiency of the water supply transformer (T) from this value is (58 × 58/63) ÷ 63 ≒ 0.84, which is about 84%.

尚、本発明の送水変圧器(T1)(T2)(T3)・・・をや
や傾斜して設置することにより、噴水が器(Ca)内に円
滑に落下するように構成することもできる。
The fountain may be configured to drop smoothly into the vessel (Ca) by installing the water transmission transformers (T1) (T2) (T3) ... Of the present invention with a slight inclination.

また、本発明変圧送水法は送水管路に動力ポンプを接続
して動力ポンプと併用して送水することもできる。
In addition, in the variable pressure water supply method of the present invention, a power pump can be connected to the water supply conduit to use it together with the power pump for water supply.

(発明の効果) 以上説明したこの発明に係る変圧送水法および送水変圧
器によれば、従来の送水法では考えられなかった送水路
の勾配を積極的に利用して、送水圧力を上げて送水効率
を高めることができるもので、動力ポンプと併用して使
用することにより、動力ポンプのエネルギー消費を低減
することができる。
(Effects of the Invention) According to the variable displacement water supply method and the water transmission transformer according to the present invention described above, the gradient of the water supply channel, which has not been considered in the conventional water supply method, is positively utilized to increase the water supply pressure and supply water. Since the efficiency can be improved, the energy consumption of the power pump can be reduced by using it together with the power pump.

また、起伏の大きい場所の上水道や農業用かんがい用水
の送水施設の下り勾配管途中に本発明送水変圧器を挿入
接続して水圧を上げて送水すると、正常の送水を行いな
がら下り勾配の落差を利用してエネルギーを取り出して
発電などに利用することもできる。
Further, when the water supply transformer of the present invention is inserted and connected in the middle of the down-gradient pipe of the water supply facility for agricultural water and agricultural irrigation water in a place with a large ups and downs to increase the water pressure and send water, a drop in the down-gradient occurs while performing normal water supply. It can also be used to extract energy for use in power generation.

また水力を利用した自家発電設備や営業用水力発電の給
水法として利用でき、その他自家用飲料水の引き込み等
広範な管送水に利用して効果を得られるものである。
In addition, it can be used as a water supply method for privately-owned power generation facilities and hydropower for commercial use that utilize hydraulic power, and can also be used for a wide range of piped water supply such as drawing in drinking water for private use.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明に係る変圧送水法の実施状態を示す部
分装置図、第2図は送水変圧器の一実施例を示す縦断面
図、第3図は同じ勾配における本発明の変圧送水法と従
来の送水法との送水圧力を比較して示したグラフ、第4
図は送水変圧器の効率を試験するための装置を示す図で
ある。 (C)……加圧タンク、(P1),(P2),(P3)……送
水管、(T1),(T2),(T3)……送水変圧器、(Ca)
……器、(S)……噴水筒、(N)……ノズル、(I)
……入口、(O)……出口、(Pi)……入口管、(Po)
……出口管、(F)……フランジ、(B)……通気管、
(G)……噴水案内板、(Dv)……ドレン弁、(Fv)…
…フロート弁、(Fl)……フロート、(Piwp)……入口
水圧、(Powp)……出口水圧、(Pa)……空気圧、(P
h)……落差水圧、(Sl),(Sl′)……勾配、(Ps
l),(Psl′)……送水圧力、(Ht)……水面の高さ、
(Nt)……試験ノズル、(Hs)……試験噴水の高さ、
(Hc)……落差、(T)……試験用送水変圧器、(Q)
……圧力線
FIG. 1 is a partial device view showing an implementation state of a variable pressure water supply method according to the present invention, FIG. 2 is a longitudinal sectional view showing an embodiment of a water supply transformer, and FIG. 3 is a variable pressure water supply method of the present invention at the same gradient. Graph showing the comparison of the water supply pressure between the conventional water supply method and
The figure shows a device for testing the efficiency of a water transformer. (C) …… Pressurized tank, (P1), (P2), (P3) …… Water pipe, (T1), (T2), (T3) …… Water transformer, (Ca)
…… Vessel, (S) …… Fountain cylinder, (N) …… Nozzle, (I)
…… Inlet, (O) …… Outlet, (Pi) …… Inlet pipe, (Po)
…… Outlet pipe, (F) …… Flange, (B) …… Ventilation pipe,
(G) ... fountain guide plate, (Dv) ... drain valve, (Fv) ...
… Float valve, (Fl) …… Float, (Piwp) …… Inlet water pressure, (Powp) …… Outlet water pressure, (Pa) …… Air pressure, (P
h) …… Head water pressure, (Sl), (Sl ′) …… Slope, (Ps
l), (Psl ′) …… water pressure, (Ht) …… water level,
(Nt) …… test nozzle, (Hs) …… test fountain height,
(Hc) …… Head, (T) …… Test water transformer, (Q)
...... Pressure line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】管送水において、傾斜を有する送水管路の
途中に、ノズルを備えた噴水筒と、フロート弁とを、密
閉した器に内蔵した送水変圧器を適数個接続し、傾斜の
上流側からの流水を流下圧力を利用して上記噴水筒内に
噴出させて上記器に溜め、所定の液面以上に溜った水
を、この器の底部から下流側の送水管に送り込むこと
で、上記器内に溜った水の圧力を利用して、送水圧力を
高めて送水することを特徴とする、変圧送水方法。
In pipe water supply, a proper number of water supply transformers each having a nozzle and a float valve and a float valve incorporated in a closed vessel are connected in the middle of an inclined water supply line to form an inclined pipe. By using the downflow pressure to eject the running water from the upstream side into the fountain cylinder and store it in the vessel, the water accumulated above a predetermined liquid level can be sent from the bottom of the vessel to the downstream water pipe. A variable pressure water supply method, characterized in that the water supply pressure is increased by utilizing the pressure of the water accumulated in the vessel.
【請求項2】傾斜した送水管路の中途に接続するための
もので、上端を開口した縦長の噴水筒を、密閉した器の
下端から挿入固定し、この噴水筒の下部に、上流側から
の送水の入口に連なる上向のノズルを設け、さらに噴水
が上記器内に所定の液面まで溜ったとき、この器の下端
に設けた出口から下流側に送水するためのフロート弁を
設けたことを特徴とする、送水変圧器。
2. A vertically long fountain cylinder, which is connected to the middle of an inclined water supply line and has an upper end opened, is inserted and fixed from the lower end of a sealed vessel, and the lower part of the fountain cylinder is connected from the upstream side. An upward nozzle connected to the inlet of the water was installed, and when a fountain accumulated in the vessel up to a predetermined liquid level, a float valve was provided to send water downstream from the outlet provided at the lower end of the vessel. A water supply transformer characterized by the above.
JP29099586A 1986-12-06 1986-12-06 Transformer water supply method and water transformer Expired - Lifetime JPH076600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29099586A JPH076600B2 (en) 1986-12-06 1986-12-06 Transformer water supply method and water transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29099586A JPH076600B2 (en) 1986-12-06 1986-12-06 Transformer water supply method and water transformer

Publications (2)

Publication Number Publication Date
JPS63145900A JPS63145900A (en) 1988-06-17
JPH076600B2 true JPH076600B2 (en) 1995-01-30

Family

ID=17763095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29099586A Expired - Lifetime JPH076600B2 (en) 1986-12-06 1986-12-06 Transformer water supply method and water transformer

Country Status (1)

Country Link
JP (1) JPH076600B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852336A (en) * 2010-06-13 2010-10-06 云南大红山管道有限公司 Lime milk solution storage tank for avoiding blockage of pipeline

Also Published As

Publication number Publication date
JPS63145900A (en) 1988-06-17

Similar Documents

Publication Publication Date Title
DE3563696D1 (en) Movable hydrodynamic nozzle for pressurized water cleaning of water, discharge and surface water pipes
CN103774747A (en) Telescoping venturi siphoning blowdown pipe and design method
CN107372026A (en) A kind of mountain region compensates irrigation system and method automatically
CN207794198U (en) A kind of water tank
JPH076600B2 (en) Transformer water supply method and water transformer
CN209602254U (en) Oil-isolating device for air compressor machine wastewater treatment
Unsal et al. Increased aeration efficiency of high-head conduit flow systems
CN110409562B (en) Energy-gathering water pumping device with ball valve for controlling air inflow and water pumping method
CN202000326U (en) Multifunctional oil containment boom
CN107504362B (en) A kind of steam-water separation equipment
CN207451639U (en) A kind of unpowered autompulse water-distributing device
CN102132668A (en) Micro-irrigation system of liquid/gas energy water pump
CN101435194A (en) Water surface floater interception apparatus
CN201416171Y (en) Water surface floating material blocking device
CN207713487U (en) A kind of aerobic sludge reflux
CN206817444U (en) The blowdown cooling device of steam boiler
CN207654885U (en) A kind of high-pressure gas-liquid separator
CN205740660U (en) A kind of mud embrane method integrated treatment unit
CN206407933U (en) A kind of direct drinking water supply pipe net system
CN1075581C (en) Fully-automatic siphon-flow water-carriage complete equipment
CN213746154U (en) Multifunctional resin adding device
CN220149375U (en) Spraying system for water outlet and distribution pipe of USR anaerobic tank
CN216043928U (en) Condensate recovery device and backpressure steam turbine
CN213268207U (en) Municipal drainage system
CN107774078A (en) A kind of high-pressure gas-liquid separator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term