JPH0765809B2 - Oil water heater control method - Google Patents
Oil water heater control methodInfo
- Publication number
- JPH0765809B2 JPH0765809B2 JP4283792A JP28379292A JPH0765809B2 JP H0765809 B2 JPH0765809 B2 JP H0765809B2 JP 4283792 A JP4283792 A JP 4283792A JP 28379292 A JP28379292 A JP 28379292A JP H0765809 B2 JPH0765809 B2 JP H0765809B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- hot water
- temperature
- heat exchanger
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は瞬間熱交換器を通って出
湯された温水にバイパスを用いて水を混水し、温度ハン
チングの少ない状態で設定給湯温度の給湯を行うことが
できる石油給湯器の制御方法の提供を目的とする。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a petroleum hot water supply system capable of supplying hot water having a preset hot water supply temperature with little temperature hunting by mixing hot water discharged from an instantaneous heat exchanger with a bypass. The purpose is to provide a method of controlling the vessel.
【0002】[0002]
【従来の技術】従来、電磁ポンプにより石油燃料をオン
オフ周期駆動により瞬間熱交換器に供給して所定の給湯
を得る石油給湯器が提供されている。2. Description of the Related Art Conventionally, there has been provided a petroleum water heater for supplying a predetermined amount of hot water by supplying petroleum fuel to an instantaneous heat exchanger by on / off cycle driving by an electromagnetic pump.
【0003】[0003]
【発明が解決しようとする課題】ところが、上記従来の
電磁ポンプを用いた瞬間加熱式の石油給湯器において
は、前記電磁ポンプがオンオフ周期で石油燃料を供給す
ることから、バーナでの燃焼も最大燃焼(ポンプオン
時)と燃焼無し(ポンプオフ時)の繰り返しになる。即
ち、電磁ポンプオン時に瞬間熱交換器から出湯される温
水の温度が急激に上がり、電磁ポンプオフ時には急激に
湯温が下がる現象を起こし、給湯温度がポンプのオンオ
フ周期と同様な周期でハンチングする欠点があった。However, in the above-mentioned instantaneous heating type oil water heater using the electromagnetic pump, since the electromagnetic pump supplies the petroleum fuel in the on / off cycle, the combustion in the burner is the maximum. Combustion (when the pump is on) and no combustion (when the pump is off) are repeated. That is, when the electromagnetic pump is turned on, the temperature of the hot water discharged from the instantaneous heat exchanger rises sharply, and when the electromagnetic pump is turned off, the temperature of the hot water sharply drops, which causes the hot water supply temperature to hunt in a cycle similar to the on / off cycle of the pump. there were.
【0004】そこで、本発明は上記従来技術の欠点を解
消し、電磁ポンプによりオンオフ周期で石油燃料を供給
し、瞬間熱交換器で加熱して給湯を行う石油給湯器にお
いて、前記電磁ポンプのオンオフ燃料供給周期にもとず
く給湯温度のハンチングが生じず、平滑で安定した給湯
が行える制御方法の提供を目的とする。In view of the above, the present invention solves the above-mentioned drawbacks of the prior art, and in an oil water heater in which oil fuel is supplied by an electromagnetic pump in an on-off cycle and heated by an instantaneous heat exchanger to supply hot water, the electromagnetic pump is turned on and off. An object of the present invention is to provide a control method capable of smooth and stable hot water supply without causing hunting of the hot water supply temperature due to the fuel supply cycle.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するた
め、本発明の石油給湯器の制御方法は、入水路からの水
を瞬間熱交換器で加熱して出湯路に出湯すると共に、前
記入水路からのバイパスを出湯路に接続して混水弁で水
を混水できるようにしており、設定給湯温度TMSが設定
されると、熱交換器設定出湯温度TKSと入水温度TC と
熱交換器入水流量RKOとから前記瞬間熱交換器の必要熱
量QKOを演算し、この演算された熱交換器必要熱量QKO
から対応する燃料供給電磁ポンプのオン時間とオフ時間
を演算して石油燃料のフィードフォワード供給を開始す
ると共に、少なくとも燃料供給電磁ポンプのオンオフ周
期よりも短時間周期で、現時点の熱交換器出湯温度TK
と現時点の給湯温度TM と現時点の入水温度TC とから
前記混水弁による現時点の混水率KBKを、また前記設定
給湯温度TMSと現時点の熱交換器出湯温度TK と現時点
の入水温度TC とから設定給湯温度TMSを得るために必
要な前記混水弁による目標混水率KBKS をそれぞれ演算
し、目標混水率KBKS と現時点の混水率KBKとの差に相
当する量だけ前記混水弁をフィードバック調整するよう
にしたことを特徴としている。In order to achieve the above-mentioned object, a method for controlling an oil water heater according to the present invention is to heat water from an inlet channel with an instantaneous heat exchanger to discharge the hot water into the outlet channel, The bypass from the water channel is connected to the hot water channel so that water can be mixed by the water mixing valve. When the set hot water supply temperature T MS is set, the heat exchanger set hot water temperature T KS and the incoming water temperature T C are set. wherein the heat exchanger water inlet flow rate R KO calculates the necessary heat quantity Q KO instant heat exchanger, the computed heat exchanger required quantity of heat Q KO
The feed-on supply of petroleum fuel is started by calculating the on-time and off-time of the corresponding fuel supply electromagnetic pump, and at the same time the current heat exchanger outlet hot water temperature is at least shorter than the on-off cycle of the fuel supply electromagnetic pump. T K
From the current hot water supply temperature T M and the current incoming water temperature T C , the current water mixing rate K BK by the water mixing valve, the preset hot water supply temperature T MS and the current heat exchanger outlet hot water temperature T K, and the current time The target water mixing ratio K BKS required by the water mixing valve to obtain the set hot water supply temperature T MS from the water input temperature T C is calculated, and the difference between the target water mixing ratio K BKS and the current water mixing ratio K BK is calculated. It is characterized in that the water mixing valve is feedback-adjusted by an amount corresponding to.
【0006】[0006]
【作用】上記本発明方法の特徴によれば、給湯温度が設
定され、給湯カランが開放されると、予め決められた熱
交換器設定出湯温度TKSと入水温度TC と熱交換器入水
流量RKOとから前記瞬間熱交換器の必要熱量QKOが演算
され、その演算された熱交換器必要熱量QKOから更に対
応する燃料供給電磁ポンプのオン時間とオフ時間が演算
される。そしてこの演算されたオンオフ周期で電磁ポン
プがフィードフォワード制御される。そして現に給湯が
開始されると、少なくとも燃料供給電磁ポンプのオンオ
フ周期よりも短時間周期毎に、混水弁による現時点の混
水率KBK及び設定給湯温度TMSになるために必要な目標
混水率KBKS が演算され、この演算された目標混水率K
BKS になるように目標混水率KBKS と現時点の混水率K
BKとの差に相当する量だけ混水弁がフィードバック調整
される。燃料供給電磁ポンプのオンオフ周期よりも短い
周期毎に、現時点の混水率KBKを所定の設定給湯温度T
MSになるための目標混水率KBKS に調整するので、電磁
ポンプによる石油のオンオフ周期供給による出湯温度の
ハンチングの山、谷が相殺され、より平滑で安定した設
定給湯温度の温水を給湯することができる。According to the features of the method of the present invention, when the hot water supply temperature is set and the hot water supply scallop is opened, the heat exchanger set outlet water temperature T KS , the incoming water temperature T C, and the incoming heat flow rate of the heat exchanger are determined. The required heat quantity Q KO of the instant heat exchanger is calculated from R KO, and the on-time and off-time of the corresponding fuel supply electromagnetic pump are further calculated from the calculated heat exchanger necessary heat quantity Q KO . Then, the electromagnetic pump is feedforward-controlled in the calculated on / off cycle. When hot water supply is actually started, the target water mixture ratio K BK and the target hot water supply temperature T MS required by the water mixing valve to reach the current water mixture ratio K BK and the set hot water supply temperature T MS are generated at least in each cycle shorter than the ON / OFF cycle of the fuel supply electromagnetic pump. The water rate K BKS is calculated, and the calculated target water mixing rate K
The goal to be the BKS drinking-water ratio K BKS and the current mixing water rate K
The water mixing valve is feedback-adjusted by an amount corresponding to the difference from BK . The current water mixing ratio K BK is set to a predetermined set hot water temperature T every cycle shorter than the on / off cycle of the fuel supply electromagnetic pump.
Since the target water mixing ratio K BKS for achieving MS is adjusted, the hunting peaks and valleys of the tapping temperature due to the on / off cycle supply of oil by the electromagnetic pump are offset, and hot water with a smoother and more stable set hot water supply temperature is supplied. be able to.
【0007】[0007]
【実施例】図1は本発明の方法が実施される石油給湯器
の全体構成図、図2は混水弁の構造例を示す断面図、図
3は本発明方法による制御例を示すフロー図、図4は熱
交換器からの混水湯量RK とバイパスからの混水量RB
との関係及び熱交換器からの出湯温度TK とバイパス水
温度TC と混水後の給湯温度TM との関係を示す図であ
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an overall configuration diagram of an oil water heater in which the method of the present invention is implemented, FIG. 2 is a sectional view showing an example of the structure of a water mixing valve, and FIG. Fig. 4 shows the amount of mixed hot water R K from the heat exchanger and the amount of mixed water R B from the bypass.
FIG. 4 is a diagram showing a relationship between the hot water supply temperature T K from the heat exchanger, the bypass water temperature T C, and the hot water supply temperature T M after mixing water with each other.
【0008】図1に示す石油給湯器において、入水路10
を供給されてくる水は瞬間熱交換器20で加熱され出湯路
30に出湯される。前記入水路10からはバイパス40が混水
弁70を介して出湯路30と接続され、給湯路50に混水され
た温水が給湯されるようになされている。前記入水路10
には前記バイパス40が分岐する点より下流位置に入水温
度センサ11と入水流量センサ12が設けられている。また
前記瞬間熱交換器20にはガンタイプ石油バーナ21が設け
られている。このガンタイプ石油バーナ21は、図示しな
い燃料供給電磁ポンプによって石油燃料が供給され、噴
霧されることで燃焼する。前記燃料供給電磁ポンプは燃
料をオンオフ周期で供給することで、所定流量の燃料を
送る。前記出湯路30には瞬間熱交換器20から出湯された
前後の温水をミキシングするための小容量のミキシング
タンク31と出湯温度センサ32が設けられ、また給湯路50
には給湯温度センサ51と過流出防止器52が設けられてい
る。60は給湯器全体を制御するマイコン内蔵のコントロ
ーラで、各センサ11、12、32、51、52からの情報やリモ
コン80からの指令を入力し、所定のプログラムに従って
演算を行い、前記図示しない燃料供給電磁ポンプ、石油
バーナ21、混水弁70、その他の各部への制御信号を出力
する。In the oil water heater shown in FIG. 1, the water inlet 10
The supplied water is heated by the instant heat exchanger 20
It is bathed in 30. A bypass 40 is connected to the hot water outlet 30 from the water inlet 10 via a water mixing valve 70, and hot water mixed in the hot water supply passage 50 is supplied. Inlet 10
An inlet water temperature sensor 11 and an inlet water flow rate sensor 12 are provided at a position downstream of the branch point of the bypass 40. Further, the instantaneous heat exchanger 20 is provided with a gun type oil burner 21. The gun-type oil burner 21 is burned by being sprayed with petroleum fuel by a fuel supply electromagnetic pump (not shown). The fuel supply electromagnetic pump sends fuel at a predetermined flow rate by supplying fuel in an on / off cycle. The hot water outlet 30 is provided with a small capacity mixing tank 31 and a hot water outlet temperature sensor 32 for mixing the hot water before and after hot water discharged from the instantaneous heat exchanger 20, and the hot water supply passage 50.
A hot water supply temperature sensor 51 and an overflow prevention device 52 are provided in the. Reference numeral 60 is a controller with a built-in microcomputer for controlling the entire water heater, which inputs information from each sensor 11, 12, 32, 51, 52 and a command from the remote controller 80, performs a calculation according to a predetermined program, and outputs the fuel (not shown). It outputs control signals to the supply electromagnetic pump, oil burner 21, mixed water valve 70, and other parts.
【0009】図2において、前記混水弁70はケース71内
に、ステッピングモータ72で回転される軸73と、この軸
73の回転によって移動される一対の弁体74、75とを配置
しており、ステッピングモータ72の角度を変えること
で、前記一対の弁74、75による温水通過口76と水通過口
77の通過抵抗を変え、混水率KBKを変更することができ
る。この混水率KBKと前記ステピングモータ72の角度と
は1対1対応し、現時点の混水率KBKO と目標混水率K
BKS が判れば、目標混水率KBKS と現時点の混水率KBK
の差をステッピングモータ72の制御角として演算し、調
整制御ができる。In FIG. 2, the water mixing valve 70 includes a shaft 73, a shaft 73 rotated by a stepping motor 72, and a shaft 73.
A pair of valve bodies 74, 75 that are moved by the rotation of 73 are arranged. By changing the angle of the stepping motor 72, the hot water passage port 76 and the water passage port by the pair of valves 74, 75 are arranged.
Changing the 77 passage resistance, it is possible to change the mixing water ratio K BK. This water mixing ratio K BK and the angle of the stepping motor 72 have a one-to-one correspondence, and the current water mixing ratio K BKO and the target water mixing ratio K
If BKS is known, the target water mixing ratio K BKS and the current water mixing ratio K BK
The difference can be calculated as the control angle of the stepping motor 72, and adjustment control can be performed.
【0010】次に、コントローラ60による給湯制御の方
法について、図3も参照して説明する。今、種火が着い
ている状態で、給湯路50の図示しない給湯カランが開放
されると(S1でイエス)、入水路10を通って水が供給
され、最低作動水量以上を入水流量センサ12が検出する
(S2でイエス)ことで、バーナ21の燃焼が開始され
る。この際、使用者によって設定給湯温度TMSが設定さ
れると、コントローラ60は、先ず、予め決められた熱交
換器設定出湯温度TKSと入水温度センサ11による入水温
度TC と入水流量センサ12による熱交換器入水流量RKO
とから前記瞬間熱交換器20の単位時間当たりの必要熱量
QKOを次の数1により演算する(S3)。尚、前記必要
熱量QKOを25で割って必要号数としてもよい。Next, a method of hot water supply control by the controller 60 will be described with reference to FIG. Now, when the hot water supply lantern (not shown) of the hot water supply passage 50 is opened while the pilot fire is lit (Yes in S1), water is supplied through the water supply passage 10 and the amount of water equal to or higher than the minimum working water is detected by the input flow rate sensor 12 Is detected (Yes in S2), the combustion of the burner 21 is started. At this time, when the user sets the set hot water supply temperature T MS , the controller 60 firstly causes the heat exchanger set hot water temperature T KS , the incoming water temperature T C by the incoming water temperature sensor 11 and the incoming water flow rate sensor 12 to be predetermined. Heat exchanger water input flow rate R KO
From the above, the required heat quantity Q KO of the instantaneous heat exchanger 20 per unit time is calculated by the following equation 1 (S3). The required heat quantity Q KO may be divided by 25 to obtain the required number.
【0011】[0011]
【数1】QKO=(TKS−TC )・RKO QKO:瞬間熱交換器20の必要熱量 TKS:予め決められた熱交換器設定出湯温度 TC :入水温度 RKO:熱交換器入水流量[Equation 1] Q KO = (T KS −T C ) · R KO Q KO : Required heat amount of the instantaneous heat exchanger 20 T KS : Predetermined heat exchanger set hot water temperature T C : Inlet water temperature R KO : Heat Exchanger incoming water flow rate
【0012】そしてさらにコントローラ60は前記演算さ
れた熱交換器必要熱量QKOから更に対応する燃料供給電
磁ポンプのオン時間とオフ時間を演算し(S4)、そし
てこの演算されたオンオフ周期で電磁ポンプがフィード
フォワード制御する(S5)。前記燃料供給電磁ポンプ
のオン時間とオフ時間は、演算された熱交換器必要熱量
QKOと燃料供給電磁ポンプによる最大石油供給時におけ
る発生熱量(前記必要熱量QKOより大きい)との比から
演算することができる。Further, the controller 60 further calculates the on-time and off-time of the corresponding fuel supply electromagnetic pump from the calculated heat exchanger required heat quantity Q KO (S4), and at the calculated on-off cycle, the electromagnetic pump Performs feedforward control (S5). The on-time and the off-time of the fuel supply electromagnetic pump are calculated from the ratio of the calculated heat exchanger required heat quantity Q KO to the heat generation quantity (greater than the necessary heat quantity Q KO ) at the time of maximum oil supply by the fuel supply electromagnetic pump. can do.
【0013】そして現に給湯が開始されると、少なくと
も燃料供給電磁ポンプのオンオフ周期よりも短い時間と
した一定の周期毎(S6)に、混水弁70による現時点の
混水率KBK及び設定給湯温度TMSになるために必要な目
標混水率KBKS を演算する(S7)。この現時点の混水
率KBK及び目標混水率KBKS の演算の仕方について説明
すると、先ず現時点の混水率KBKによるバイパス40側か
らの混水量をRB 、瞬間熱交換器20側からの混水湯量を
RK とすると、次の数2、数3が成立する。When hot water supply is actually started, at least every predetermined cycle (S6) which is shorter than the on / off cycle of the fuel supply electromagnetic pump, the current water mixing rate K BK by the water mixing valve 70 and the set hot water supply. A target water mixing rate K BKS required to reach the temperature T MS is calculated (S7). Explaining how to calculate the current water mixing ratio K BK and the target water mixing ratio K BKS , first, the water mixing amount from the bypass 40 side based on the current water mixing ratio K BK is R B , and from the instantaneous heat exchanger 20 side. If the amount of mixed hot water is R K , the following equations 2 and 3 hold.
【0014】[0014]
【数2】(TM −TC )・(RB +RK )=TK ・RK TM :現時点の給湯温度 TC :入水温度 TK :現時点の熱交換器出湯温度 RB :現時点でのバイパス40側からの混水量 RK :現時点の熱交換器20側からの混水湯量[Number 2] (T M -T C) · ( R B + R K) = T K · R K T M: moment of the hot water supply temperature T C: incoming water temperature T K: heat exchanger current tapping temperature R B: Currently water mixture R K from the bypass 40 side in: mixing water amount of hot water from the heat exchanger 20 side of the current
【0015】[0015]
【数3】KBK=RB /RK KBK:現時点の混水率 RB :現時点でのバイパス40側からの混水量 RK :現時点の熱交換器20側からの混水湯量Equation 3] K BK = R B / R K K BK: water mixture ratio of current R B: water mixture R K from the bypass 40 side at the moment: water mixture of hot water from the heat exchanger 20 side of the current
【0016】前記数2、数3より、現時点の混水率KBK
が次の数4で得られる。From the equations 2 and 3, the current water mixing ratio K BK
Is obtained by the following equation 4.
【0017】[0017]
【数4】 KBK=RB /RK =(TK −TM )/(TM −TC ) KBKS :目標混水率 KBK :現時点の混水率 TK :現時点の熱交換器出湯温度 TM :現時点の給湯温度 TC :入水温度Equation 4] K BK = R B / R K = (T K -T M) / (T M -T C) K BKS: target water mixture ratio K BK: water mixture ratio at the present time T K: heat exchange current Hot water supply temperature T M : Hot water supply temperature at present T C : Inlet water temperature
【0018】同様にして目標混水率KBKS も次の数5で
得られる。Similarly, the target water mixing ratio K BKS can be obtained by the following equation 5.
【0019】[0019]
【数5】KBKS =(TK −TMS)/(TMS−TC ) KBK :現時点の混水率 TMS :設定給湯温度 TK :現時点の熱交換器出湯温度 TC :入水温度Equation 5] K BKS = (T K -T MS ) / (T MS -T C) K BK: water mixture ratio at the present time T MS: set hot water supply temperature T K: heat exchanger current tapping temperature T C: water inlet temperature
【0020】そしてコントローラ60は、演算された目標
混水率KBKS になるように目標混水率KBKS と現時点の
混水率KBKとの差に相当する量を演算し、その量をもっ
て混水弁70をフィードバック調整する。実際にはコント
ローラ60は、前記目標混水率KBKS に対応するステッピ
ングモータ72の回転角と現時点の混水率KBKに対応する
ステッピングモータ72の回転角との差を制御角として演
算し(S8)、その制御角分だけステッピングモータ72
を駆動制御する(S9)。Then, the controller 60 calculates an amount corresponding to the difference between the target water mixing ratio K BKS and the current water mixing ratio K BK so that the calculated target water mixing ratio K BKS will be obtained, and the calculated amount will be mixed. Feedback-adjust the water valve 70. Actually, the controller 60 calculates the difference between the rotation angle of the stepping motor 72 corresponding to the target water mixing ratio K BKS and the rotation angle of the stepping motor 72 corresponding to the current water mixing ratio K BK as the control angle ( S8), stepping motor 72 by the control angle
Is controlled (S9).
【0021】以上のような給湯制御を行うことによっ
て、図4に示す如く、瞬間熱交換器20からの混水湯量R
K とバイパス40からの混水量RB とが、極短時間毎に、
温度が高いと水量RB が多く湯量RK が少なく、また温
度が低いと水量RB が少なく湯量RK が多くなるよう混
水調整される。よって瞬間熱交換器20から出湯される温
水のハンチングの山と谷が相殺される形で解消され、給
湯路50に出てくる温水は非常に平滑で安定した設定給湯
温度の温水となる。By performing the hot water supply control as described above, as shown in FIG. 4, the amount R of mixed hot water from the instantaneous heat exchanger 20.
K and the mixed water amount R B from the bypass 40 are
When the temperature is high, the amount of water R B is large and the amount of hot water R K is small, and when the temperature is low, the amount of water R B is small and the amount of hot water R K is large. Therefore, the hunting peaks and valleys of the hot water discharged from the instantaneous heat exchanger 20 are canceled and the hot water flowing out to the hot water supply passage 50 becomes a very smooth and stable hot water having the set hot water supply temperature.
【0022】尚、以上の様な給湯制御方法は、給湯運転
の全モードにおいて行うようにしてもよいし、また給湯
器の使用モードに応じて、給湯温度のハンチングが特に
のぞまれない一部の使用モードに限定して行うようにし
てもよい。例えば、全給湯運転のうち、高温使用モード
では混水弁70によるバイパス混水を全閉として瞬間熱交
換器20による出湯温水のみとし、シャワー使用モードで
は上記本発明の給湯制御方法を用い、またその他の場合
(通常一般の給湯)には混水弁70による混水率を一定に
保持するといった使用の方法がある。このような使用方
法によって混水弁70の頻繁な制御による耐久性の低下が
防止され、しかも温度ハンチングが好まれないモードに
おいては確実にハンチングのない非常に平滑な温度の温
水を給湯することができる。The hot water supply control method as described above may be performed in all modes of the hot water supply operation, or depending on the mode of use of the water heater, hunting of the hot water temperature is not particularly desired. You may make it limited to the use mode of. For example, in the hot water supply operation, in the high temperature use mode, the bypass water mixture by the water mixture valve 70 is fully closed to only the hot water discharged from the instantaneous heat exchanger 20, and in the shower use mode, the hot water supply control method of the present invention is used. In other cases (usually general hot water supply), there is a method of use in which the water mixing rate by the water mixing valve 70 is kept constant. By such a method of use, deterioration of durability due to frequent control of the water mixing valve 70 is prevented, and in a mode in which temperature hunting is not preferred, hot water with a very smooth temperature without hunting can be reliably supplied. it can.
【0023】[0023]
【発明の効果】本発明は以上の構成、作用よりなり、請
求項1に記載の石油給湯器の制御方法によれば、少なく
とも燃料供給電磁ポンプのオンオフ周期よりも短時間周
期で、現時点の混水率KBKを所定の設定給湯温度TMSに
なるための目標混水率KBKS に調整するので、電磁ポン
プによる石油のオンオフ周期供給による出湯温度のハン
チングの山、谷が相殺され、より平滑で安定した設定給
湯温度の温水を給湯することができる。また流量の大幅
な変化が生じることによって瞬間熱交換器からの出湯温
度が大幅に変化した場合でも、混水弁による混水比率が
即座的に変更されるので、給湯温度への影響を少なくす
ることができる。また設定給湯温度の大幅を変更がなさ
れた場合でも、混水弁による混水比率が即座的に変更調
整されることで、温度変更に対して素早く対応すること
ができる。According to the method of controlling an oil water heater according to the present invention, the present invention has the above-described structure and operation. At least a period shorter than the on / off period of the fuel supply electromagnetic pump, the present mixing time is set. Since the water ratio K BK is adjusted to the target water mixing ratio K BKS to reach the predetermined set hot water temperature T MS , the hunting peaks and valleys of the hot water discharge temperature due to the on / off cycle supply of oil by the electromagnetic pump are offset and smoother. It is possible to supply hot water with a stable set hot water supply temperature. In addition, even if the hot water outlet temperature from the instantaneous heat exchanger changes significantly due to a large change in the flow rate, the water mixing ratio is immediately changed by the water mixing valve, reducing the effect on the hot water supply temperature. be able to. Further, even when the set hot water supply temperature is significantly changed, the temperature change can be quickly dealt with by immediately changing and adjusting the water mixing ratio by the water mixing valve.
【図1】本発明の方法が実施される石油給湯器の全体構
成図である。FIG. 1 is an overall configuration diagram of an oil water heater in which the method of the present invention is implemented.
【図2】混水弁の構造例を示す断面図である。FIG. 2 is a cross-sectional view showing a structural example of a water mixing valve.
【図3】本発明方法による制御例を示すフロー図であ
る。FIG. 3 is a flowchart showing an example of control by the method of the present invention.
【図4】熱交換器からの混水湯量RK とバイパス側から
の混水量RB との関係及び熱交換器からの出湯温度TK
とバイパス側からの混水温度(入水温度)TC と混水後
の給湯温度TM との関係を示す図である。FIG. 4 shows the relationship between the amount R K of mixed hot water from the heat exchanger and the amount R B of mixed hot water from the bypass side, and the temperature T K of hot water discharged from the heat exchanger.
FIG. 5 is a diagram showing a relationship between a mixed water temperature (inlet temperature) T C from the bypass side and a hot water supply temperature T M after mixed water.
10 入水路 11 入水温度センサ 12 入水流量センサ 20 瞬間熱交換器 21 ガンタイプ石油バーナ 30 出湯路 32 出湯温度センサ 40 バイパス 50 給湯路 51 給湯温度センサ 60 コントローラ 70 混水弁 10 Inlet channel 11 Inlet temperature sensor 12 Inlet flow rate sensor 20 Instantaneous heat exchanger 21 Gun type oil burner 30 Outlet channel 32 Outlet temperature sensor 40 Bypass 50 Inlet channel 51 Inlet temperature sensor 60 Controller 70 Mixed water valve
フロントページの続き (72)発明者 山崎 康 兵庫県神戸市中央区明石町32番地 株式会 社ノーリツ内 (72)発明者 水田 嗣久 兵庫県神戸市中央区明石町32番地 株式会 社ノーリツ内 (72)発明者 山本 直紀 兵庫県神戸市中央区明石町32番地 株式会 社ノーリツ内 (72)発明者 高橋 潔志 兵庫県神戸市中央区明石町32番地 株式会 社ノーリツ内 (72)発明者 砂川 和雄 兵庫県神戸市中央区明石町32番地 株式会 社ノーリツ内 (72)発明者 藤本 伸哉 兵庫県神戸市中央区明石町32番地 株式会 社ノーリツ内 (72)発明者 畠 洋二 兵庫県神戸市中央区明石町32番地 株式会 社ノーリツ内 (72)発明者 大西 隆博 兵庫県神戸市中央区明石町32番地 株式会 社ノーリツ内 (56)参考文献 特開 平2−68449(JP,A) 特開 平4−52455(JP,A)Front page continuation (72) Inventor Yasushi Yamazaki, 32, Akashi-cho, Chuo-ku, Kobe-shi, Hyogo Prefecture Stock company, Noritsu (72) Inventor, Tsukuhisa Mizuta, 32, Akashi-cho, Chuo-ku, Kobe city, Hyogo Prefecture, Ltd. (72) ) Inventor Naoki Yamamoto 32, Akashi-cho, Chuo-ku, Kobe City, Hyogo Prefecture Incorporated Noritsu (72) Inventor Kiyoshi Takahashi 32, Akashi-cho, Chuo-ku, Kobe City, Hyogo Prefecture Incorporated Noritsu (72) Inventor, Kazuo Sunagawa Hyogo 32, Akashi-cho, Chuo-ku, Kobe, Japan (72) Inventor Shinya Fujimoto, No. 32, Akashi-cho, Chuo-ku, Kobe-shi, Hyogo (72) Inventor, Yoji Hatake Akashi, Chuo-ku, Kobe-shi, Hyogo Town No. 32, Noritsu Co., Ltd. (72) Inventor Takahiro Onishi No. 32, Akashi-cho, Chuo-ku, Kobe, Hyogo Prefecture No. 56, Noritsu Co., Ltd. (56) Reference JP-A-2-68449 (JP, A) JP-A-4 -52455 (JP, A)
Claims (1)
て出湯路に出湯すると共に、前記入水路からのバイパス
を出湯路に接続して混水弁で水を混水できるようにして
おり、設定給湯温度TMSが設定されると、熱交換器設定
出湯温度TKSと入水温度TC と熱交換器入水流量RKOと
から前記瞬間熱交換器の必要熱量QKOを演算し、この演
算された熱交換器必要熱量QKOから対応する燃料供給電
磁ポンプのオン時間とオフ時間を演算して石油燃料のフ
ィードフォワード供給を開始すると共に、少なくとも燃
料供給電磁ポンプのオンオフ周期よりも短時間周期で、
現時点の熱交換器出湯温度TK と現時点の給湯温度TM
と現時点の入水温度TCとから前記混水弁による現時点
の混水率KBKを、また前記設定給湯温度TMSと現時点の
熱交換器出湯温度TK と現時点の入水温度TC とから設
定給湯温度TMSを得るために必要な前記混水弁による目
標混水率KBKS をそれぞれ演算し、目標混水率KBKS と
現時点の混水率KBKとの差に相当する量だけ前記混水弁
をフィードバック調整するようにしたことを特徴とする
石油給湯器の制御方法。1. A method for heating water from an inlet to an outlet by heating it with an instantaneous heat exchanger, and connecting a bypass from the inlet to the outlet so that water can be mixed with a water mixing valve. and which, set the hot water supply temperature T MS is set, calculates the necessary heat quantity Q KO of the instant heat exchanger and a heat exchanger set hot water temperature T KS and the incoming water temperature T C and the heat exchanger water inlet flow rate R KO , The on-time and off-time of the corresponding fuel supply electromagnetic pump are calculated from the calculated heat exchanger required heat quantity Q KO to start the feedforward supply of petroleum fuel, and at least the on-off cycle of the fuel supply electromagnetic pump In a short cycle,
Current heat exchanger outlet hot water temperature T K and current hot water supply temperature T M
And the current input water temperature T C , the current water mixing ratio K BK by the water mixing valve, and the preset hot water supply temperature T MS , the current heat exchanger outlet hot water temperature T K, and the current input water temperature T C. The target water mixing ratio K BKS by the water mixing valve necessary to obtain the hot water supply temperature T MS is calculated, and the mixing amount is equal to the difference between the target water mixing ratio K BKS and the current water mixing ratio K BK. A method for controlling an oil water heater, characterized in that a water valve is feedback-adjusted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4283792A JPH0765809B2 (en) | 1992-09-28 | 1992-09-28 | Oil water heater control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4283792A JPH0765809B2 (en) | 1992-09-28 | 1992-09-28 | Oil water heater control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06109325A JPH06109325A (en) | 1994-04-19 |
JPH0765809B2 true JPH0765809B2 (en) | 1995-07-19 |
Family
ID=17670204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4283792A Expired - Fee Related JPH0765809B2 (en) | 1992-09-28 | 1992-09-28 | Oil water heater control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0765809B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006324321A (en) * | 2005-05-17 | 2006-11-30 | Miyachi Technos Corp | Harmonic laser and laser machining apparatus |
GB2436606B (en) | 2006-03-29 | 2010-09-15 | Aqualisa Products Ltd | Water valve assembly |
-
1992
- 1992-09-28 JP JP4283792A patent/JPH0765809B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06109325A (en) | 1994-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0765809B2 (en) | Oil water heater control method | |
JP2586780B2 (en) | Parallel type multiple water heater control method | |
JP3735891B2 (en) | 1 can, 2 waterway bath equipment | |
JPH0237249A (en) | Water rate control device in hot-water heater | |
JP3512135B2 (en) | Hot water mixing type hot water supply device | |
JP3322750B2 (en) | Circulating water heater | |
JP3110579B2 (en) | 1 can 2 circuit water heater | |
JP3152011B2 (en) | Automatic hot water bath equipment | |
JP3971507B2 (en) | Gas water heater with remembrance function | |
JP3211517B2 (en) | Automatic hot water bath equipment | |
JPH0670520B2 (en) | Control device for 1-can 2-circuit hot water bath | |
JP3147619B2 (en) | Automatic hot water bath equipment | |
JP2513092B2 (en) | Bypass mixing control method | |
JPH0615257Y2 (en) | Cold / hot shower device | |
JPH0791737A (en) | Hot water feeding device having one boiler and two water passages | |
JP3061516B2 (en) | Gas water heater | |
JPS61250450A (en) | Tap-controlled water heater | |
JPH09119707A (en) | Bypass mixing water device for hot water supply system | |
JPH0777355A (en) | Hot water feeding device with one boiler and two water passages | |
JPH05172395A (en) | Control method in hot-water supply equipment | |
JPS6191455A (en) | Tap-controlled water heater | |
JPH0648113B2 (en) | Control device for 1-can 2-circuit hot water bath | |
JPH0579696A (en) | Hot water supply controller | |
JPH03247951A (en) | Control device for one-drum two-circuit type hot water, supplying bath boiler | |
JPH03247952A (en) | Control device for one-drum two-circuit type hot water supplying bath boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |