JPH076549Y2 - Infrared sensor - Google Patents

Infrared sensor

Info

Publication number
JPH076549Y2
JPH076549Y2 JP1987143447U JP14344787U JPH076549Y2 JP H076549 Y2 JPH076549 Y2 JP H076549Y2 JP 1987143447 U JP1987143447 U JP 1987143447U JP 14344787 U JP14344787 U JP 14344787U JP H076549 Y2 JPH076549 Y2 JP H076549Y2
Authority
JP
Japan
Prior art keywords
pyroelectric
detector
detected
detection
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987143447U
Other languages
Japanese (ja)
Other versions
JPS6448689U (en
Inventor
康成 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1987143447U priority Critical patent/JPH076549Y2/en
Publication of JPS6448689U publication Critical patent/JPS6448689U/ja
Application granted granted Critical
Publication of JPH076549Y2 publication Critical patent/JPH076549Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【考案の詳細な説明】 (イ)産業上の利用分野 この考案は赤外線センサに関し、さらに詳細にいえば、
焦電形赤外線検出器によって、被検出体の通過及びその
通過方向を検出することができる赤外線センサに関す
る。
[Detailed Description of the Invention] (a) Industrial Application Field The present invention relates to an infrared sensor, and more specifically,
The present invention relates to an infrared sensor capable of detecting passage of an object to be detected and its passing direction by a pyroelectric infrared detector.

(ロ)従来の技術 この種赤外線センサに関し、本願出願人は第3図及び第
4図に示す如きものを既に提案した。これは、赤外線が
同時に入射した時に発生する表面電荷が互いに打ち消し
合うように、表面電荷の極性が互いに逆となる面同士が
電気的に並列に接続(以下、デュアル接続という)され
た2個の焦電素子(1a)(1b)を有する第1の焦電形赤
外線検出器(1)と、被検出体の通過方向を検出すべく
第1の焦電形赤外線検出器(1)と並べて配置された第
2の焦電形赤外線検出器(2)と、第1及び第2の焦電
形赤外線検出器(1)(2)の検出信号に基づき、各焦
電形赤外線検出器の検出信号の出力順位を判定する出力
順位判定手段とを具備するものである。かかる赤外線セ
ンサは、デュアル接続された第1の焦電形赤外線検出器
(1)に先に検出信号が生じた場合を報知する、片方向
検知に用いられるものである。
(B) Conventional Technology Regarding the infrared sensor of this type, the applicant of the present application has already proposed a sensor as shown in FIGS. 3 and 4. This is because two surfaces in which the polarities of surface charges are opposite to each other are electrically connected in parallel (hereinafter referred to as dual connection) so that surface charges generated when infrared rays are simultaneously incident on each other cancel each other. A first pyroelectric infrared detector (1) having pyroelectric elements (1a) (1b) and a first pyroelectric infrared detector (1) arranged side by side so as to detect the passing direction of an object to be detected. Based on the detected signals from the second pyroelectric infrared detector (2) and the first and second pyroelectric infrared detectors (1) and (2), the detection signals of each pyroelectric infrared detector And an output rank determining means for determining the output rank of. Such an infrared sensor is used for one-way detection, which informs the first pyroelectric infrared detector (1) dually connected when a detection signal is first generated.

この赤外線センサ本体(10)は、これら焦電形赤外線検
出器(以下、単に検出器という)(1)(2)の焦電素
子(1a)(1b)(2a)を基板(14)上に一直線状に並べ
て配置し、赤外線透過フィルタ(12)を備えた金属製の
カバー(13)にて覆って構成している。そして、例えば
第5図に示す如く、凸レンズ(15)等の光学部品によっ
て各々の検知領域からの赤外線を夫々の焦電素子(1a)
(1b)(2a)へ入射させる。
This infrared sensor body (10) has pyroelectric elements (1a) (1b) (2a) of these pyroelectric infrared detectors (hereinafter simply referred to as detectors) (1) and (2) on a substrate (14). They are arranged side by side in a straight line, and are covered with a metal cover (13) equipped with an infrared transmission filter (12). Then, for example, as shown in FIG. 5, the infrared rays from the respective detection areas are converted into the respective pyroelectric elements (1a) by the optical parts such as the convex lens (15).
It is incident on (1b) and (2a).

第5図において、焦電素子(1a)(1b)(2a)夫々の検
知領域を(Z1a)(Z1b)(Z2)とする。同図中、矢印A
方向に進行してきた被検出体(例えば人体)は、(Z1
a)(Z1b)(Z2)の順に検知領域を通過する。この被検
出体の通過に伴って各検出器(1)(2)に発生する検
出信号は第6図(A)に示す如きものとなる。即ち、ま
ず第1検出器(1)に同図(A)(i)に示す如き検出
信号が発生する。かかる検出信号は、同図(A)(o)
に示される焦電素子(1a)の信号(図中に一点鎖線で示
す)と、それに続く焦電素子(1b)の信号(図中に破線
で示す)とを合成したものである。さらに焦電素子(1
b)の信号に続いて、第2検出器(2)には同図(A)
(ii)に示す検出信号が発生する。また、逆に被検出体
が矢印B方向に進行した場合の検出信号は、同図(B)
に示す如く第2検出器(2)の検出信号(ii)が先に発
生し、続いて、焦電素子(1b)(1a)に発生する信号を
合成した第1検出器(1)の検出信号(i)が発生する
ことになる。従って、検出器(1)(2)からの検出信
号の発生時刻を比較すれば、被検出体の通過方向が判別
できる。即ち、第1検出器(1)の検出信号が早ければ
被検出体の通過方向は矢印Aの方向であり、第2検出器
(2)の検出信号が早ければ矢印Bの方向である。かか
る構成によれば、被検出体と背景周囲の温度関係が逆転
しても信号の正負が逆転するのみでその時間関係は変わ
らず、また第1検出器(1)がデュアル接続されている
ため周囲の温度や明るさが変化しても検出信号は生じな
いので、被検出体の矢印A方向への通過を報知し矢印B
方向への通過は報知しない片方向検知が、温度変化に対
して安定に行なえる。
In FIG. 5, the detection areas of the pyroelectric elements (1a) (1b) (2a) are designated as (Z1a) (Z1b) (Z2). In the figure, arrow A
The detected object (for example, human body) that has advanced in the direction of (Z1
a) (Z1b) and (Z2) are passed through the detection area in this order. The detection signals generated by the detectors (1) and (2) as the object to be detected passes are as shown in FIG. 6 (A). That is, first, a detection signal as shown in (A) and (i) of the same figure is generated in the first detector (1). The detection signals are (A) and (o) in FIG.
The signal of the pyroelectric element (1a) shown in (1) (indicated by a chain line in the figure) and the signal of the subsequent pyroelectric element (1b) (indicated by a broken line in the figure) are combined. Furthermore, a pyroelectric element (1
Following the signal of b), the second detector (2) is shown in FIG.
The detection signal shown in (ii) is generated. On the contrary, the detection signal when the detected object advances in the direction of arrow B is shown in FIG.
The detection signal (ii) of the second detector (2) is generated first, and then the detection signal of the first detector (1) is generated by combining the signals generated by the pyroelectric elements (1b) and (1a). The signal (i) will be generated. Therefore, by comparing the generation times of the detection signals from the detectors (1) and (2), the passing direction of the detected object can be determined. That is, if the detection signal of the first detector (1) is early, the passing direction of the detected object is the direction of arrow A, and if the detection signal of the second detector (2) is early, it is the direction of arrow B. According to this configuration, even if the temperature relationship between the detected object and the background surroundings is reversed, the positive / negative of the signal is reversed, the time relationship is not changed, and the first detector (1) is dual-connected. Since no detection signal is generated even if the ambient temperature or brightness changes, the passage of the object to be detected in the direction of arrow A is notified, and arrow B
One-way detection can be performed stably with respect to temperature changes without notifying the passage in the direction.

ところが、かかる赤外線センサの焦電素子間の間隔が約
0.5mm程度と狭いのに対し、被検出体となる人体等の赤
外線放射源は点状ではなく、ある強度分布を持ったひろ
がりであり、また集光に用いる凸レンズあるいは凹面鏡
等の光学部品に生ずる焦点のぼけや収差の影響等のた
め、被検出体の通過方向検知が難しくなることがある。
However, the distance between the pyroelectric elements of the infrared sensor is about
While the infrared radiation source such as the human body, which is the object to be detected, is not point-like, it is a spread with a certain intensity distribution, while it is as narrow as 0.5 mm.It also occurs in optical components such as convex lenses or concave mirrors used for focusing light. Detection of the passing direction of the detected object may be difficult due to defocusing, the influence of aberration, and the like.

例えば、被検出体が第5図矢印Aの方向に進行した場
合、凸レンズ(15)の焦点のぼけのため、第1検出器
(1)の近接した2個の焦電素子(1a)(1b)にほぼ同
時に赤外線が入射してしまい、第7図(o)に示す如く
各々の焦電素子(1a)(1b)が信号を発生する時間の差
が短くなってしまうことが考えられる。このとき、デュ
アル接続された2個の焦電素子(1a)(1b)の信号が打
ち消し合って、第1検出器(1)の検出信号は第7図
(i)の如くなり、その信号のピーク(P″)は、第6
図(i)の場合のピーク(P)(P′)よりも小さくな
ってしまう。これは、赤外線入射時から発生しはじめた
電荷により徐々に信号が立上がる焦電素子の特性と相俟
って、特に被検出体の通過速度が速い場合に顕著とな
る。従ってかかる検出信号をパルス化してディジタル処
理する場合、小さなピーク(P″)は信号として取り出
せず、進入方向検知が行なえなくなる虞れがある。
For example, when the object to be detected advances in the direction of arrow A in FIG. 5, the two defocusing elements of the first detector (1) are close to each other due to the defocusing of the convex lens (15). It is conceivable that infrared rays are incident on each of the two) substantially at the same time, and the time difference between the pyroelectric elements (1a) and (1b) generating signals becomes short as shown in FIG. 7 (o). At this time, the signals of the two pyroelectric elements (1a) (1b) dually connected cancel each other out, and the detection signal of the first detector (1) becomes as shown in FIG. 7 (i). The peak (P ") is the sixth
It becomes smaller than the peaks (P) and (P ′) in the case of FIG. This becomes remarkable in combination with the characteristics of the pyroelectric element in which the signal gradually rises due to the electric charges that have started to be generated when the infrared rays are incident, especially when the passing speed of the object to be detected is high. Therefore, when the detection signal is pulsed and digitally processed, the small peak (P ″) cannot be extracted as a signal, and the approach direction may not be detected.

また、第6図に示す第1検出器(1)の検出信号と第2
検出器(2)の検出信号との時間差は、A方向ではtA
B方向ではtBとなっているが、これは第5図における距
離dA、dBに夫々対応する。この場合、被検出体がB方向
に進行した時の検出信号の時間差が短いため、時間差検
出による方向検知がいっそう難しくなってしまう。
In addition, the detection signal of the first detector (1) and the second detector shown in FIG.
The time difference from the detection signal of the detector (2) is t A in the A direction,
Although it is t B in the B direction, this corresponds to the distances d A and d B in FIG. 5, respectively. In this case, since the time difference between the detection signals when the detection target advances in the B direction is short, the direction detection by the time difference detection becomes more difficult.

それに対し、各焦電素子間の間隔を広くすれば、前述の
問題は解決できるが、この場合には赤外線センサ本体
(10)や凸レンズ(15)をはじめとして装置全体が大型
にならざるを得ず設置場所をとるなどの不都合が生じて
いた。
On the other hand, if the spacing between the pyroelectric elements is widened, the above-mentioned problem can be solved, but in this case, the entire device including the infrared sensor body (10) and the convex lens (15) must be large. Instead, there was inconvenience such as taking up a place for installation.

(ハ)考案が解決しようとする問題点 本考案はセンサ本体の大型化を招かずに正確な方向検知
ができる赤外線センサの提供を目的とする。
(C) Problems to be solved by the present invention The present invention aims to provide an infrared sensor capable of accurate direction detection without increasing the size of the sensor body.

(ニ)問題点を解決するための手段 本考案赤外線センサは、互いに表面電荷が打ち消し合う
ように接続された2個の焦電素子1a,1bからなる第1の
焦電形赤外線検出器1と、被検出体の通過方向を検出す
べく第1の焦電形赤外線検出器1と並べて配置された第
2の焦電形赤外線検出器2と、前記2個の焦電素子1a,1
bのうち前記第2の焦電形赤外線検出器2側の焦電素子1
bの前方に離間して設けられた遮蔽手段16とを備え、前
記第1第2の焦電形赤外線検出器1,2の視野を分割し
て、被検出体の通過時において第1第2の焦電形赤外線
検出器1,2の作動時間差を持たせることによって方向検
知を行うことを特徴とする。
(D) Means for Solving the Problems The infrared sensor of the present invention comprises a first pyroelectric infrared detector 1 composed of two pyroelectric elements 1a and 1b which are connected so that surface charges cancel each other. , A second pyroelectric infrared detector 2 arranged side by side with the first pyroelectric infrared detector 1 to detect the passage direction of the object to be detected, and the two pyroelectric elements 1a, 1
Pyroelectric element 1 on the side of the second pyroelectric infrared detector 2 of b
and a shielding means 16 provided separately in front of b, dividing the fields of view of the first and second pyroelectric infrared detectors 1 and 2 so that the first and second pyroelectric infrared detectors 1 and 2 are separated when the object to be detected passes. It is characterized in that the pyroelectric infrared detectors 1 and 2 of FIG.

(ホ)作用 以上の構成によれば、デュアル接続された第1検出器内
で信号が打ち消し合うことはなく、また、第1検出器と
第2検出器との間隔が実質的に拡大される。
(E) Operation According to the above configuration, signals do not cancel each other out in the dual-connected first detectors, and the distance between the first detector and the second detector is substantially expanded. .

(ヘ)実施例 本考案を第1図及び第2図に示す実施例について以下に
説明する。尚、既述の従来例と同一もしくは対応する部
分には同一記号を付し、説明は省略する。
(F) Embodiment An embodiment shown in FIGS. 1 and 2 of the present invention will be described below. Incidentally, the same or corresponding parts as those of the conventional example described above are designated by the same reference numerals, and the description thereof will be omitted.

(16)は赤外線透過フィルタ(12)の表面上に貼り付け
られた遮光テープで、第1検出器(1)を構成する2個
の焦電素子(1a)(1b)のうち第2検出器と隣接する側
の焦電素子(1b)の前方部分に貼り付けられている。か
かる遮光テープ(16)は赤外線を透過しないもので、第
1図に示す如く、焦電素子(1b)に入射する光軸付近
で、被検出体の通過方向である矢印A及びBと垂直方向
に長く貼り付けられ、焦電素子(1b)の光軸付近から到
来する赤外線、即ち被検出体が焦電素子(1b)の前方に
位置した時に焦電素子(1b)に入射しようとする赤外線
を遮蔽する。
(16) is a light-shielding tape attached on the surface of the infrared transmission filter (12), which is the second detector of the two pyroelectric elements (1a) (1b) constituting the first detector (1). It is attached to the front part of the pyroelectric element (1b) on the side adjacent to. The light-shielding tape (16) does not transmit infrared rays, and as shown in FIG. 1, in the vicinity of the optical axis incident on the pyroelectric element (1b), in the direction perpendicular to the arrows A and B, which are the passage directions of the object to be detected. Infrared that is attached to the pyroelectric element (1b) for a long time, that is, infrared rays that are about to enter the pyroelectric element (1b) when the object to be detected is positioned in front of the pyroelectric element (1b). Shield.

赤外線センサ本体(10)をかかる構成とすると、被検出
体が矢印A及びB方向に通過したときに第1及び第2検
出器(1)(2)に生ずる検出信号波形は第2図に示す
ものとなる。第1検出器(1)に生ずる波形(i)は、
焦電素子(1b)に入射する被検出体からの赤外線がほぼ
遮蔽されているため、デュアル接続しない焦電素子1個
の場合とほぼ同じ形状を呈する。従って、かかる構成に
よれば、焦電素子(1a)(1b)の出力が打ち消し合って
第7図に示す如く信号波形のピーク(P″)が小さくな
ってしまうことはない。また、第1及び第2検出器
(1)(2)の検出信号の時間差に対応する距離dA、dB
は、どちらも十分大きく、ほぼ同じ大きさとなってい
る。これは第1検出器(1)と第2検出器(2)との間
隔が実質的に拡大されたことになる。従って、被検出体
の通過方向が矢印A、Bの何れの方向であっても、両検
出器(1)(2)が検出信号を発する時間差tA、tBは第
2図に示す如く十分大きくなり、方向検知が確実に行な
える。
When the infrared sensor main body (10) has such a structure, the detection signal waveforms generated in the first and second detectors (1) and (2) when the object to be detected passes in the directions of arrows A and B are shown in FIG. Will be things. The waveform (i) generated in the first detector (1) is
Since the infrared rays from the object to be detected, which are incident on the pyroelectric element (1b), are almost shielded, the pyroelectric element (1b) has substantially the same shape as that of one pyroelectric element that is not dual-connected. Therefore, according to this structure, the outputs of the pyroelectric elements (1a) and (1b) do not cancel each other and the peak (P ″) of the signal waveform does not become small as shown in FIG. And the distances d A and d B corresponding to the time difference between the detection signals of the second detectors (1) and (2).
Are large enough, almost the same size. This means that the distance between the first detector (1) and the second detector (2) is substantially increased. Therefore, regardless of the direction of passage of the object to be detected in either direction of arrows A and B, the time differences t A and t B at which the detectors (1) and (2) generate detection signals are sufficient as shown in FIG. It becomes large, and direction detection can be performed reliably.

尚、第1図(a)中に破線で示す如く、遮光テープ(1
6′)を赤外線透過フィルタ(12)上ではなく、焦電素
子(1b)に直接貼り付けることも考えられるが、この場
合には、例えば周囲全体の明るさが変化して明るくなっ
たときなどに焦電素子(1a)と(2a)に出力信号が生
じ、何らかの原因でこれらの出力信号に時間差が生じる
と、誤検知がなされしまう虞れがある。しかし、本考案
の如く赤外線透過フィルタ(12)に遮光テープ(16)を
貼り付ける構成であれば、遮光テープ(16)と焦電素子
(1b)とが離間しており、周囲全体が明るくなったとき
には、その光が遮光テープ(16)貼付部分以外の透光部
分から焦電素子(1b)にも入射して出力を生じ、焦電素
子(1a)の出力とで打ち消し合う。従って、第1検出器
(1)に出力が生じることはなく、誤検知は生じない。
As shown by the broken line in FIG. 1 (a), the light shielding tape (1
It is possible to attach 6 ') directly to the pyroelectric element (1b) instead of on the infrared transmission filter (12), but in this case, for example, when the brightness of the entire surroundings changes and becomes brighter, If an output signal is generated at the pyroelectric elements (1a) and (2a), and if a time difference occurs between these output signals for some reason, erroneous detection may occur. However, if the light shielding tape (16) is attached to the infrared transmission filter (12) as in the present invention, the light shielding tape (16) and the pyroelectric element (1b) are separated from each other, and the entire surrounding becomes bright. In that case, the light also enters the pyroelectric element (1b) from the light-transmitting portion other than the portion where the light-shielding tape (16) is attached to generate an output, which cancels each other out with the output of the pyroelectric element (1a). Therefore, no output is generated in the first detector (1), and erroneous detection does not occur.

また、焦電素子(1b)を省略し、第1及び第2検出器
(1)(2)を夫々焦電素子(1a)及び(2a)のみから
構成することも考えられるが、この場合には蛍光灯の光
やカーテンの動きなどの赤外線変化、あるいは焦電素子
周囲の温度変化などの原因に対しても第1検出器(1)
に出力が生じてしまい、誤検知がなされてしまう。本考
案によれば、かかる誤検知は発生せず、被検出体の通過
方向検知が確実に行なえる。
It is also conceivable that the pyroelectric element (1b) is omitted and the first and second detectors (1) and (2) are composed of only the pyroelectric elements (1a) and (2a), respectively. Is the first detector (1) for the cause of infrared light changes such as fluorescent light and curtain movement, and temperature changes around the pyroelectric element.
Output is generated and false detection is made. According to the present invention, such an erroneous detection does not occur, and the passage direction of the object to be detected can be reliably detected.

以上の説明は、デュアル接続された第1検出器(1)
と、1個の焦電素子(2a)からなる第2検出器(2)と
を用いて片方向検知を行なう場合であったが、デュアル
接続された検出器を2個用いて両方向検知を行なう場合
にも利用できることは言うまでもない。
The above description is based on the dual-connected first detector (1).
In the case where the unidirectional detection is performed by using the second detector (2) including one pyroelectric element (2a), the bidirectional detection is performed by using two detectors connected in dual. Not to mention that it can also be used in cases.

(ト)考案の効果 本考案によれば、デュアル接続された2個の焦電素子の
一方側の前方に離間した遮光手段を設けているので、被
検出体の通過方向検知が確実に行なえ、誤検知の虞れが
なくなる。
(G) Effect of the Invention According to the present invention, since the light-shielding means is provided in front of one of the two dual-connected pyroelectric elements and is spaced apart, it is possible to reliably detect the passing direction of the object to be detected, There is no risk of false detection.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本考案一実施例を示す断面図、同図
(b)は同正面図、第2図は同信号波形図、第3図乃至
第7図は従来例を示し、第3図(a)は赤外線センサ本
体の断面図、同図(b)は同正面図、第4図は回路図、
第5図は断面図、第6図及び第7図は波形図である。 (1)……第1検出器、(2)……第2検出器、(1a)
(1b)(2a)……焦電素子、(16)……遮光テープ。
1 (a) is a sectional view showing an embodiment of the present invention, FIG. 1 (b) is a front view thereof, FIG. 2 is a signal waveform diagram thereof, and FIGS. 3 to 7 show conventional examples. 3 (a) is a sectional view of the infrared sensor main body, FIG. 3 (b) is a front view thereof, and FIG. 4 is a circuit diagram.
FIG. 5 is a sectional view, and FIGS. 6 and 7 are waveform diagrams. (1) …… First detector, (2) …… Second detector, (1a)
(1b) (2a) …… Pyroelectric element, (16) …… Shading tape.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】互いに表面電荷が打ち消し合うように接続
された2個の焦電素子1a,1bからなる第1の焦電形赤外
線検出器1と、被検出体の通過方向を検出すべく第1の
焦電形赤外線検出器1と並べて配置された第2の焦電形
赤外線検出器2と、前記2個の焦電素子1a,1bのうち前
記第2の焦電形赤外線検出器2側の焦電素子1bの前方に
離間して設けられた遮蔽手段16とを備え、前記第1第2
の焦電形赤外線検出器1,2の視野を分割して、被検出体
の通過時において第1第2の焦電形赤外線検出器1,2の
作動時間差を持たせることによって方向検知を行うこと
を特徴とする赤外線センサ。
1. A first pyroelectric infrared detector 1 comprising two pyroelectric elements 1a, 1b connected so that surface charges thereof cancel each other, and a first pyroelectric infrared detector 1 for detecting a passing direction of an object to be detected. A second pyroelectric infrared detector 2 arranged side by side with the first pyroelectric infrared detector 1 and the second pyroelectric infrared detector 2 side of the two pyroelectric elements 1a, 1b And a shielding means 16 provided separately in front of the pyroelectric element 1b.
The field of view of the pyroelectric infrared detectors 1 and 2 is divided, and the direction detection is performed by providing the operation time difference between the first and second pyroelectric infrared detectors 1 and 2 when the object to be detected passes. Infrared sensor characterized in that.
JP1987143447U 1987-09-18 1987-09-18 Infrared sensor Expired - Lifetime JPH076549Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987143447U JPH076549Y2 (en) 1987-09-18 1987-09-18 Infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987143447U JPH076549Y2 (en) 1987-09-18 1987-09-18 Infrared sensor

Publications (2)

Publication Number Publication Date
JPS6448689U JPS6448689U (en) 1989-03-27
JPH076549Y2 true JPH076549Y2 (en) 1995-02-15

Family

ID=31410282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987143447U Expired - Lifetime JPH076549Y2 (en) 1987-09-18 1987-09-18 Infrared sensor

Country Status (1)

Country Link
JP (1) JPH076549Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6277294B2 (en) * 2011-08-26 2018-02-07 アイリスオーヤマ株式会社 lighting equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271429A (en) * 1985-05-27 1986-12-01 Murata Mfg Co Ltd Pyroelectric infrared detector
JPS6214028A (en) * 1985-07-11 1987-01-22 Nippon Ceramic Kk Pyroelectric type sensor

Also Published As

Publication number Publication date
JPS6448689U (en) 1989-03-27

Similar Documents

Publication Publication Date Title
US4912316A (en) Detecting apparatus with resinous body
JPS5576312A (en) Focus detecting system of image
DE59407045D1 (en) Device for receiving light rays
US4882491A (en) Infrared detector
JPH079499B2 (en) Autofocus device
JPH076549Y2 (en) Infrared sensor
ATE184722T1 (en) MOTION DETECTOR
ATE173083T1 (en) SENSOR FOR DETECTING ELECTROMAGNETIC RADIATION
JPH0638057B2 (en) Optical device of heat ray detector
JPH0674763A (en) Distance measuring apparatus
CN209167540U (en) Laser rangefinder and intelligent cleaning equipment
EP0498429B1 (en) Improved target detector eliminating in-range sensitivity
JPS59121613U (en) focus detection device
JPS634652B2 (en)
JPS6254592B2 (en)
JPS63293426A (en) Pyroelectric infrared detector
JPH0525032Y2 (en)
JPS55106421A (en) Focusing detector
JPS5992372A (en) Obstacle detector for car
US3348058A (en) Radiation detection system having wide field of view
JP2597665B2 (en) Sun sensor
JPS6027944Y2 (en) infrared detection device
JPH0567418A (en) Optical sensor
JP2000131138A (en) Detecting device
JPH01155220A (en) Infrared optical system