JPH076525B2 - Swing hydraulic circuit of construction machinery - Google Patents

Swing hydraulic circuit of construction machinery

Info

Publication number
JPH076525B2
JPH076525B2 JP62003811A JP381187A JPH076525B2 JP H076525 B2 JPH076525 B2 JP H076525B2 JP 62003811 A JP62003811 A JP 62003811A JP 381187 A JP381187 A JP 381187A JP H076525 B2 JPH076525 B2 JP H076525B2
Authority
JP
Japan
Prior art keywords
pressure
control valve
motor
pilot
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62003811A
Other languages
Japanese (ja)
Other versions
JPS63172002A (en
Inventor
吉美 早乙女
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62003811A priority Critical patent/JPH076525B2/en
Publication of JPS63172002A publication Critical patent/JPS63172002A/en
Publication of JPH076525B2 publication Critical patent/JPH076525B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/0422Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with manually-operated pilot valves, e.g. joysticks

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、油圧クレーン等の建設機械の旋回油圧回路に
関するものである。
Description: TECHNICAL FIELD The present invention relates to a swing hydraulic circuit for a construction machine such as a hydraulic crane.

(従来技術) 従来、油圧クレーンの旋回油圧回路において、流量制御
と圧力制御とを可能にした方向制御弁(たとえば特開昭
57−29860号公報および特開昭58−50369号公報)を用い
たものが知られている。
(Prior Art) Conventionally, a directional control valve that enables flow rate control and pressure control in a swing hydraulic circuit of a hydraulic crane (see, for example, Japanese Patent Laid-Open Publication No.
Those using JP-A 57-29860 and JP-A-58-50369) are known.

しかしながら、上記方向制御弁は、スプールの両側に流
量制御用絞り部と圧力制御用絞り部とを一組ずつ設けた
ものであり、そのスプールの限られたストロークの範囲
で流量制御と圧力制御とを行うために、たとえばクレー
ン作業のように速度制御のための流量制御が重視される
作業に便利なように流量制御用絞り部の軸方向長さを大
きくすると、圧力作業用絞り部の軸方向長さが小さくな
り、バケット作業のようにトルク制御のための圧力制御
が重視される作業には不向きとなる。また、逆にバケッ
ト作業に便利なように圧力制御用絞り部の軸方向長さを
大きくすると、流量制御用絞り部の軸方向長さが小さく
なってクレーン作業には不向きになり、流量制御と圧力
制御の双方の操作性および制御性を同時に向上させるこ
とは難しい。
However, the above-mentioned directional control valve is provided with a set of a flow control throttle portion and a pressure control throttle portion on both sides of the spool, and the flow control and the pressure control are performed within a limited stroke range of the spool. In order to do this, increasing the axial length of the flow control throttle to make it convenient for work where speed control is important for speed control such as crane work Since the length becomes small, it is not suitable for work such as bucket work in which pressure control for torque control is important. On the contrary, if the axial length of the pressure control throttle is increased to make it convenient for bucket work, the axial length of the flow control throttle becomes smaller, making it unsuitable for crane work. It is difficult to improve both operability and controllability of pressure control at the same time.

また、パイロット圧の低圧域における流量制御の制御性
を良くするためには、スプールの中立復帰用ばねのばね
力を大きくしてパイロット圧の変化に対応する流量制御
用絞り部の開口面積の変化量を小さくするのが望ましい
が、このようにばね力を大きくすると、パイロット圧の
高圧域での圧力制御時に、スプールの一端側に形成され
た大圧力室に導かれているパイロット圧に対してスプー
ル他端側に負荷圧力だけでなく、大きなばね力(反力)
が作用するため、パイロット圧による制御だけで加速圧
力および減速圧力を十分に大きくすることができなくな
る。逆に、圧力制御の制御性を高めるために、パイロッ
ト圧に対して負荷圧力のみが対向するように上記ばね力
を小さくすると、流量制御時にばねが働かなくなって、
開口面積の微妙な制御ができなくなる。
Further, in order to improve the controllability of the flow rate control in the low pilot pressure range, the spring force of the neutral return spring of the spool is increased to change the opening area of the flow control throttle portion corresponding to the change of the pilot pressure. It is desirable to reduce the amount, but if the spring force is increased in this way, the pilot pressure introduced to the large pressure chamber formed at one end of the spool is controlled when the pilot pressure is controlled in the high pressure range. Not only load pressure on the other end of the spool, but also large spring force (reaction force)
Therefore, it becomes impossible to sufficiently increase the acceleration pressure and the deceleration pressure only by controlling the pilot pressure. On the contrary, in order to improve the controllability of the pressure control, if the spring force is reduced so that only the load pressure faces the pilot pressure, the spring does not work during the flow rate control,
It becomes impossible to finely control the opening area.

しかも、流量制御から圧力制御に切替わる過度位置にお
いて、流量制御時にタンクに連通していたスプール他端
の小圧力室に急に負荷圧力が導かれ、その負荷圧力によ
り、スプール一端の大圧力室に導かれるパイロット圧に
抗してスプールが押し戻され、その後、上記パイロット
圧によってスプールが押し返され、上記小圧力室に再び
負荷圧力が導かれてスプールが再度押し戻されるという
現象が繰返されることになり、スプールの位置が不安定
で、ハンチングが生じるおそれがある。
Moreover, in the transient position where the flow rate control is switched to the pressure control, the load pressure is suddenly introduced into the small pressure chamber at the other end of the spool that was in communication with the tank during the flow rate control, and the load pressure causes the large pressure chamber at one end of the spool to flow. The spool is pushed back against the pilot pressure that is guided to, then the spool is pushed back by the pilot pressure, the load pressure is guided again to the small pressure chamber, and the spool is pushed back again. As a result, the spool position is unstable and hunting may occur.

さらに、上記方向制御弁は中立でモータの両側流路を連
通させる中立流しのものであるため、モータを減速停止
させる時は、いわゆる逆レバー操作が必要であり、操作
が面倒であるとともに、停止時の応答性が悪い等の問題
がある。
Further, since the directional control valve is a neutral flow valve that connects the flow passages on both sides of the motor to each other, when the motor is decelerated and stopped, so-called reverse lever operation is required, which is troublesome and difficult to operate. There are problems such as poor responsiveness at time.

(発明の目的) 本発明は、このような問題を解消するためになされたも
のであり、流量制御と圧力制御のいずれも効率よく行う
ことができ、クレーン作業時のようにモータに対する負
荷が小さく加速圧力が低圧域の時は、流量制御により微
妙な速度制御が可能で、インチング性を良好にして操作
性を向上でき、バケット作業時のようにモータに対する
負荷が大きく加速圧力が高圧域では、レバー操作角に応
じた広範囲の圧力制御が可能で、加速圧力を的確に制御
して作業能率をアップでき、しかも、減速停止時にもレ
バー操作による減速圧力の制御が可能で、スムーズに減
速停止でき、荷揺れ等を少なくして円滑に作業できる建
設機械の旋回油圧回路を提供するものである。
(Object of the Invention) The present invention has been made in order to solve such a problem, and can efficiently perform both flow rate control and pressure control, and reduce the load on the motor such as during crane work. When the accelerating pressure is in the low pressure range, delicate speed control is possible by controlling the flow rate, and inching can be improved to improve operability.In the bucket work, the load on the motor is large and the accelerating pressure is in the high range. A wide range of pressure control according to the lever operation angle is possible, the acceleration pressure can be accurately controlled to improve work efficiency, and the deceleration pressure can be controlled by lever operation even during deceleration stop, allowing smooth deceleration stop. The present invention provides a swing hydraulic circuit for a construction machine that can smoothly carry out work by reducing load sway and the like.

(発明の構成) 本発明は、レバー操作によって二次側へのパイロット圧
が制御される旋回用リモコン弁と、同リモコン弁からの
パイロット圧によって切替えられる方向制御弁と、この
方向制御弁の切替えによって油圧ポンプからの供給流量
が制御される旋回用油圧モータとを備え、上記方向制御
弁はタンクへのブリードオフ通路を有し、かつ、中立位
置で上記モータの両側流路をブロックするように構成さ
れ、上記ポンプの吐出流路に、同ポンプの吐出圧力と上
記リモコン弁からのパイロット圧とを入力しそのパイロ
ット圧が設定値を越えたパイロット圧に比例してポンプ
吐出圧力を制御する第1圧力制御弁が接続され、上記モ
ータの両側流路間に、モータ排出側流路の圧力を取出す
切替弁と、この切替弁により取出された上記排出側流路
の圧力と上記パイロット圧とを入力し排出側流路圧力と
パイロット圧との和が設定値を越えた時に上記パイロッ
ト圧に反比例して排出側流路の圧力を制御する第2圧力
制御弁とが設けられていることを特徴とするものであ
る。
(Structure of the Invention) The present invention relates to a turning remote control valve in which pilot pressure to the secondary side is controlled by lever operation, a directional control valve that is switched by pilot pressure from the remote control valve, and switching of this directional control valve. A swirling hydraulic motor whose flow rate is controlled by a hydraulic pump by means of the directional control valve having a bleed-off passage to the tank, and blocking both side flow paths of the motor at a neutral position. The pump discharge pressure is controlled in proportion to the pilot pressure in which the discharge pressure of the pump and the pilot pressure from the remote control valve are input to the discharge flow path of the pump and the pilot pressure exceeds a set value. A pressure control valve is connected, and a switching valve for taking out the pressure of the motor discharge side flow path between the both side flow paths of the motor and the discharge side flow path taken out by the switching valve. A second pressure control valve for inputting the pressure and the pilot pressure and controlling the pressure of the discharge side flow path in inverse proportion to the pilot pressure when the sum of the discharge side flow path pressure and the pilot pressure exceeds a set value. It is characterized by being provided.

この構成により、クレーン作業時等のようにモータに対
する負荷が小さく加速圧力が低圧の時は、リモコン弁か
らのパイロット圧により作動する方向制御弁のブリード
オフ制御が優先され、リモコン弁の操作量に比例した方
向制御弁のスプール開度の制御により、モータへの流入
流量の広範囲の制御が可能で、かつ、微妙な流量制御が
可能となり、インチング性が向上される。
With this configuration, when the load on the motor is small and the accelerating pressure is low, such as during crane work, the bleed-off control of the directional control valve that is operated by the pilot pressure from the remote control valve is given priority, and the operation amount of the remote control valve is By proportionally controlling the spool opening of the directional control valve, the flow rate into the motor can be controlled over a wide range, and the flow rate can be finely controlled to improve the inching performance.

また、バケット作業時等のようにモータに対する負荷が
大きくて加速圧力が高圧の時は、リモコン弁からのパイ
ロット圧とポンプ吐出圧力とのバランスによってポンプ
吐出流路に設けられた第1圧力制御弁が作動され、方向
制御弁によるブリードオフ制御よりも第1圧力制御弁に
よる圧力制御が優先され、ポンプ吐出圧力つまりモータ
加速圧力がレバー操作角に応じて広範囲に制御され、こ
の広範囲の圧力制御により加速圧力が的確に制御されて
作業能率が向上される。
Further, when the load on the motor is large and the accelerating pressure is high, such as during bucket work, the first pressure control valve provided in the pump discharge flow path is balanced by the balance between the pilot pressure from the remote control valve and the pump discharge pressure. Is activated, the pressure control by the first pressure control valve is prioritized over the bleed-off control by the directional control valve, and the pump discharge pressure, that is, the motor acceleration pressure is controlled in a wide range according to the lever operation angle. Accelerating pressure is accurately controlled to improve work efficiency.

さらに、油圧モータの減速停止時には、上記リモコン弁
からのパイロット圧とモータ排出側の圧力とによって油
圧モータの両側流路間に設けられた第2圧力制御弁が作
動され、リモコン弁の操作量に反比例してモータ排出側
の圧力つまり減速圧力が的確に制御され、モータがスム
ーズに停止される。
Further, when the hydraulic motor decelerates and stops, the second pressure control valve provided between the flow passages on both sides of the hydraulic motor is operated by the pilot pressure from the remote control valve and the pressure on the motor discharge side, and the operation amount of the remote control valve is increased. Inversely, the pressure on the motor discharge side, that is, the deceleration pressure is accurately controlled, and the motor is smoothly stopped.

(実施例) 第1図は本発明の実施例を示す油圧回路図であり、この
図において、エンジン1によって駆動される油圧ポンプ
2の吐出流路3に方向制御弁4を介して油圧モータ6の
両側流路5a,5bとタンク8への戻り油流路7とが切替自
在に接続されている。方向制御弁4はブリードオフ通路
を有し中立位置でモータ6の両側流路5a,5bをブロック
するとともに、ポンプ2の吐出油をタンク8側に戻す中
立ブレーキタイプとなっている。
(Embodiment) FIG. 1 is a hydraulic circuit diagram showing an embodiment of the present invention. In this drawing, a hydraulic motor 6 is provided in a discharge passage 3 of a hydraulic pump 2 driven by an engine 1 via a direction control valve 4. The both side flow paths 5a, 5b and the return oil flow path 7 to the tank 8 are switchably connected. The directional control valve 4 has a bleed-off passage, blocks both side flow paths 5a, 5b of the motor 6 at a neutral position, and is of a neutral brake type that returns the oil discharged from the pump 2 to the tank 8 side.

リモコン弁10はレバー10cの操作角に比例して二次側に
導かれるパイロット圧Piが制御される一対の可変減圧弁
10a,10bを有し、両可変減圧弁10a,10bの一次側にパイロ
ット油圧源9が接続され、二次側にパイロット流路11a,
11bを介して上記方向制御弁4の両端のパイロット部4a,
4bが接続されている。
The remote control valve 10 is a pair of variable pressure reducing valves in which the pilot pressure Pi guided to the secondary side is controlled in proportion to the operating angle of the lever 10c.
10a, 10b, a pilot hydraulic pressure source 9 is connected to the primary side of both variable pressure reducing valves 10a, 10b, and a pilot flow path 11a,
11b through pilot portions 4a at both ends of the directional control valve 4,
4b is connected.

上記両パイロット流路11a,11bにはシャトル弁12を介し
て流路13が接続され、この流路13に第1、第2の定差源
圧弁14,15の各一次側が接続されている。各定差源圧弁1
4,15は、その一次側の圧力が設定値以上になった時に一
次側の圧力に比例した二次圧力を二次側に導くものであ
り、さらに詳しくは一次側に上記可変減圧弁10aまたは1
0bからのパイロット圧Piを導入し、その圧力Piからばね
14a,15aによる初期セット圧力Pa1,Pa2を差引いた圧力Pi
1,Pi2を二次側に導くものである。
A flow path 13 is connected to the pilot flow paths 11a and 11b via a shuttle valve 12, and the flow paths 13 are connected to the primary sides of first and second constant difference source pressure valves 14 and 15, respectively. Each constant difference source pressure valve 1
4,15 is for guiding the secondary pressure proportional to the pressure on the primary side to the secondary side when the pressure on the primary side exceeds a set value, and more specifically, the variable pressure reducing valve 10a or the variable pressure reducing valve 10a on the primary side. 1
The pilot pressure Pi from 0b is introduced, and from that pressure Pi the spring
Initial setting pressure by 14a, 15a Pressure Pi minus Pa 1 , Pa 2 Pi
It leads 1 and Pi 2 to the secondary side.

第1圧力制御弁16はモータ6の加速時の圧力(加速圧
力)を制御するためのもので、ポンプ2の吐出流路3と
タンク8への戻り油流路7との間に設けられ、ばね16c
による初期セット圧力Pr1で弁通路を閉じる方向に付勢
され、このばね側のパイロット部16bに第1定差減圧弁1
4の二次圧力Pi1が導かれ、弁通路を開く側のパイロット
部16aにポンプ吐出圧力Ppが導かれ、上記吐出圧力Pp
と、初期セット圧力Pr1および上記二次圧力Pi1によって
開口面積が制御され、ポンプ2からタンク8へのバイパ
ス流量が制御されてポンプ吐出圧力Ppが制御されるよう
になっている。
The first pressure control valve 16 is for controlling the pressure (acceleration pressure) during acceleration of the motor 6, and is provided between the discharge passage 3 of the pump 2 and the return oil passage 7 to the tank 8, Spring 16c
The first set pressure reducing valve 1 is urged in the direction of closing the valve passage by the initial set pressure Pr 1 by
The secondary pressure Pi 1 of 4 is introduced, and the pump discharge pressure Pp is introduced to the pilot portion 16a on the side where the valve passage is opened.
The opening area is controlled by the initial set pressure Pr 1 and the secondary pressure Pi 1 , the bypass flow rate from the pump 2 to the tank 8 is controlled, and the pump discharge pressure Pp is controlled.

第2圧力制御弁17はモータ6の減速時の圧力(減速圧
力)を制御するためのもので、モータ6の両側流路5a,5
b間に設けられ、ばね17cによるセット圧力Pcで弁通路を
閉じる方向に付勢され、弁通路を開く側に一対のパイロ
ット部17a,17bを有し、その一方のパイロット部17aに上
記可変減圧弁10a,10bからのパイロット圧Piによって切
替えられるパイロット切替弁18を介してモータ6の排出
側の圧力Pbが導かれ、他方のパイロット部17bに第2定
差減圧弁15の二次圧力Pi2が導かれるようになってい
る。この第2圧力制御弁17のセット圧力Pcは第1圧力制
御弁16の初期セット圧力Pr1よりも高圧(Pc>Pr1)に設
定されている。
The second pressure control valve 17 is for controlling the pressure (deceleration pressure) at the time of deceleration of the motor 6, and both side flow paths 5a, 5 of the motor 6 are controlled.
It is provided between b and is urged in the direction to close the valve passage by the set pressure Pc by the spring 17c, and has a pair of pilot portions 17a, 17b on the side that opens the valve passage, and one of the pilot portions 17a has the variable decompression pressure. The discharge side pressure Pb of the motor 6 is guided through a pilot switching valve 18 that is switched by the pilot pressure Pi from the valves 10a and 10b, and the secondary pressure Pi 2 of the second constant pressure reducing valve 15 is supplied to the other pilot portion 17b. Is being guided. The set pressure Pc of the second pressure control valve 17 is set higher than the initial set pressure Pr 1 of the first pressure control valve 16 (Pc> Pr 1 ).

図中、19a,19bはチェック弁、20a,20bはオーバーロード
リリーフ弁、21a,21bはキャビテーション防止用チェッ
ク弁、22は背圧弁である。
In the figure, 19a and 19b are check valves, 20a and 20b are overload relief valves, 21a and 21b are cavitation prevention check valves, and 22 is a back pressure valve.

次に、作用について説明する。Next, the operation will be described.

リモコン弁10のレバー10cを矢印イ方向に操作すると、
可変減圧弁10aからレバー操作角θに比例したパイロッ
ト圧Piが矢印ロ方向に導かれ、そのパイロット圧Piによ
り方向制御弁4が図面右側に切替えられ、ポンプ2の吐
出油が矢印ハ方向に導かれてモータ6に流入し、モータ
6が加速駆動され、モータ6からの排出油が矢印ニ方向
に導かれてタンク8に戻される。
When the lever 10c of the remote control valve 10 is operated in the direction of arrow a,
The pilot pressure Pi proportional to the lever operation angle θ is guided from the variable pressure reducing valve 10a in the arrow B direction, and the directional control valve 4 is switched to the right side in the drawing by the pilot pressure Pi, and the discharge oil of the pump 2 is guided in the arrow C direction. The oil is discharged and flows into the motor 6, the motor 6 is accelerated, and the oil discharged from the motor 6 is guided in the direction of arrow D and returned to the tank 8.

この加速時において、まず、レバー10cの操作角θに応
じて可変減圧弁10aからのパイロット圧Piが制御され、
このパイロット圧Piに応じて方向制御弁4のスプール開
度が制御され、ポンプ2から方向制御弁4を経てモータ
6に流入される流量が制御されるとともに、ポンプ2か
らの余剰油が方向制御弁4を経てタンク8にブリードオ
フされ、このブリードオフ制御によってモータ6の吸込
み側流路5aの圧力(加速圧力)Pmがモータ6の負荷に対
応する圧力となるように制御される。
At the time of this acceleration, first, the pilot pressure Pi from the variable pressure reducing valve 10a is controlled according to the operation angle θ of the lever 10c,
The spool opening of the directional control valve 4 is controlled according to the pilot pressure Pi, the flow rate of the pump 2 flowing into the motor 6 through the directional control valve 4 is controlled, and the excess oil from the pump 2 is directional controlled. Bleed off to the tank 8 via the valve 4, and by this bleed-off control, the pressure (acceleration pressure) Pm of the suction side flow path 5a of the motor 6 is controlled to be a pressure corresponding to the load of the motor 6.

ここで、通常の作業時のつまりエンジン1が中負荷運転
で駆動され、ポンプ1の吐出流量が中程度の場合におい
て、レバー操作角θを次第に大きくすると、第2図の実
線Iに示すようにレバー操作角θが角度θ11を越えた時
点から中間点の角度θ13まで、方向制御弁4によるブリ
ードオフ制御が行われ、このブリードオフ制御によって
モータ6の加速圧力Pmが上記実線Iに沿って上昇するよ
うに制御される。
Here, during normal work, that is, when the engine 1 is driven in medium load operation and the discharge flow rate of the pump 1 is medium, when the lever operation angle θ is gradually increased, as shown by the solid line I in FIG. The bleed-off control is performed by the directional control valve 4 from the time when the lever operation angle θ exceeds the angle θ 11 to the angle θ 13 at the intermediate point, and the acceleration pressure Pm of the motor 6 follows the solid line I by this bleed-off control. Controlled to rise.

一方、上記モータ6の加速圧力Pmに応じてポンプ2の吐
出圧力Ppが上昇し、その吐出圧力Ppが第1圧力制御弁16
のパイロット部16a(矢印ホ方向)に導かれて第1圧力
制御弁16のセット圧力Pr以下に制御される。このとき、
第1圧力制御弁16のセット圧力Prが第2図に実線IIに示
すように制御されている。
On the other hand, the discharge pressure Pp of the pump 2 rises according to the acceleration pressure Pm of the motor 6, and the discharge pressure Pp is the first pressure control valve 16
Is guided to the pilot portion 16a (in the direction of arrow E) and is controlled to be equal to or lower than the set pressure Pr of the first pressure control valve 16. At this time,
The set pressure Pr of the first pressure control valve 16 is controlled as shown by the solid line II in FIG.

すなわち上記加速時において、レバー操作角θに応じた
パイロット圧Piがシャトル弁12を経て第1定差減圧弁14
の一次側(矢印へ方向)に導かれている。そして、レバ
ー操作角θが中立から角度θ12までは、パイロット圧Pi
が低圧であるために第1定差減圧弁14の二次側には圧力
が導かれず、第1圧力制御弁16のセット圧力Prはばね16
cによる初期セット圧力Pr1(上記実線IIの下位水平部で
低圧、一定)に保持される。その後、レバー操作角θを
角度θ12〜θ15まで大きくすると、上記パイロット圧Pi
が高圧になるとともに、このパイロット圧Piの上昇に伴
って上記第1定差減圧弁14の二次側から第1圧力制御弁
16のパイロット部16bに、その一次側のパイロット圧Pi
に比例したすなわちレバー操作角θに比例した二次圧力
Pi1(Pi1=Pi−Pa1)が導かれ(矢印ト方向)、この二
次圧力Pi1と、上記ばね16cによる初期セット圧力Pr1
によって第1圧力制御弁16のセット圧力Prが可変制御
(上記実線IIの傾斜部)される。なお、レバー操作角θ
が角度θ15を越えると、上記パイロット圧Piが上限値
(高圧、一定)になるとともに、第1定差減圧弁14の二
次圧力Pi1ならびに第1圧力制御弁16のセット圧力Prが
いずれも上限値(上記実線IIの上位水平部で高圧、一
定)となる。
That is, during the acceleration, the pilot pressure Pi corresponding to the lever operation angle θ passes through the shuttle valve 12 and the first constant pressure reducing valve 14
Is led to the primary side (direction of arrow). From the neutral lever operation angle θ to the angle θ 12 , the pilot pressure Pi
Since the pressure is low, no pressure is introduced to the secondary side of the first constant difference pressure reducing valve 14, and the set pressure Pr of the first pressure control valve 16 is the spring 16
It is maintained at the initial set pressure Pr 1 by c (low pressure in the lower horizontal part of the solid line II, constant). After that, when the lever operation angle θ is increased to the angles θ 12 to θ 15 , the pilot pressure Pi
Becomes high, and as the pilot pressure Pi rises, the first constant pressure reducing valve 14 moves from the secondary side to the first pressure control valve.
The pilot pressure Pi on the primary side of the 16 pilot section 16b
Secondary pressure proportional to the lever operating angle θ
Pi 1 (Pi 1 = Pi−Pa 1 ) is guided (in the direction of arrow G), and the secondary pressure Pi 1 and the initial set pressure Pr 1 by the spring 16c cause the set pressure Pr of the first pressure control valve 16 to rise. It is variably controlled (inclined portion of solid line II above). The lever operation angle θ
Exceeds the angle θ 15 , the pilot pressure Pi becomes the upper limit value (high pressure, constant), and the secondary pressure Pi 1 of the first constant pressure reducing valve 14 and the set pressure Pr of the first pressure control valve 16 are Also becomes the upper limit (high pressure in the upper horizontal part of the solid line II, constant).

こうして、第1圧力制御弁16のセット圧力Prがレバー操
作角θに応じて第2図の実線IIに沿って制御される。
In this way, the set pressure Pr of the first pressure control valve 16 is controlled according to the lever operation angle θ along the solid line II in FIG.

上記の制御により、レバー操作角θが角度θ13までは、
上記モータ加速圧力Pmならびにこの加速圧力Pmに対応す
るポンプ加速圧力Ppが上記実線IIに示された第1圧力制
御弁16のセット圧力Pr以下であり、このため、第1圧力
制御弁16作動せず、上記方向制御弁4によるブリードオ
フ制御が行われ、このブリードオフ制御によりモータ6
の加速圧力Pmが制御されるとともに、モータ6への流入
流量が制御され、モータ6の回転速度が制御される。
By the above control, until the lever operation angle θ is up to the angle θ 13 ,
The motor accelerating pressure Pm and the pump accelerating pressure Pp corresponding to the accelerating pressure Pm are equal to or lower than the set pressure Pr of the first pressure control valve 16 shown by the solid line II, and therefore the first pressure control valve 16 is not operated. Instead, the bleed-off control is performed by the directional control valve 4, and the motor 6 is controlled by this bleed-off control.
The acceleration pressure Pm is controlled, the flow rate into the motor 6 is controlled, and the rotation speed of the motor 6 is controlled.

この場合、第1圧力制御弁16が作動しないので、ポンプ
2の吐出流量の全流量が方向制御弁4に導かれ、この状
態で方向制御弁4によるブリードオフ制御が行われるこ
とになり、レバー操作角θに応じてモータ6に対する流
入流量が適正に制御され、モータ6の回転速度がレバー
操作通りに円滑に制御され、速度制御(流量制御)の制
御性ならびに操作性が良好となる。
In this case, since the first pressure control valve 16 does not operate, the entire discharge flow rate of the pump 2 is guided to the directional control valve 4, and in this state, the bleed-off control is performed by the directional control valve 4, and the lever The inflow flow rate to the motor 6 is appropriately controlled according to the operation angle θ, the rotation speed of the motor 6 is smoothly controlled as the lever operation, and the controllability and operability of speed control (flow rate control) are improved.

次いで、レバー操作角θが上記角度θ13を越えると、方
向制御弁4のブリードオフ通路が絞られてモータ加速圧
力Pmが上記実線Iの延長線(破線部)方向に急上昇しよ
うとする。しかしこのとき、モータ加速圧力Pmの上昇に
伴ってポンプ吐出圧力Ppも上昇しており、その吐出圧力
Ppがレバー操作角θに応じて上記実線IIに沿って制御さ
れている第1圧力制御弁16のセット圧力Prを越えること
になり、このため、ポンプ吐出流量の一部が第1圧力制
御弁16によりタンク9にバイパスされながら、ポンプ吐
出圧力Ppが上記セット圧力Prに対応する圧力となるよう
に制御され、これに伴ってモータ加速圧力Pmも上記セッ
ト圧力Prに対応する圧力となるように制御される。
Next, when the lever operation angle θ exceeds the angle θ 13 , the bleed-off passage of the directional control valve 4 is throttled, and the motor acceleration pressure Pm tends to rapidly increase in the extension line (broken line portion) of the solid line I. However, at this time, the pump discharge pressure Pp also rises as the motor acceleration pressure Pm rises.
Pp exceeds the set pressure Pr of the first pressure control valve 16 that is controlled along the solid line II according to the lever operation angle θ, so that part of the pump discharge flow rate is part of the first pressure control valve. While being bypassed to the tank 9 by 16, the pump discharge pressure Pp is controlled to be a pressure corresponding to the set pressure Pr, and accordingly, the motor acceleration pressure Pm is also set to a pressure corresponding to the set pressure Pr. Controlled.

すなわち、上記角度θ13を越えた後は、上記方向制御弁
4によるブリードオフ制御よりも第1圧力制御弁16によ
る制御が優先され、第1圧力制御弁16によってポンプ吐
出圧力Ppならびにモータ加速圧力Pmが上記実線IIに沿っ
て上昇するように制御される。これにより加速圧力Pmが
高圧域でもレバー操作角θに応じて加速圧力Pmを随意に
制御でき、高圧域での圧力制御領域が大きくなって高ト
ルク運転時の制御性ならびに製作性が改善される。
That is, after the angle θ 13 is exceeded, the control by the first pressure control valve 16 has priority over the bleed-off control by the directional control valve 4, and the pump discharge pressure Pp and the motor acceleration pressure are controlled by the first pressure control valve 16. Pm is controlled so as to rise along the solid line II. As a result, even when the accelerating pressure Pm is in the high pressure range, the accelerating pressure Pm can be arbitrarily controlled according to the lever operation angle θ, and the pressure control range in the high pressure range is enlarged to improve controllability and manufacturability during high torque operation. .

ところで、上記の制御時において、作業内容、モータ6
に対する負荷の変動等によってポンプ2を駆動している
エンジン1の回転数が変動し、ポンプ2の吐出流量Qが
変動する場合がある。
By the way, during the above control, the work content and the motor 6
The rotation speed of the engine 1 that drives the pump 2 may fluctuate due to fluctuations in the load, etc., and the discharge flow rate Q of the pump 2 may fluctuate.

たとえばクレーン作業時のようにモータ6に対する負荷
が小さい場合は、一般にエンジン1が低負荷、高速回転
となってポンプ吐出流量が多くなり、上記レバー操作角
θに応じたブリードオフ制御曲線が第2図の一点鎖線II
Iのように緩カーブとなる。
For example, when the load on the motor 6 is small, such as during crane work, the engine 1 generally has a low load and rotates at high speed to increase the pump discharge flow rate, and the bleed-off control curve corresponding to the lever operation angle θ has a second curve. One-dot chain line II in the figure
It becomes a gentle curve like I.

このような低負荷作業時には、レバー操作角θが上記通
常の作業時の角度θ13よりも大きい角度θ14まで第1圧
力制御弁16は作動せず、上記角度θ11から角度θ14の範
囲で上記一点鎖線IIIに沿ってレバー操作角θに応じた
方向制御弁4によるブリードオフ制御が行われ、流量制
御領域(θ11〜θ14)が大きくなる。そして、レバー10
cの微量操作によって上記モータ6の回転速度の微量制
御、すなわちモータ6の微速制御が可能となり、インチ
ング性が大幅に向上される。また、レバー操作角θを大
きくすれば、方向制御弁4の切替量が大きくなってモー
タ6への流量流入が多くなり、モータ6の回転速度が速
くなる。これによってモータ6に対する流入流量すなわ
ちモータ回転速度が広範囲に制御され、非常に良好な旋
回操作性が得られる。
Such a low load operation, the first pressure control valve 16 lever operation angle theta until large angle theta 14 than the angle theta 13 during the normal working does not operate, the range of the angle theta 14 from the angle theta 11 Then, the bleed-off control is performed by the directional control valve 4 according to the lever operation angle θ along the one-dot chain line III, and the flow rate control region (θ 11 to θ 14 ) becomes large. And lever 10
By minute operation of c, minute control of the rotation speed of the motor 6, that is, minute speed control of the motor 6 becomes possible, and inching performance is greatly improved. Further, if the lever operation angle θ is increased, the switching amount of the directional control valve 4 increases, the flow rate of the flow into the motor 6 increases, and the rotation speed of the motor 6 increases. As a result, the inflow flow rate to the motor 6, that is, the motor rotation speed is controlled in a wide range, and very good turning operability is obtained.

また、バケット作業時のようにモータ6に対する負荷が
大きい場合は、エンジン1は高負荷、低速回転となって
ポンプ吐出流量が少なくなり、上記レバー操作角θに応
じたブリードオフ制御曲線が第2図の二点鎖線IVのよう
に急カーブとなる。
When the load on the motor 6 is large, such as during bucket work, the engine 1 has a high load and rotates at a low speed to reduce the pump discharge flow rate, and the bleed-off control curve corresponding to the lever operation angle θ has a second value. It becomes a sharp curve as indicated by the chain double-dashed line IV in the figure.

このような高負荷作業時には、レバー操作角θが上記通
常の作業時の角度θ13よりも小さい角度θ12で、上記モ
ータ加速圧力Pmならびにポンプ吐出圧力Ppが第1圧力制
御弁16のセット圧力Prを越えることになり、このため、
第1圧力制御弁16が働き、方向制御弁4によるブリード
オフ制御よりも第1圧力制御弁16による制御が優先さ
れ、上記角度θ12から角度θ15の範囲で上記二点鎖線IV
に沿ってレバー操作角θに応じた第1圧力制御弁16によ
る圧力制御が行われ、圧力制御領域(θ12〜θ15)が大
きくなる。そして、この圧力制御によりバケット作業時
のようにモータ6の駆動、停止を頻繁に繰り返す場合で
あっても、レバー操作角θに応じて第1圧力制御弁16の
セット圧力Prが制御されて、ポンプ2の吐出圧力Ppが制
御されるとともに、モータ6の加速圧力Pmが適正に制御
され、モータ6が過負荷になることが防止され、ショッ
クが少なく、スムーズに旋回作業が行われる。
Such During high load operation, with the lever operation angle theta is less angle theta 12 than the angle theta 13 during the normal working, the motor acceleration pressure Pm and the pump discharge pressure Pp is set pressure of the first pressure control valve 16 Pr will be exceeded, and for this reason,
The first pressure control valve 16 operates so that the control by the first pressure control valve 16 has priority over the bleed-off control by the directional control valve 4, and the two-dot chain line IV in the range of the angle θ 12 to the angle θ 15
The pressure control is performed by the first pressure control valve 16 according to the lever operation angle θ, and the pressure control region (θ 12 to θ 15 ) increases. Then, even when the driving and stopping of the motor 6 are frequently repeated by this pressure control as in the bucket work, the set pressure Pr of the first pressure control valve 16 is controlled according to the lever operation angle θ, The discharge pressure Pp of the pump 2 is controlled, and the acceleration pressure Pm of the motor 6 is properly controlled, the motor 6 is prevented from being overloaded, shock is reduced, and smooth turning work is performed.

なお、上記加速時において、可変減圧弁10aからのパイ
ロット圧Piが矢印チ方向に導かれ、パイロット切替弁18
が右位置に切替えられ、モータ6の排出側の圧力が第2
圧力制御弁17のパイロット部17aに導かれている。ま
た、上記パイロット圧Piは、シャトル弁12を経て第2定
差減圧弁15の一次側(矢印ニ方向)にも導かれており、
上記レバー操作角θを大きくすると、第2定差減圧弁15
の二次側に圧力Pi2(Pi2=Pi−Pa2)が導かれ、その二
次圧力Pi2が第2圧力制御弁16のパイロット部16b(矢印
ル方向)に導かれる。ただしこの加速時には、モータ排
出側の圧力Pbは低圧であり、かつ、第2圧力制御弁16の
セット圧力Pcを第1圧力制御弁15の初期セット圧力Pr1
より高く設定してあるので、第2圧力制御弁17は遮断位
置側に付勢されたままであり、従って、モータ6の吸込
み側の圧油が排出側にバイパスされることはなく、モー
タ6は確実に回転加速される。
At the time of acceleration, the pilot pressure Pi from the variable pressure reducing valve 10a is guided in the arrow H direction, and the pilot switching valve 18
Is switched to the right position, and the pressure on the discharge side of the motor 6 becomes the second
It is guided to the pilot portion 17a of the pressure control valve 17. The pilot pressure Pi is also introduced to the primary side of the second constant difference pressure reducing valve 15 (direction of arrow D) via the shuttle valve 12,
When the lever operation angle θ is increased, the second constant difference pressure reducing valve 15
Pi 2 (Pi 2 = Pi-Pa 2 ) is introduced to the secondary side of the second pressure control valve, and the secondary pressure Pi 2 is introduced to the pilot portion 16b of the second pressure control valve 16 (direction indicated by the arrow). However, during this acceleration, the pressure Pb on the motor discharge side is low, and the set pressure Pc of the second pressure control valve 16 is equal to the initial set pressure Pr 1 of the first pressure control valve 15.
Since it is set higher, the second pressure control valve 17 remains biased to the shut-off position side, and therefore the pressure oil on the suction side of the motor 6 is not bypassed to the discharge side, and the motor 6 is The rotation is surely accelerated.

次に、上記加速後にレバー10cを中立に戻す方向に徐々
に操作すると、上記可変減圧弁10aからのパイロット圧P
iが次第に低くなり、方向制御弁4が右位置から中立位
置に徐々に戻される。これに伴って方向制御弁4のモー
タ排出側流路5bからタンク8への戻り油通路が次第に絞
られ、モータ6からタンク8への戻り油流量が絞られ、
これに伴ってモータ排出側の圧力(減速圧力)Pbが次第
に上昇し、モータ6が次第に減速される。
Next, when the lever 10c is gradually operated to return to neutral after the acceleration, the pilot pressure P from the variable pressure reducing valve 10a is changed.
i gradually decreases, and the directional control valve 4 is gradually returned from the right position to the neutral position. Along with this, the return oil passage from the motor discharge side flow path 5b of the direction control valve 4 to the tank 8 is gradually narrowed, and the return oil flow rate from the motor 6 to the tank 8 is narrowed.
Along with this, the pressure (deceleration pressure) Pb on the motor discharge side gradually rises, and the motor 6 is gradually decelerated.

この減速時において、通常の作業時には、第3図の実線
I′に示すように、レバー10cをある角度θ25に戻した
時点から、上記方向制御弁4の戻り油通路の絞り作用に
よる流量制御が開始され、上記角度θ25から中間点の角
度θ23まで、方向制御弁4による流量制御によりモータ
6の減速圧力Pbがレバー操作角θに応じて上記実線I′
に沿って制御される。
During this deceleration, during normal work, as shown by the solid line I ′ in FIG. 3, from the time when the lever 10c is returned to a certain angle θ 25 , the flow rate control by the throttle action of the return oil passage of the directional control valve 4 is performed. Is started, the deceleration pressure Pb of the motor 6 changes from the angle θ 25 to the intermediate point angle θ 23 by the flow rate control by the directional control valve 4 according to the lever operation angle θ.
Controlled along.

一方、この減速時において、第2圧力制御弁17のばね17
cに対向する側のパイロット部17bに第2定差減圧弁15の
二次圧力Pi2が導かれており、その二次圧力Pi2がフルレ
バー位置からある角度θ24に戻すまでは高圧一定であ
り、次いでレバー操作角θを小さくするに従って上記二
次圧力Pi2が次第に低圧になり、その後、ある角度θ21
以下になると、上記二次圧力Pi2が導かれなくなり、こ
の二次圧力Piと上記ばね17cとによって第2圧力制御弁1
7のセット圧力Pcが第3図の実線II′に示すように制御
されることになる。すなわちレバー操作角θに反比例し
て第2圧力制御弁17のセット圧力Pcが制御される。
On the other hand, during this deceleration, the spring 17 of the second pressure control valve 17
The secondary pressure Pi 2 of the second constant differential pressure reducing valve 15 is introduced to the pilot portion 17b on the side opposite to c, and the secondary pressure Pi 2 remains constant at a high pressure until it returns from the full lever position to an angle θ 24. There, then the secondary pressure Pi 2 becomes gradually low pressure according to decrease the lever operation angle theta, then an angle theta 21
In the following cases, the secondary pressure Pi 2 is not guided, and the secondary pressure Pi 2 and the spring 17c cause the second pressure control valve 1
The set pressure Pc of 7 is controlled as shown by the solid line II 'in FIG. That is, the set pressure Pc of the second pressure control valve 17 is controlled in inverse proportion to the lever operation angle θ.

また、この第2圧力制御弁17のパイロット部17aに上記
モータ排出側の圧力が導かれており、そのモータ排出側
の圧力つまり減速圧力Pbが第2圧力制御弁17のセット圧
力Pcを越えるようになると、減速圧力Pbが第2圧力制御
弁17によって制御される。
The pressure on the motor discharge side is introduced to the pilot portion 17a of the second pressure control valve 17, and the pressure on the motor discharge side, that is, the deceleration pressure Pb, exceeds the set pressure Pc of the second pressure control valve 17. Then, the deceleration pressure Pb is controlled by the second pressure control valve 17.

すなわち通常の作業時において、レバー10cを加速位置
から中立位置に戻す場合、レバー操作角θが角度θ25
ら角度θ23までの間は、モータ減速圧力Pbが第2圧力制
御弁17のセット圧力Pcよりも低圧であり、第2圧力制御
弁17は働かず、方向制御弁4によるタンク8への戻り油
流量の制御によってモータ減速圧力Pbが第3図の線I′
に沿って制御される。
That is, when the lever 10c is returned from the acceleration position to the neutral position during normal work, the motor deceleration pressure Pb is the set pressure of the second pressure control valve 17 while the lever operation angle θ is between the angle θ 25 and the angle θ 23. The pressure is lower than Pc, the second pressure control valve 17 does not operate, and the motor deceleration pressure Pb is controlled by the directional control valve 4 to control the return oil flow rate to the tank 8.
Controlled along.

次いで、レバー操作角θが角度θ23以下になると、上記
方向制御弁4のタンク7への戻り油通路が大きく絞られ
てモータ減速圧力Pbが急上昇し、第2圧力制御弁17のセ
ット圧力Pcを越えようとする。このとき、第2圧力制御
弁17がそのパイロット部17aに導かれるモータ排出側の
圧力Pbと、パイロット部17bに導かれる第2定差減圧弁1
5からの二次圧力Pi2とによって下位置側に切替えられる
とともに、その弁開度が制御され、モータ排出側の圧油
が第2圧力制御弁17を介してモータ吸込み側(矢印ヲ方
向)に一部バイパスされながらモータ排出側の圧力Pbが
制御(圧力制御)されることになる。
Next, when the lever operation angle θ becomes equal to or less than the angle θ 23 , the return oil passage of the directional control valve 4 to the tank 7 is greatly throttled, the motor deceleration pressure Pb rapidly rises, and the set pressure Pc of the second pressure control valve 17 is increased. Try to cross. At this time, the second pressure control valve 17 has a pressure Pb on the motor discharge side that is guided to the pilot portion 17a and the second constant differential pressure reducing valve 1 that is guided to the pilot portion 17b.
It is switched to the lower position side by the secondary pressure Pi 2 from 5 and its valve opening is controlled, and the pressure oil on the motor discharge side is passed through the second pressure control valve 17 to the motor suction side (direction of arrow). The pressure Pb on the motor discharge side is controlled (pressure control) while being partially bypassed.

これによって上記レバー操作角θを角度θから中立位
置に戻すまでは、上記方向制御弁4による制御よりも第
2圧力制御弁による制御が優先され、この第2圧力制御
弁17により上記減速圧力Pbが第3図の線II′に沿って制
御される。また、この制御によりレバー10cを中立に戻
すに従って第2圧力制御弁17による圧力制御で減速圧力
Pbが上記実線II′に沿って徐々に高くなるように制御さ
れ、モータ6はショックが少なく、スムーズに減速、停
止される。
As a result, until the lever operation angle θ is returned from the angle θ 5 to the neutral position, the control by the second pressure control valve has priority over the control by the direction control valve 4, and the deceleration pressure by the second pressure control valve 17 is given. Pb is controlled along line II 'in FIG. Further, as the lever 10c is returned to the neutral state by this control, the deceleration pressure is controlled by the pressure control by the second pressure control valve 17.
Pb is controlled so as to gradually increase along the solid line II ', and the motor 6 is smoothly decelerated and stopped with less shock.

なお、上記減速時において、たとえばクレーン作業時の
ようにモータ6に対する負荷が小さく、エンジン1が低
負荷、高速回転で、ポンプ吐出流量すなわちモータ戻り
油流量が多い場合は、上記レバー操作角θに応じた方向
制御弁4による流量制御に基づくモータ減速圧力Pbの制
御曲線が第3図の一点鎖線III′のように緩カーブとな
る。これにより減速時も方向制御弁4による流量制御領
域(角度θ25〜θ22)が大きくなり、減速時にも減速速
度の広範囲の制御ならびに微速減速が可能となり、イン
チング性が大幅に向上される。
During deceleration, when the load on the motor 6 is small, the engine 1 is under a low load and rotates at high speed, and the pump discharge flow rate, that is, the motor return oil flow rate is large, such as during crane work, the lever operation angle θ is set. The control curve of the motor deceleration pressure Pb based on the flow rate control by the corresponding directional control valve 4 becomes a gentle curve as indicated by the one-dot chain line III 'in FIG. As a result, the flow rate control region (angles θ 25 to θ 22 ) by the directional control valve 4 is increased even during deceleration, wide range control of the deceleration speed and fine deceleration are possible during deceleration, and inching performance is greatly improved.

また、バケット作業時のようにモータ6に対する負荷が
大きく、エンジン1が高負荷、低速回転でポンプ吐出流
量すなわちモータ戻り油流量が少ない場合は、上記レバ
ー操作角θに応じた方向制御弁4による流量制御に基づ
くモータ減速圧力Pbの制御曲線が第3図の二点鎖線IV′
のように急カーブとなる。これにより流量制御領域(角
度θ25〜θ24)よりも第2圧力制御弁17による圧力制御
領域(θ24〜θ21)が大きくなり、この圧力制御により
モータ6の減速圧力Pbがレバー操作角θに応じて一層適
正に制御され、圧力制御の制御性が大幅に向上され、シ
ョックが大幅に抑制されて極めてスムーズに減速、停止
される。
Further, when the load on the motor 6 is large, such as during bucket work, and the engine 1 has a high load and rotates at a low speed and the pump discharge flow rate, that is, the motor return oil flow rate is small, the directional control valve 4 according to the lever operation angle θ is used. The control curve of the motor deceleration pressure Pb based on the flow rate control is the chain double-dashed line IV ′ in FIG.
It becomes a sharp curve like. Thus the flow control region (angle theta 25 through? 24) pressure control region by the second pressure control valve 17 than the (theta 24 through? 21) increases, the deceleration pressure Pb is the lever operation angle of the motor 6 by the pressure control The control is performed more appropriately according to θ, the controllability of the pressure control is greatly improved, the shock is greatly suppressed, and the vehicle is decelerated and stopped extremely smoothly.

上記実施例では、リモコン弁10からのパイロット圧Piを
第1定差減圧弁14および第2定差減圧弁15によりそれぞ
れ減圧して第1圧力制御弁16のパイロット部16bおよび
第2圧力制御弁17のパイロット部17bに導くようにした
が、各定差減圧弁14,15を省略して上記パイロット圧Pi
を各圧力制御弁16,17の各パイロット部16b,17bに直接導
くようにしてもよい。
In the above embodiment, the pilot pressure Pi from the remote control valve 10 is reduced by the first constant difference pressure reducing valve 14 and the second constant difference pressure reducing valve 15, respectively, and the pilot portion 16b of the first pressure control valve 16 and the second pressure control valve 16 are controlled. Although the pilot pressure 17 is introduced to the pilot portion 17b of FIG.
May be directly guided to the pilot portions 16b and 17b of the pressure control valves 16 and 17, respectively.

(発明の効果) 以上のように本発明によれば、クレーン作業時等のよう
にモータに対する負荷が小さく加速圧力が低圧の時は、
リモコン弁からのパイロット圧により作動する方向制御
弁のブリードオフ制御が優先されるとともに、その流量
制御領域が大きくなるので、レバー操作角に応じてモー
タへの流入流量を広範囲に制御でき、かつ、微妙な流量
制御が可能となり、インチング性を大幅に向上できる。
As described above, according to the present invention, when the load on the motor is small and the acceleration pressure is low, such as during crane work,
The bleed-off control of the directional control valve operated by the pilot pressure from the remote control valve is prioritized and its flow rate control area is enlarged, so that the flow rate into the motor can be controlled in a wide range according to the lever operation angle, and A delicate flow rate control is possible and inching can be greatly improved.

また、バケット作業時等のようにモータに対する負荷が
大きくて加速圧力が高圧の時は、リモコン弁からのパイ
ロット圧とポンプ吐出圧力とのバランスによって第1圧
力制御弁が作動され、方向制御弁によるブリードオフ制
御よりも第1圧力制御弁による圧力制御が優先されると
ともに、その圧力制御領域が大きくなるので、ポンプ吐
出圧力つまりモータ加速圧力をレバー操作角に応じて広
範囲に制御でき、この広範囲の圧力制御により加速圧力
を的確に制御できる。このように負荷に応じて最適な制
御特性が得られ、旋回の制御性ならびに操作性を大幅に
改善できる。
When the load on the motor is large and the acceleration pressure is high, such as during bucket work, the first pressure control valve is activated by the balance between the pilot pressure from the remote control valve and the pump discharge pressure, and the directional control valve Since the pressure control by the first pressure control valve is prioritized over the bleed-off control and the pressure control area becomes large, the pump discharge pressure, that is, the motor acceleration pressure can be controlled in a wide range according to the lever operation angle. Acceleration pressure can be accurately controlled by pressure control. In this way, optimum control characteristics can be obtained according to the load, and the controllability and operability of turning can be greatly improved.

さらに、モータの減速停止時には、モータ排出側の圧力
が第2圧力制御弁のセット圧力より高くなると、この第
2圧力制御弁によりリモコン弁の操作量に反比例してモ
ータ排出側の圧力つまり減速圧力を的確に制御でき、モ
ータをスムーズに減速、停止させることができる。
Further, when the motor discharge side pressure becomes higher than the set pressure of the second pressure control valve when the motor decelerates and stops, this second pressure control valve causes the pressure on the motor discharge side, that is, the deceleration pressure, in inverse proportion to the operation amount of the remote control valve. Can be controlled accurately, and the motor can be smoothly decelerated and stopped.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す油圧回路図、第2図はリ
モコン弁のレバー操作角とモータの加速圧力との関係を
示す制御線図、第3図は同レバー操作角とモータの減速
圧力との関係を示す制御線図である。 1……エンジン、2……油圧ポンプ、4……方向制御
弁、6……旋回用油圧モータ、8……タンク、10……リ
モコン弁、10a,10b……可変減圧弁、11a,11b……パイロ
ット流路、12……シャトル弁、14……第1定差減圧弁、
15……第2定差減圧弁、16……第1圧力制御弁、17……
第2圧力制御弁、18……パイロット切替弁。
FIG. 1 is a hydraulic circuit diagram showing an embodiment of the present invention, FIG. 2 is a control diagram showing the relationship between the lever operating angle of a remote control valve and the acceleration pressure of a motor, and FIG. 3 is the lever operating angle and the motor. It is a control diagram which shows the relationship with deceleration pressure. 1 ... Engine, 2 ... Hydraulic pump, 4 ... Direction control valve, 6 ... Turning hydraulic motor, 8 ... Tank, 10 ... Remote control valve, 10a, 10b ... Variable pressure reducing valve, 11a, 11b ... … Pilot channel, 12 …… Shuttle valve, 14 …… First constant difference pressure reducing valve,
15 …… Second constant difference pressure reducing valve, 16 …… First pressure control valve, 17 ……
2nd pressure control valve, 18 …… Pilot switching valve.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B66C 23/86 9037−3F E02F 9/22 C Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // B66C 23/86 9037-3F E02F 9/22 C

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】レバー操作によって二次側へのパイロット
圧が制御される旋回用リモコン弁と、同リモコン弁から
のパイロット圧によって切替えられる方向制御弁と、こ
の方向制御弁の切替えによって油圧ポンプからの供給流
量が制御される旋回用油圧モータとを備え、上記方向制
御弁はタンクへのブリードオフ通路を有し、かつ、中立
位置で上記モータの両側流路をブロックするように構成
され、上記ポンプの吐出流路に、同ポンプの吐出圧力と
上記リモコン弁からのパイロット圧とを入力しそのパイ
ロット圧が設定値を越えた時にパイロット圧に比例して
ポンプ吐出圧力を制御する第1圧力制御弁が接続され、
上記モータの両側流路間に、モータ排出側流路の圧力を
取出す切替弁と、この切替弁により取出された上記排出
側流路の圧力と上記パイロット圧とを入力し排出側流路
圧力とパイロット圧との和が設定値を越えた時に上記パ
イロット圧に反比例して排出側流路の圧力を制御する第
2圧力制御弁とが設けられていることを特徴とする建設
機械の旋回油圧回路。
1. A turning remote control valve whose pilot pressure is controlled to a secondary side by operating a lever, a directional control valve which is switched by pilot pressure from the remote control valve, and a hydraulic pump which is switched by switching the directional control valve. And a slewing hydraulic motor whose supply flow rate is controlled, the directional control valve has a bleed-off passage to the tank, and is configured to block both side flow passages of the motor in a neutral position. First pressure control for inputting the discharge pressure of the pump and the pilot pressure from the remote control valve to the discharge flow path of the pump and controlling the pump discharge pressure in proportion to the pilot pressure when the pilot pressure exceeds a set value Valve is connected,
A switching valve for extracting the pressure of the motor discharge side flow path between both side flow paths of the motor, and a discharge side flow path pressure for inputting the pressure of the discharge side flow path and the pilot pressure extracted by the switching valve. A swing hydraulic circuit for a construction machine, further comprising: a second pressure control valve that controls the pressure in the discharge side flow path in inverse proportion to the pilot pressure when the sum with the pilot pressure exceeds a set value. .
JP62003811A 1987-01-09 1987-01-09 Swing hydraulic circuit of construction machinery Expired - Lifetime JPH076525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62003811A JPH076525B2 (en) 1987-01-09 1987-01-09 Swing hydraulic circuit of construction machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62003811A JPH076525B2 (en) 1987-01-09 1987-01-09 Swing hydraulic circuit of construction machinery

Publications (2)

Publication Number Publication Date
JPS63172002A JPS63172002A (en) 1988-07-15
JPH076525B2 true JPH076525B2 (en) 1995-01-30

Family

ID=11567574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62003811A Expired - Lifetime JPH076525B2 (en) 1987-01-09 1987-01-09 Swing hydraulic circuit of construction machinery

Country Status (1)

Country Link
JP (1) JPH076525B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285643A (en) * 1990-04-02 1994-02-15 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system for civil-engineering and construction machine
IT1255170B (en) * 1991-06-27 1995-10-20 HYDRAULIC CIRCUIT FOR COMMANDING THE DIRECTION OF MOVEMENT, SPEED AND TORQUE OF OPERATION OF A USER.
JP2003106305A (en) 2001-09-28 2003-04-09 Kobelco Contstruction Machinery Ltd Gyrating control circuit
KR100621980B1 (en) * 2004-03-22 2006-09-14 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 Travel control method of construction vehicle with electronic joystick
JP6071821B2 (en) * 2013-09-18 2017-02-01 川崎重工業株式会社 Hydraulic drive device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663102A (en) * 1979-10-29 1981-05-29 Kobe Steel Ltd Turning oil-pressure circuit for oil-pressure shovel, etc.
JPS5919705A (en) * 1982-07-23 1984-02-01 Kato Seisakusho:Kk Runaway preventive device for actuater
JPS6035401A (en) * 1983-08-04 1985-02-23 樫尾 信祐 Flashing alarm device
JPS6037401A (en) * 1983-08-10 1985-02-26 Mitsubishi Heavy Ind Ltd Hydraulic circuit for inertia load

Also Published As

Publication number Publication date
JPS63172002A (en) 1988-07-15

Similar Documents

Publication Publication Date Title
KR100801930B1 (en) Load controller for engine of work vehicle
JP2744846B2 (en) Hydraulic drive and directional switching valve
US4362018A (en) Hydraulic rotation control circuit
US3932992A (en) Pressurized fluid supply power control means
JP2711894B2 (en) Variable displacement pump controller for hydraulically driven vehicles
JPH076525B2 (en) Swing hydraulic circuit of construction machinery
EP0111208A1 (en) Power transmission
KR0149708B1 (en) Apparatus of controlling rotating torque
JPH0517961B2 (en)
US5438832A (en) Variable displacement pump with adjustment responsive to drive motor speed
JPH068641B2 (en) Hydraulic circuit
JPH08200305A (en) Hydraulic circuit for driving inertial body
EP0684389A2 (en) Control device for multiple hydraulic apparatus
JPS6338506B2 (en)
JPH02494B2 (en)
JP2002021808A (en) Fluid pressure circuit for work machine
JPH06173904A (en) Rotary hydraulic circuit
JPH11117906A (en) Hydraulic driving device
JP3148722B2 (en) Hydraulic drive
JPH02213524A (en) Oil hydraulic circuit of work equipment
JPH06117406A (en) Drive circuit for fluid pressure actuator
JPH02180301A (en) Hydraulic actuator circuit having speed reduction function
JPS5843537B2 (en) Hydraulic excavator hydraulic control device
JPH0524794A (en) Oil control valve
JP3286147B2 (en) Construction machine hydraulic circuit