JPH0765038B2 - Manufacturing method of zinc silicate powder phosphor - Google Patents

Manufacturing method of zinc silicate powder phosphor

Info

Publication number
JPH0765038B2
JPH0765038B2 JP62027130A JP2713087A JPH0765038B2 JP H0765038 B2 JPH0765038 B2 JP H0765038B2 JP 62027130 A JP62027130 A JP 62027130A JP 2713087 A JP2713087 A JP 2713087A JP H0765038 B2 JPH0765038 B2 JP H0765038B2
Authority
JP
Japan
Prior art keywords
zinc
powder phosphor
silicate powder
zinc silicate
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62027130A
Other languages
Japanese (ja)
Other versions
JPS63196683A (en
Inventor
俊之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62027130A priority Critical patent/JPH0765038B2/en
Publication of JPS63196683A publication Critical patent/JPS63196683A/en
Publication of JPH0765038B2 publication Critical patent/JPH0765038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は各種ディスプレー用のブラウン管などの蛍光管
に塗布するケイ酸亜鉛粉末蛍光体の製法に関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to a method for producing a zinc silicate powder phosphor to be applied to a fluorescent tube such as a Braun tube for various displays.

(従来の技術) 従来ケイ酸亜鉛粉末蛍光体は、例えば米国特許第265632
0号によれば、二段階の方法によって得られている。ま
ず珪酸微粉末、酸化亜鉛や炭酸亜鉛などの亜鉛化合物お
よび活性剤を所定割合に混合し、1200〜1300℃の温度で
焼成してこれら各原料の反応によって活性剤がドープさ
れたケイ酸亜鉛焼結体を得る。次にこの焼結体を粉末蛍
光体として適した粒径に粉砕する。
(Prior Art) Conventional zinc silicate powder phosphors are disclosed in, for example, US Pat. No. 265632.
According to No. 0, it is obtained by a two-step method. First, fine powder of silicic acid, a zinc compound such as zinc oxide or zinc carbonate, and an activator are mixed in a predetermined ratio, and the mixture is fired at a temperature of 1200 to 1300 ° C. Get a union. Next, this sintered body is pulverized to a particle size suitable for a powder phosphor.

(発明が解決しようとする問題点) しかし、従来の方法のようにケイ酸亜鉛焼結体を粉砕し
た場合、いわゆるメカノケミカル作用により粉末表面に
欠陥が生じ、粉末蛍光体の発光効率が低下するという問
題が生じる。また粉砕によって得られた粉末蛍光体は粒
子径が一定でなく粒径分布を持つ。このように粒径分布
をもつ粉末蛍光体を蛍光管表面に均一に塗布するために
はどうしても塗布量を多くする必要がある。さらに塗布
厚さが大きくなると蛍光画面の輝度のむら、鮮明度の低
下などが発生する。
(Problems to be Solved by the Invention) However, when the zinc silicate sinter is pulverized as in the conventional method, a defect occurs on the powder surface due to a so-called mechanochemical action, and the luminous efficiency of the powder phosphor decreases. The problem arises. The powder phosphor obtained by pulverization has a non-uniform particle size and a particle size distribution. As described above, in order to uniformly apply the powder phosphor having the particle size distribution to the surface of the fluorescent tube, it is necessary to increase the coating amount. When the coating thickness is further increased, the brightness of the fluorescent screen becomes uneven, and the sharpness decreases.

また従来の方法では製造にさいして高温の焼成工程が必
要であるが、活性剤の一部が揮散するためにその賦存量
および賦存状態を正確にコントロールすることが困難で
あり、粉末蛍光体の諸特性に悪影響をおよぼす。また毒
性の高い活性剤の揮散は人体に極めて有害である。
Further, in the conventional method, a high-temperature firing step is required for production, but it is difficult to accurately control the endowment amount and endowment state because part of the activator is volatilized, and the powder phosphor is Adversely affect various characteristics of. Further, volatilization of the highly toxic active agent is extremely harmful to the human body.

本発明はこのような従来方法の欠点を解決するものであ
り、水熱反応によって粉砕工程が不要で、閉塞系でかつ
焼成方法よりも大幅に低い温度条件下でケイ酸亜鉛粉末
蛍光体を製造する方法を提供すものである。
The present invention solves the above-mentioned drawbacks of the conventional method, and does not require a pulverization step due to a hydrothermal reaction, and produces a zinc silicate powder phosphor under a temperature condition that is a closed system and is significantly lower than the firing method. It provides a way to do it.

(問題点を解決するための手段) 本発明は珪酸、亜鉛化合物、活性剤を水性媒体中に分散
させた後、撹拌または静置下において水熱反応させるこ
とを特徴とする柱状を呈するケイ酸亜鉛粉末蛍光体の製
法に関する。
(Means for Solving the Problems) The present invention is a columnar silicic acid characterized in that after silicic acid, a zinc compound, and an activator are dispersed in an aqueous medium, they are hydrothermally reacted under stirring or standing. The present invention relates to a method for producing a zinc powder phosphor.

本発明者はケイ酸亜鉛粉末蛍光体の製法について鋭意研
究を重ねた結果、珪酸、亜鉛化合物、活性剤を水性媒体
中に分散させた後、撹拌または静置下において水熱反応
させれば、粉末蛍光体として適した粒径を有する柱状の
ケイ酸亜鉛粉末蛍光体を製造できることを知見した。
As a result of extensive studies on the method for producing a zinc silicate powder phosphor, the present inventor disperses silicic acid, a zinc compound, and an activator in an aqueous medium, and then hydrothermally reacts with stirring or standing, It was discovered that a columnar zinc silicate powder phosphor having a particle size suitable as a powder phosphor can be manufactured.

本発明の製法において使用される珪酸は結晶質、非晶質
のいずれでも良く、結晶質珪酸としては石英砂、ケイ石
粉が用いられ、非晶質珪酸としてはコロイダルシリカ、
水ガラス、シリカゲル、シリカガラスが用いられる。亜
鉛化合物としては酸化亜鉛、水酸化亜鉛の多に、塩化亜
鉛、硫酸亜鉛、硝酸亜鉛、酢酸亜鉛などの可溶性塩、更
には難溶性の水酸化亜鉛が用いられる。また活性剤とし
てはマンガン化合物単独またはマンガン化合物とヒ素化
合物の両方を使用することができ、残光時間の長い蛍光
体を必要とする時には後者が使用される。マンガン化合
物は酸化マンガン、水酸化マンガンの他に、塩化マンガ
ン、硝酸マンガン、硫酸マンガンなどの可溶性塩、更に
は難溶性の水酸化マンガンのいずれでも良い。ヒ素化合
物としては三酸化二ヒ素、五酸化二ヒ素が使用される。
The silicic acid used in the production method of the present invention may be either crystalline or amorphous, and quartz sand or silica stone powder is used as the crystalline silicic acid, colloidal silica as the amorphous silicic acid,
Water glass, silica gel and silica glass are used. As the zinc compound, in addition to zinc oxide and zinc hydroxide, soluble salts such as zinc chloride, zinc sulfate, zinc nitrate and zinc acetate, as well as sparingly soluble zinc hydroxide are used. As the activator, a manganese compound alone or both a manganese compound and an arsenic compound can be used, and the latter is used when a phosphor having a long afterglow time is required. In addition to manganese oxide and manganese hydroxide, the manganese compound may be a soluble salt of manganese chloride, manganese nitrate, manganese sulfate, or the like, or a sparingly soluble manganese hydroxide. Diarsenic trioxide and diarsenic pentoxide are used as arsenic compounds.

本発明の製造方法は次のとおりである。The manufacturing method of the present invention is as follows.

まず、水性媒体中に珪酸、亜鉛化合物、活性剤を分散さ
せる。水性媒体としては水以外に、水熱反応の速度を速
めるためにアルカリ性水溶液も使用することができる。
このアルカリ性水溶液は水酸化ナトリウムや水酸化カリ
ウムなどの塩基性物質を水に溶解させるか、またはアン
モニア水を原液のままもしくは希釈することにより調整
することができる。これら原料の配合割合は、SiO2:Zn
O:MnO:Asのモル比で1:1.5〜2:0.001〜0.5:0〜0.01とな
るように調整される。分散量は、余り多すぎると原料の
消費に時間を要するので、その濃度は20重量%以下にな
るように分散させるのが好ましい。
First, silicic acid, a zinc compound, and an activator are dispersed in an aqueous medium. As the aqueous medium, in addition to water, an alkaline aqueous solution may be used to accelerate the rate of hydrothermal reaction.
This alkaline aqueous solution can be prepared by dissolving a basic substance such as sodium hydroxide or potassium hydroxide in water, or by diluting or diluting aqueous ammonia. The mixing ratio of these raw materials is SiO 2 : Zn
The molar ratio of O: MnO: As is adjusted to be 1: 1.5 to 2: 0.001 to 0.5: 0 to 0.01. If the amount of dispersion is too large, it takes time to consume the raw materials, so it is preferable to disperse the solution so that its concentration is 20% by weight or less.

次に上記の分散液を撹拌または静置下において水熱反応
させる。水熱反応は100℃ないし350℃、好ましくは180
℃ないは350℃の範囲で行なわれる。反応時の圧力は通
常飽和水蒸気による自生圧力が用いられるが、更に加圧
してもさしつかえない。反応時間は反応条件により左右
され一定しないが、通常は0.1〜30時間が適当である。
反応の進行と共に珪酸と亜鉛化合物が反応して、最終的
には活性剤を含有するケイ酸亜鉛(Zn2SiO4)が生成す
る。
Next, the above-mentioned dispersion liquid is hydrothermally reacted under stirring or standing. Hydrothermal reaction is 100 ° C to 350 ° C, preferably 180
It is carried out in the range of 350 ° C. As the pressure during the reaction, an autogenous pressure by saturated steam is usually used, but further pressure may be applied. The reaction time varies depending on the reaction conditions and is not constant, but 0.1 to 30 hours is usually suitable.
As the reaction progresses, silicic acid reacts with the zinc compound, and finally zinc silicate (Zn 2 SiO 4 ) containing an activator is produced.

このようにして得られるケイ酸亜鉛粉末蛍光体は、いわ
ゆる自形で粒径が整っている柱状結晶であり、その平均
直径は0.05〜5ミクロン、平均長さは0.1〜30ミクロン
である。
The zinc silicate powder phosphor thus obtained is a so-called columnar crystal having a regular grain size and an average diameter of 0.05 to 5 μm and an average length of 0.1 to 30 μm.

以下実施例により説明するが、本発明は実施例により限
定されない。
Examples will be described below, but the present invention is not limited to the examples.

(実施例) 実施例1 水600mlに石英砂1.26g、酸化亜鉛3.771g、酸化マンガン
0.030gを分散させた後、圧力容器中300℃で5時間撹拌
しながら水熱反応を行った。水熱反応後、生成物をろ
集、水洗し、平均直径1ミクロン、平均長さ3ミクロン
の柱状を呈するケイ酸亜鉛粉末蛍光体を得た。得られた
ケイ酸亜鉛粉末蛍光体の走査型電子顕微鏡写真(2000
倍)を第1図に示す。本製法で得られたケイ酸亜鉛粉末
蛍光体は微細結晶であり、かつ粒径が整っている。
(Example) Example 1 1.26 g of quartz sand, 3.771 g of zinc oxide, and manganese oxide in 600 ml of water
After dispersing 0.030 g, hydrothermal reaction was carried out while stirring in a pressure vessel at 300 ° C. for 5 hours. After the hydrothermal reaction, the product was collected by filtration and washed with water to obtain a columnar zinc silicate powder phosphor having an average diameter of 1 micron and an average length of 3 microns. Scanning electron micrograph of the obtained zinc silicate powder phosphor (2000
1) is shown in FIG. The zinc silicate powder phosphor obtained by this manufacturing method is a fine crystal and has a regular grain size.

実施例2〜5および比較例1 水600mlに珪酸、亜鉛化合物、活性剤を所定量分散させ
た後、圧力容器中で所定条件で水熱反応を行った。各例
の反応条件および結果を第1表に示す。なお、比較例1
は反応温度が80℃であり、水熱反応を行なわなかった例
である。
Examples 2 to 5 and Comparative Example 1 After silicic acid, a zinc compound and an activator were dispersed in a predetermined amount in 600 ml of water, a hydrothermal reaction was carried out under predetermined conditions in a pressure vessel. The reaction conditions and results of each example are shown in Table 1. Comparative Example 1
Is an example in which the reaction temperature was 80 ° C. and the hydrothermal reaction was not performed.

(発明の効果) 本発明は各種ディスプレー用のブラウン管などの蛍光管
に塗布するケイ酸亜鉛粉末蛍光体の製法を提供するもの
である。
(Effect of the Invention) The present invention provides a method for producing a zinc silicate powder phosphor to be applied to a fluorescent tube such as a cathode ray tube for various displays.

本発明の製法で得られる柱状を呈するケイ酸亜鉛粉末蛍
光体は、粉末蛍光体として適した粒径を有し、しかも分
散性に優れているため、この後に粉砕を行う必要がな
い。従って粉砕によって生じる蛍光体表面の欠陥の発生
はなく輝度が高い。また粒径が整っているのでブラウン
管への塗布性に優れ、輝度のむらが少ない。
The columnar zinc silicate powder phosphor obtained by the production method of the present invention has a particle size suitable as a powder phosphor and is excellent in dispersibility, so that it is not necessary to perform pulverization thereafter. Therefore, there is no defect on the surface of the phosphor caused by the pulverization, and the brightness is high. Moreover, since the particle size is uniform, the coatability on a cathode ray tube is excellent and the uneven brightness is small.

更に、本発明の製法では密閉された容器内、しかも溶液
中で反応が進行するのでヒ素が大気中に揮散する懸念は
なく、所定量を正確にドープすることができる。
Further, in the production method of the present invention, since the reaction proceeds in a solution in a closed container, there is no concern that arsenic will volatilize into the atmosphere, and a predetermined amount can be accurately doped.

【図面の簡単な説明】[Brief description of drawings]

第1図は、実例1で得たケイ酸亜鉛粉末蛍光体の電子顕
微鏡写真である。
FIG. 1 is an electron micrograph of the zinc silicate powder phosphor obtained in Example 1.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】珪酸、亜鉛化合物、活性剤を水性媒体中に
分散させた後、撹拌または静置下において水熱反応させ
ることを特徴とする柱状を呈するケイ酸亜鉛粉末蛍光体
の製法。
1. A process for producing a zinc silicate powder phosphor having a columnar shape, characterized in that silicic acid, a zinc compound and an activator are dispersed in an aqueous medium and then hydrothermally reacted with stirring or standing.
【請求項2】水熱反応を180℃ないし350℃の温度で行う
特許請求の範囲第(1)項記載の柱状を呈するケイ酸亜
鉛粉末蛍光体の製法。
2. A process for producing a columnar zinc silicate powder phosphor according to claim 1, wherein the hydrothermal reaction is carried out at a temperature of 180 ° C. to 350 ° C.
【請求項3】活性剤としてマンガン化合物単独またはマ
ンガン化合物とヒ素化合物の両方を使用することを特徴
とする特許請求の範囲第(1)項記載の柱状を呈するケ
イ酸亜鉛粉末蛍光体の製法。
3. A method for producing a columnar zinc silicate powder phosphor according to claim (1), wherein a manganese compound alone or both a manganese compound and an arsenic compound are used as an activator.
JP62027130A 1987-02-10 1987-02-10 Manufacturing method of zinc silicate powder phosphor Expired - Fee Related JPH0765038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62027130A JPH0765038B2 (en) 1987-02-10 1987-02-10 Manufacturing method of zinc silicate powder phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62027130A JPH0765038B2 (en) 1987-02-10 1987-02-10 Manufacturing method of zinc silicate powder phosphor

Publications (2)

Publication Number Publication Date
JPS63196683A JPS63196683A (en) 1988-08-15
JPH0765038B2 true JPH0765038B2 (en) 1995-07-12

Family

ID=12212470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62027130A Expired - Fee Related JPH0765038B2 (en) 1987-02-10 1987-02-10 Manufacturing method of zinc silicate powder phosphor

Country Status (1)

Country Link
JP (1) JPH0765038B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087289A (en) * 2014-06-30 2014-10-08 中国石油大学(华东) Method of synthesizing nano zinc silicate light emitting material by using waste silicon powder by hydrothermal method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50142482A (en) * 1974-04-01 1975-11-17
JPS5221289A (en) * 1975-08-13 1977-02-17 Toyo Ink Mfg Co Ltd Element of hot fluorescent dosagemeter and its manufacturing process
JPS54145386A (en) * 1978-05-02 1979-11-13 Matsushita Electric Ind Co Ltd Production of zinc silicate phosphor
JPS587478A (en) * 1981-06-30 1983-01-17 インタ−ナシヨナル・ビジネス・マシ−ンズ・コ−ポレ−シヨン Fluorescent body and manufacture
JPS58151322A (en) * 1982-03-05 1983-09-08 Kasei Optonix Co Ltd Zinc silicate phosphor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50142482A (en) * 1974-04-01 1975-11-17
JPS5221289A (en) * 1975-08-13 1977-02-17 Toyo Ink Mfg Co Ltd Element of hot fluorescent dosagemeter and its manufacturing process
JPS54145386A (en) * 1978-05-02 1979-11-13 Matsushita Electric Ind Co Ltd Production of zinc silicate phosphor
JPS587478A (en) * 1981-06-30 1983-01-17 インタ−ナシヨナル・ビジネス・マシ−ンズ・コ−ポレ−シヨン Fluorescent body and manufacture
JPS58151322A (en) * 1982-03-05 1983-09-08 Kasei Optonix Co Ltd Zinc silicate phosphor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087289A (en) * 2014-06-30 2014-10-08 中国石油大学(华东) Method of synthesizing nano zinc silicate light emitting material by using waste silicon powder by hydrothermal method
CN104087289B (en) * 2014-06-30 2016-01-20 中国石油大学(华东) A kind of method utilizing waste silicon powder water heat transfer nanometer zinc silicate luminescent material

Also Published As

Publication number Publication date
JPS63196683A (en) 1988-08-15

Similar Documents

Publication Publication Date Title
EP1036130B1 (en) Method of preparing high brightness, shorter persistence zinc orthosilicate phosphor
KR100293330B1 (en) A preparing method for green fluorescent body based orthosilicate
JPH11268906A (en) Rare earth phosphate and product obtained from the same
JPH07315816A (en) Rare earth element salt particle of phosphoric acid and its production
JP5213869B2 (en) Method for producing rare earth-containing phosphate
CN114162847B (en) Preparation method of gadolinium oxysulfide powder
JPH0826307B2 (en) Manufacturing method of zinc silicate fluorescent powder
JP2005054046A (en) Method for producing fluorophor
JPH04187517A (en) Production of rare earth element oxide
JPH09183620A (en) Bismuth oxycarbonate powder and its production
JPH0765038B2 (en) Manufacturing method of zinc silicate powder phosphor
CN114804059B (en) Fluorapatite quasi-equiaxial nanocrystalline and preparation method thereof
JP2002194347A (en) Fluorescent substance, method for producing the same and luminous device
CN103923658A (en) Metal particle-doped hollow structure orthophosphate luminescence material and preparation method thereof
JPH1060428A (en) Barium fluoride halide fluorescent powder doped with rare-earth metal and its production
GB2032451A (en) Process for Preparing a Pigment-carrying Red-luminescent Phosphor
US3717584A (en) Method for preparing rare earth oxide phosphors
KR100419863B1 (en) Preparing method for spherical red phosphor based on borates
JP3551428B2 (en) Method for producing rare earth element-containing BaFI prismatic crystal
CN110184058B (en) Preparation method of gadolinium oxide nanoparticles
JPS62226821A (en) Production of glass
JPH0351644B2 (en)
JP3367359B2 (en) Phosphor and its manufacturing method
JP2003055653A (en) Method of manufacturing spherical phosphor
KR100416019B1 (en) Manufacturing method of fluorescent

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees