JPH0764659A - Inverter control system for driving solar battery - Google Patents

Inverter control system for driving solar battery

Info

Publication number
JPH0764659A
JPH0764659A JP5213032A JP21303293A JPH0764659A JP H0764659 A JPH0764659 A JP H0764659A JP 5213032 A JP5213032 A JP 5213032A JP 21303293 A JP21303293 A JP 21303293A JP H0764659 A JPH0764659 A JP H0764659A
Authority
JP
Japan
Prior art keywords
voltage
vsh
output
vmax
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5213032A
Other languages
Japanese (ja)
Inventor
Kunio Asai
浅井邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP5213032A priority Critical patent/JPH0764659A/en
Publication of JPH0764659A publication Critical patent/JPH0764659A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To attain the appropriate control of an inverter even if the voltage fluctuation is caused at the maximum efficiency point by performing the maximum power tracking control or the constant voltage control through the comparison carried out among the maximum efficiency voltage of a solar battery, the system down voltage and the threshold voltage. CONSTITUTION:The output of a solar battery 1 is converted into the AC output by an inverter 3, and an induction motor 4 which revolves at a speed proportional to the frequency of the AC output is driven. Then a device 5 to be driven is actually driven. In such a system, the threshold voltage Vsh is set at a level lower than the voltage Vmax set at the maximum efficiency point at a normal temperature and higher than the system down voltage Voff. In a normal temperature range, Voff<Vsh<Vmax is kept. Therefore the output frequency of an inverter 3 is controlled in a accordance with a fact whether the output voltage of the battery 1 is higher or lower than the voltage Vsh. Thus the maximum power tracking control is carried out. Meanwhile the constant voltage control is carried out when Vmax<Vsh is satisfied by the rise of temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蓄電池を介在させずに
太陽電池により被駆動装置を駆動する駆動方式における
インバータ制御方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverter control system in a drive system in which a driven device is driven by a solar cell without interposing a storage battery.

【0002】[0002]

【従来の技術】太陽電池でポンプ等を駆動する場合、イ
ンバータ制御で太陽電池の直流出力を交流に変換して3
相誘導電動機を駆動制御しているが、通常、交流出力は
ポンプ、モータの定格に合わせて一定周波数の出力とし
ている。ポンプ負荷は一般に回転数によって決まるが、
一定周波数でモータを回転している場合にはポンプ回転
数もほぼ一定となり、消費電力もほぼ一定となる。一方
太陽電池は日照により出力が大きく変動するので、低日
照時でも決められた消費電力を得るためには、太陽電池
を余裕をもって設置する必要があり、エネルギ利用効率
の面で不利になり、また日照量が多い場合にはせっかく
の発生エネルギを無駄にしてしまうことにもなる。この
ため太陽電池の最大出力を常にモニターしこの最大出力
に合わせてモータ回転数を制御してエネルギを有効に利
用する方法が提案されている。
2. Description of the Related Art When a pump or the like is driven by a solar cell, the DC output of the solar cell is converted into an alternating current by inverter control.
Although the phase induction motor is drive-controlled, the AC output is usually a constant frequency output according to the ratings of the pump and motor. Pump load is generally determined by the number of revolutions,
When the motor is rotating at a constant frequency, the pump rotation speed becomes almost constant, and the power consumption becomes almost constant. On the other hand, the output of a solar cell fluctuates greatly depending on the sunshine, so it is necessary to install the solar cell with a margin in order to obtain the specified power consumption even during low sunshine, which is disadvantageous in terms of energy use efficiency. If the amount of sunlight is large, the generated energy will be wasted. Therefore, a method has been proposed in which the maximum output of the solar cell is constantly monitored, and the motor speed is controlled according to the maximum output to effectively use the energy.

【0003】ところで、通常、電力をモニターするため
には、電圧計、電流計を設けて測定するが、通常のイン
バータでは電圧はモニターできるようになっているもの
の電流計は付いていないために、別途外部に電流計を設
ける必要がある。このように電力をモニターするために
電力の測定機構、これに伴う制御機構が複雑になるなど
の問題があった。
By the way, normally, in order to monitor the electric power, a voltmeter and an ammeter are provided to measure the voltage. However, although a normal inverter can monitor the voltage, it does not have an ammeter. It is necessary to install a separate ammeter. As described above, there is a problem in that the power measuring mechanism for monitoring the power and the control mechanism associated therewith are complicated.

【0004】そこで、本出願人は、電流を測定すること
なく電圧のみを測定し、簡単な構成で太陽電池を最大効
率点付近で制御することができる太陽電池駆動における
インバータ制御方式を既に提案している(特願平3ー6
6860)。この既提案の内容について概略説明する。
図2は既提案の全体構成を示す図、図3は太陽電池の出
力特性を示す図である。図中、1は太陽電池、2はCP
U、3はインバータ、4は3相誘導モータ、5はポン
プ、6はROM、7はRAMである。
Therefore, the present applicant has already proposed an inverter control system in a solar cell drive which can measure only a voltage without measuring a current and can control a solar cell near a maximum efficiency point with a simple structure. It is (patent application flat 3-6
6860). The content of this already proposed will be outlined.
FIG. 2 is a diagram showing the entire structure of the proposed structure, and FIG. 3 is a diagram showing the output characteristics of the solar cell. In the figure, 1 is a solar cell, 2 is a CP
U, 3 are inverters, 4 are 3-phase induction motors, 5 are pumps, 6 is ROM, and 7 is RAM.

【0005】太陽電池は、図3に示すような出力特性を
示し、日照量に応じてV1(日照量多)、V2(日照量
減少)のように変化し、それに応じて最大出力点(最大
効率点)もM1、M2のように変化する。いま、特性V
1のような日照の条件で図2に示すような構成でインバ
ータ制御によりポンプ駆動する場合、インバータ3が動
作していないときには電流が流れないため太陽電池1の
出力電圧(動作点)は図3のVocとなる。この状態で
ROM6の制御プログラムによりCPU2からインバー
タに対して周波数指令を出し、インバータ3により誘導
モータ4を介してポンプ5の回転数を所定幅づつ段階的
に増加させると、動作点はV1曲線上を徐々に上へ移動
し、太陽電池からインバータ3への入力電力が増加して
最大効率点付近に到達する。この状態では太陽電池から
の出力が有効に消費されることになり、日照が一定であ
れば安定状態である。この最大効率点においてさらに所
定幅だけ回転数を増加させようとすると、それ以上の電
力を太陽電池から取り出せないために、動作点は急激に
Isc点に向かって移動し、電圧低下によりシステムは
ダウンしてしまう。
The solar cell exhibits output characteristics as shown in FIG. 3, and changes according to the amount of sunshine such as V1 (higher sunshine amount) and V2 (decrease of sunshine amount), and accordingly the maximum output point (maximum The efficiency point) also changes like M1 and M2. Now, the characteristic V
When the pump is driven by the inverter control in the configuration as shown in FIG. 2 under the sunshine condition as shown in FIG. 1, the output voltage (operating point) of the solar cell 1 is as shown in FIG. Voc. In this state, when the CPU 2 issues a frequency command to the inverter by the control program of the ROM 6 and the inverter 3 causes the rotational speed of the pump 5 to increase stepwise by a predetermined width via the induction motor 4, the operating point is on the V1 curve. Is gradually moved upward, and the input power from the solar cell to the inverter 3 increases to reach the vicinity of the maximum efficiency point. In this state, the output from the solar cell is effectively consumed, and it is stable if the sunshine is constant. At this maximum efficiency point, if an attempt is made to further increase the rotational speed by a predetermined width, no more electric power can be extracted from the solar cell, so the operating point moves rapidly toward the Isc point, and the system goes down due to the voltage drop. Resulting in.

【0006】そこで、最大効率点の電圧Vmaxより小
さく、システムがダウンする電圧Voffより大きい、
あるしきい値電圧Vshを設定し、動作電圧Vopを常
に観測しながら徐々に回転数を増加させ、VopがVs
hを下まわった時すぐさま回転数を落とすようにCPU
2によりインバータの制御を行う。
Therefore, the voltage is lower than the voltage Vmax at the maximum efficiency point and higher than the voltage Voff at which the system goes down.
A certain threshold voltage Vsh is set, the rotation speed is gradually increased while always observing the operating voltage Vop, and Vop is Vs.
CPU should be set to lower the rotation speed immediately when h is lowered.
2 controls the inverter.

【0007】即ち、回転数を徐々に増加していって動作
点VopがVmax近傍にいる状態で所定幅Δfだけ周
波数を増加させると、急激にVopはVshを下回るの
で直ちにΔfだけ周波数を下げればVopはVmax近
傍に戻ることになる。この状態は安定であるので、周波
数を下げる場合に対して長い時間インターバルで周波数
を上げるようにする。本来、安定な状態であるのに周波
数を上げるのは日照条件は絶えず変化しているので、そ
の点がいつまでも最大効率点ではないからである。この
ように、VopがVshを下回ったら直ちに周波数を下
げ、VopがVshより大きい場合には長い時間インタ
ーバルで周波数を上げることにより、ほぼ最大効率点付
近でポンプ駆動することが可能となる。
That is, when the frequency is increased by a predetermined width Δf while the operating point Vop is in the vicinity of Vmax while the rotational speed is gradually increased, Vop suddenly falls below Vsh, so immediately decrease the frequency by Δf. Vop will return to near Vmax. Since this state is stable, the frequency is raised at a long time interval as compared with the case where the frequency is lowered. Originally, the reason for increasing the frequency even though it is in a stable state is that the sunshine conditions are constantly changing, and that point is not the maximum efficiency point forever. As described above, when Vop falls below Vsh, the frequency is immediately lowered, and when Vop is larger than Vsh, the frequency is raised at a long time interval, whereby the pump can be driven near the maximum efficiency point.

【0008】[0008]

【発明が解決しようとする課題】ところで、既提案の方
式において、最大効率点の電圧Vmaxは温度に依存し
て変化し、高温ではVmaxとシステムダウンを起こす
電圧Voffとは、 Voff≒Vmax となることもあり、この場合しきい値電圧Vshの設定
が困難となり、また、設定したとしても制御が極めて不
安定になってしまう。本発明は上記課題を解決するため
のもので、最大効率点の電圧Vmaxの変動が生じても
適切に制御することができる太陽電池駆動におけるイン
バータ制御方式を提供することを目的とする。
By the way, in the proposed method, the voltage Vmax at the maximum efficiency point changes depending on the temperature, and at a high temperature, Vmax and the voltage Voff that causes system down are Voff≈Vmax. In some cases, it becomes difficult to set the threshold voltage Vsh, and even if it is set, the control becomes extremely unstable. The present invention is intended to solve the above problems, and an object of the present invention is to provide an inverter control system in a solar cell drive capable of performing appropriate control even if the voltage Vmax at the maximum efficiency point fluctuates.

【0009】[0009]

【課題を解決するための手段】本発明は、太陽電池出力
をインバータにより交流出力に変換し、該交流出力の周
波数に比例した速度で回転する誘導電動機を駆動して被
駆動装置を駆動するようにした駆動方式において、太陽
電池の最大効率電圧をVmax、システムがダウンする
電圧をVoff、しきい値電圧をVshとしたとき、 Voff<Vsh<Vmax のときは最大電力追尾制御を行ない、 Vmax<Vsh のときは定電圧制御を行うことを特徴とする。
According to the present invention, a solar cell output is converted into an AC output by an inverter, and an induction motor rotating at a speed proportional to the frequency of the AC output is driven to drive a driven device. In the driving method described above, when the maximum efficiency voltage of the solar cell is Vmax, the voltage at which the system goes down is Voff, and the threshold voltage is Vsh, maximum power tracking control is performed when Voff <Vsh <Vmax, and Vmax < It is characterized in that constant voltage control is performed when Vsh.

【0010】[0010]

【作用】本発明は、平常温度、例えば25℃における最
大効率点の電圧Vmaxに対して、これよりも小さく、
かつシステムがダウンする電圧Voffよりも大きいし
きい値電圧Vshを設定する。平常温度範囲の状態では
Voff<Vsh<Vmaxが維持されているので、太
陽電池出力電圧がしきい値電圧Vshよりも大きいか小
さいかに応じてインバータの出力周波数を制御して最大
電力追尾制御を行なう。一方、温度上昇により、例えば
70℃のような高温になり、Voff<Vmax<Vs
hになった場合には、動作点VopがVshになるよう
に制御する。即ち、Vop>Vshのときは、インバー
タの出力周波数を上げ、Vop<Vshのときはインバ
ータの出力周波数を下げる。このような制御により、平
常温度では簡単な構成でほぼ最大効率点付近での運転を
行うことができ、また高温になってVmaxが低下して
も安定した運転を行うことが可能である。
The present invention is smaller than the voltage Vmax at the maximum efficiency point at normal temperature, for example, 25 ° C.
A threshold voltage Vsh that is higher than the voltage Voff at which the system goes down is set. Since Voff <Vsh <Vmax is maintained in the state of the normal temperature range, the output frequency of the inverter is controlled according to whether the solar cell output voltage is higher or lower than the threshold voltage Vsh to perform maximum power tracking control. To do. On the other hand, the temperature rises to a high temperature such as 70 ° C., and Voff <Vmax <Vs
When it becomes h, the operating point Vop is controlled so as to become Vsh. That is, when Vop> Vsh, the output frequency of the inverter is raised, and when Vop <Vsh, the output frequency of the inverter is lowered. By such control, it is possible to perform operation near the maximum efficiency point with a simple structure at normal temperature, and to perform stable operation even if Vmax decreases due to high temperature.

【0011】[0011]

【実施例】以下、本発明の実施例を説明する。本発明の
システム構成は図2に示したものと同じであるが、CP
Uによる制御方法が相違しているので、以下では制御方
法についてのみ説明する。図1は本発明の制御方法を説
明するためのフローを示す図である。25℃程度の平常
の温度における最大効率点の電圧Vmaxより小さく、
システムがダウンする電圧Voffより大きい、あるし
きい値電圧Vshを設定する。
EXAMPLES Examples of the present invention will be described below. The system configuration of the present invention is the same as that shown in FIG.
Since the control method by U is different, only the control method will be described below. FIG. 1 is a diagram showing a flow for explaining a control method of the present invention. Smaller than the voltage Vmax at the maximum efficiency point at a normal temperature of about 25 ° C,
Set a certain threshold voltage Vsh which is higher than the voltage Voff at which the system goes down.

【0012】Voff<Vsh<Vmaxが維持されて
いる状態では、動作電圧Vopを常に観測して図3の場
合と同様の方法でインバータの出力周波数を制御して最
大電力追尾の制御行う。
In the state where Voff <Vsh <Vmax is maintained, the operating voltage Vop is constantly observed and the output frequency of the inverter is controlled in the same manner as in the case of FIG. 3 to control the maximum power tracking.

【0013】一方、高温状態(例えば70℃程度)にな
り、Vmax<Vshになったときに同様の制御を行っ
ているとシステムダウンを起こしてしまう。そこで、V
max<Vshが検出されたら、直ちに太陽電池の能力
範囲内の一定周波数に制御を切り換え、定電圧制御を行
う。このような制御により、平常温度では図3で説明し
たと同様な運転ができ、高温状態では定電圧によるそれ
なりの運転が可能となる。
On the other hand, if the same control is performed when the temperature becomes high (for example, about 70 ° C.) and Vmax <Vsh, the system goes down. So V
When max <Vsh is detected, the control is immediately switched to a constant frequency within the capacity range of the solar cell, and constant voltage control is performed. By such control, the operation similar to that described with reference to FIG. 3 can be performed at the normal temperature, and the appropriate operation by the constant voltage can be performed at the high temperature state.

【0014】以上の制御について、図1により説明する
と、CPUは太陽電池出力電圧を読み込み、設定したし
きい値電圧VshとVmaxを比較し、Vsh<Vma
xのときにはVopがVshより大きいか否か判断し
(ステップ〜)、VopがVshより大きい場合に
はT0時間経過するのを待って(長い時間インターバル
で)周波数をΔfだけ増加させ(ステップ、)、V
opがVshより小さい場合には直ちに周波数をΔfだ
け減少させ()てその値をインバータに対する周波数
指令値として出力し、以後このプロセスを繰り返して制
御を行う。一方、、Vmax<Vshのときには、Vo
pがVshになるように定電圧制御を行う。このため、
Vop>Vshのときは、周波数をΔfだけ増加させ
(ステップ、)、VopがVshより小さい場合に
は周波数をΔfだけ減少させる(ステップ)。このよ
うに、VmaxがVshより小さいときと大きいときの
制御の差はインターバルの差だけであり、基本的にVm
axがVshより小さいときの制御をVmaxがVsh
より大きいときの制御で代用することも可能である。こ
の場合、定電圧制御の時間応答がやや長くなるが、ほぼ
定電圧動作が可能である。
The above control will be described with reference to FIG. 1. The CPU reads the solar cell output voltage, compares the set threshold voltages Vsh and Vmax, and Vsh <Vma
When it is x, it is judged whether Vop is larger than Vsh (step ~), and when Vop is larger than Vsh, wait for T0 time to elapse (in a long time interval) and increase the frequency by Δf (step,). , V
When op is smaller than Vsh, the frequency is immediately decreased by Δf (), and the value is output as the frequency command value for the inverter. Thereafter, this process is repeated to perform control. On the other hand, when Vmax <Vsh, Vo
Constant voltage control is performed so that p becomes Vsh. For this reason,
When Vop> Vsh, the frequency is increased by Δf (step), and when Vop is smaller than Vsh, the frequency is decreased by Δf (step). As described above, the difference in control between when Vmax is smaller than Vsh and when Vmax is larger is only the difference in the interval, and basically Vm
Control when Vmax is Vsh when ax is smaller than Vsh
It is also possible to substitute by the control at the time of larger. In this case, the time response of the constant voltage control becomes slightly longer, but almost constant voltage operation is possible.

【0015】[0015]

【発明の効果】以上のように本発明によれば、しきい値
電圧の設定範囲が拡がって設定容易となり、平常温度で
は簡単な構成でほぼ最大効率点付近での運転を行うこと
ができ、また高温になってVmaxが低下しても所定の
電圧での運転を行うことが可能となる。
As described above, according to the present invention, the setting range of the threshold voltage is widened to facilitate the setting, and it is possible to operate near the maximum efficiency point with a simple structure at normal temperature. Further, even if the temperature becomes high and Vmax decreases, it becomes possible to operate at a predetermined voltage.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の制御フローを説明するための図であ
る。
FIG. 1 is a diagram for explaining a control flow of the present invention.

【図2】 制御方式をポンプ駆動に適用した場合の全体
構成図である。
FIG. 2 is an overall configuration diagram when a control system is applied to pump driving.

【図3】 太陽電池の出力特性を示す図である。FIG. 3 is a diagram showing output characteristics of a solar cell.

【符号の説明】[Explanation of symbols]

1…太陽電池、2…CPU、3…インバータ、4…3相
誘導モータ、5…ポンプ。
1 ... Solar cell, 2 ... CPU, 3 ... inverter, 4 ... 3-phase induction motor, 5 ... pump.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池出力をインバータにより交流出
力に変換し、該交流出力の周波数に比例した速度で回転
する誘導電動機を駆動して被駆動装置を駆動するように
した駆動方式において、太陽電池の最大効率電圧をVm
ax、システムがダウンする電圧をVoff、しきい値
電圧をVshとしたとき、 Voff<Vsh<Vmax のときは最大電力追尾制御を行ない、 Vmax<Vsh のときは定電圧制御を行うことを特徴とする太陽電池駆
動におけるインバータ制御方式。
1. A drive system in which an output of a solar cell is converted into an AC output by an inverter, and an induction motor rotating at a speed proportional to the frequency of the AC output is driven to drive a driven device. Maximum efficiency voltage of Vm
ax, the voltage at which the system goes down is Voff, and the threshold voltage is Vsh. When Voff <Vsh <Vmax, maximum power tracking control is performed, and when Vmax <Vsh, constant voltage control is performed. Inverter control method for solar cell drive.
JP5213032A 1993-08-27 1993-08-27 Inverter control system for driving solar battery Pending JPH0764659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5213032A JPH0764659A (en) 1993-08-27 1993-08-27 Inverter control system for driving solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5213032A JPH0764659A (en) 1993-08-27 1993-08-27 Inverter control system for driving solar battery

Publications (1)

Publication Number Publication Date
JPH0764659A true JPH0764659A (en) 1995-03-10

Family

ID=16632385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5213032A Pending JPH0764659A (en) 1993-08-27 1993-08-27 Inverter control system for driving solar battery

Country Status (1)

Country Link
JP (1) JPH0764659A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104079232A (en) * 2014-07-14 2014-10-01 哈尔滨工业大学 Single-stage type photovoltaic water pump control system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104079232A (en) * 2014-07-14 2014-10-01 哈尔滨工业大学 Single-stage type photovoltaic water pump control system and method

Similar Documents

Publication Publication Date Title
US7126294B2 (en) Method and device for controlling photovoltaic inverter, and feed water device
US7148650B1 (en) Maximum power point motor control
KR100260147B1 (en) Cruise control system and method for solar car
JP3540152B2 (en) Engine driven generator
US6563288B2 (en) Control device for fuel cell powered vehicle
CN111817338B (en) Black-start control method and system for wind-solar new energy power station
JPS6285312A (en) Control method for maximum power of battery power source
JP2000047741A (en) Power convertor for wind power generation and its control method
JPH0764659A (en) Inverter control system for driving solar battery
JP3027891B2 (en) Control method of variable speed inverter
JPH0895655A (en) Inverter control system for drive of solar battery
CN109713978B (en) Processing method and device for power-down shutdown of variable frequency compressor
JPH05265582A (en) Inverter control system in solar battery driving
JP5731574B2 (en) Inverter control device
KR102216667B1 (en) Apparatus and Method for controlling power source abnormality of motor
JPH09179643A (en) Power converter for photovoltatic power generation
JPH08221143A (en) Maximum electric power follow-up control method for solar light power generation system
JPH10207560A (en) Solar light power generation system
JPH08331889A (en) Method for driving motor using distributed clean energy power supply
JPH11282554A (en) Solar power generator
JP2000060179A (en) Method for controlling solar light inverter for driving pump
JP2967667B2 (en) Inverter for photovoltaic power generation
JP2548913B2 (en) Pump device
KR101939536B1 (en) Energy Storage System adaptable capacity to environment of load
JP2000270592A (en) Rotation controller of ac motor using solar cell as power supply