JPH0764618B2 - Method for forming superconducting ceramic thick film - Google Patents

Method for forming superconducting ceramic thick film

Info

Publication number
JPH0764618B2
JPH0764618B2 JP62231393A JP23139387A JPH0764618B2 JP H0764618 B2 JPH0764618 B2 JP H0764618B2 JP 62231393 A JP62231393 A JP 62231393A JP 23139387 A JP23139387 A JP 23139387A JP H0764618 B2 JPH0764618 B2 JP H0764618B2
Authority
JP
Japan
Prior art keywords
thick film
superconducting
superconducting ceramic
phase
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62231393A
Other languages
Japanese (ja)
Other versions
JPS6472958A (en
Inventor
紘一郎 高橋
周一 下村
Original Assignee
科学技術庁無機材質研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科学技術庁無機材質研究所長 filed Critical 科学技術庁無機材質研究所長
Priority to JP62231393A priority Critical patent/JPH0764618B2/en
Publication of JPS6472958A publication Critical patent/JPS6472958A/en
Publication of JPH0764618B2 publication Critical patent/JPH0764618B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 (技術分野) この発明は、超電導性セラミック厚膜の形成方法に関す
るものである。さらに詳しくは、この発明は、酸素含有
量が多く、超電導特性に優れ、かつ高密度のセラミック
厚膜の形成方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for forming a superconducting ceramic thick film. More specifically, the present invention relates to a method for forming a ceramic thick film having a high oxygen content, excellent superconducting properties, and high density.

(背景技術) 従来、超電導材料は、Nb3Ge、Nb−Al−Ge合金などの金
属に限られていた。これらは、高密度かつ延伸性に富ん
でいるが、臨界温度(Tc)が23K以下と低く、高価な液
体ヘリウムを冷却材に使用せざるを得ず、これらを用い
た超電導機械およびセンサーは、大型かつ高価であり、
経済性に問題があった。最近、Tcが液体窒素温度以上の
超電導セラミックスが発見され、より安価な超電導機
械、装置、センサー等が、開発される見通しが出てき
た。
(Background Art) Conventionally, superconducting materials have been limited to metals such as Nb 3 Ge and Nb-Al-Ge alloys. Although they are high-density and highly stretchable, they have a low critical temperature (T c ) of 23 K or less and must use expensive liquid helium as a coolant, so superconducting machines and sensors using them cannot be used. Large and expensive,
There was a problem with the economy. Recently, superconducting ceramics with T c higher than the liquid nitrogen temperature were discovered, and it is expected that cheaper superconducting machines, devices, sensors, etc. will be developed.

省エネルギーおよび高感度センサーをめざしての高温超
電導材料の開発が活発におこなわれてもいる。前者のた
めに、強電の分野において、電力貯蔵用線輪、磁気浮上
用物体などが重要である。一方、弱電の方面では、超高
速コンピューター用素子、赤外線/ミリ波検出素子、電
子回路用低熱損失配線などが注目されている。
High-temperature superconducting materials are being actively developed for energy saving and high sensitivity sensors. For the former, electric power storage coils, magnetic levitation objects, etc. are important in the field of heavy electric power. On the other hand, in the field of weak electric current, elements for ultra-high speed computers, infrared / millimeter wave detection elements, low heat loss wiring for electronic circuits, etc. have been receiving attention.

しかしながら、これまでに提案されているこれらの超電
導セラミック材料は、延伸性に乏しく、高密度化が困難
であり、電流密度が低いなどの欠点がある。
However, these superconducting ceramic materials proposed so far have drawbacks such as poor drawability, difficulty in high density, and low current density.

また、さらに、最近の超電導セラミックスにおいて、固
相反応によるものは、気孔率が20−30%もあり高密度焼
結体は得られておらず高臨界電流を得ることは難しい。
In addition, in recent superconducting ceramics, due to the solid-phase reaction, the porosity is as high as 20-30%, and a high-density sintered body has not been obtained, and it is difficult to obtain a high critical current.

この発明の発明者は、以上の通りの課題を克服するため
に鋭意検討を進め、ここにペロブスカイト型構造を有す
る超電導性セラミック厚膜の形成について新しい方法を
完成した。すなわち、まず超電導性セラミック材料につ
いてみると、その材料としての用件は、1)高臨界温度
化、2)高臨界電流化、3)高臨界磁場化、4)高密度
化、5)厚膜/薄膜の均一化または平滑化である。特
に、強電の分野では、大電流を流すために積層化が必要
であり、弱電の分野では、熱容量を小さくすることと高
密度化が大切である。それには、高臨界温度、高臨界電
流、高臨界磁場を兼ね備えた高密度材料が必要である。
これが開発されれば、高速コンピューターおよび高感度
センサー用の素子としても使用可能である。
The inventor of the present invention has made extensive studies in order to overcome the problems described above, and has completed a new method for forming a superconducting ceramic thick film having a perovskite structure. That is, looking at the superconducting ceramic material, the requirements for the material are 1) high critical temperature, 2) high critical current, 3) high critical magnetic field, 4) high density, and 5) thick film. / To make the thin film uniform or smooth. In particular, in the field of strong electric current, it is necessary to stack the layers in order to pass a large current, and in the field of weak electric current, it is important to reduce the heat capacity and increase the density. For that purpose, a high density material having a high critical temperature, a high critical current and a high critical magnetic field is required.
Once developed, it can also be used as a device for high speed computers and sensitive sensors.

この発明の発明者は、このような超電導性セラミックス
材料について、特に銅を含む高温超電導性セラミックに
おいては、酸素の含有量が多いほど超電導機能は増進さ
れ、また、斜方晶系のc軸と垂直方向に超電導電流が流
れる性質があること、このため、酸化過程を容易とする
出来るだけ薄い厚膜の作製が重要であるとの知見に基づ
いてこの発明の方法を完成した。
The inventor of the present invention has found that the superconducting function of the superconducting ceramic material is increased as the oxygen content is increased, and the superconducting function of the orthorhombic c-axis is increased in the high-temperature superconducting ceramic containing copper. The method of the present invention has been completed based on the knowledge that the superconducting current flows in the vertical direction and that it is important to make a thick film as thin as possible to facilitate the oxidation process.

(発明の目的) この発明は、以上の通りの事情を踏まえてなされたもの
であり、従来の超電導性セラミック材料の欠点を克服
し、酸素含有量が多くて超電導特性に優れ、かつその密
度も大きい超電導性セラミック厚膜を形成することので
きる新しい厚膜形成方法を提供することを目的としてい
る。
(Object of the Invention) The present invention has been made in view of the above circumstances, overcomes the drawbacks of conventional superconducting ceramic materials, has a high oxygen content and is excellent in superconducting properties, and has a high density. It is an object of the present invention to provide a new thick film forming method capable of forming a large superconducting ceramic thick film.

(発明の開示) 上記の目的を実現するために、この発明は、ペロブスカ
イト型構造を有する超電導性セラミックの原料として、
予めペロブスカイト相を有する粉末または塊状体を用
い、この原料をその融点以上に加熱溶融し、融液を圧搾
超急冷して厚さ5〜300μmの厚膜とした後、酸素含有
雰囲気または酸素プラズマ中で850〜950℃、2〜60hrで
加熱処理してペロブスカイト相とし、次いで同じ雰囲気
中で200〜700℃、5〜24hrで酸化処理することを特徴と
する超電導性セラミック厚膜の形成方法を要旨としてい
る。
DISCLOSURE OF THE INVENTION In order to achieve the above object, the present invention provides a superconducting ceramic raw material having a perovskite structure,
A powder or agglomerate having a perovskite phase is used in advance, this raw material is heated and melted above its melting point, and the melt is pressed and rapidly cooled to form a thick film with a thickness of 5 to 300 μm, and then in an oxygen-containing atmosphere or oxygen plasma. The method for forming a superconducting ceramic thick film is characterized in that a perovskite phase is heat-treated at 850 to 950 ° C for 2 to 60 hours, and then oxidized at 200 to 700 ° C for 5 to 24 hours in the same atmosphere. I am trying.

この方法は、5〜300μm厚の超電導性厚膜セラミック
を形成するものであり、さらに詳しく説明すると、たと
えば、ペロブスカイト型構造を有する高温酸化物超電導
体の一例としてY−Ba−Cu−O系の場合、これを構成す
るY,Ba,Cu等の元素の酸化物、水酸化物、炭酸塩、硝酸
塩あるいは蓚酸塩を所定の割合に混合粉砕し、500−950
℃で1−12hr加熱し、水分、炭酸根、硝酸根、蓚酸根を
揮発消失させることによりペロブスカイト相とする。原
料として予めペロブスカイト相を有する酸化物原料を用
いるのは、後の工程の熱酸化処理で酸化により増加する
酸素量が多いと厚膜が体積膨張して大きな歪が生じ亀裂
が発生しやすくなるのを防止するため、および最終的に
得られる超電導ペロブスカイトの均一性(すなわち、異
相を含まないこと)を確保するためである。次いで、添
付した図面の第1図に示したように、たとえば、この過
程で得られた粉末または塊状体1を白金ノズル2に入
れ、1250−1450℃の温度で、1−5分間溶融し、ノズル
2上方より空気等の気体3を噴射し、融体の塊をノズル
下方の穴4より、吹き出させて双ロール超急冷装置5な
どにより厚膜(長さ10−80mm、幅5−15mm、厚さ5−30
0μm)を形成させる。この時点での物質の相はアモル
ファス準安定相または相分離した数個の結晶相である。
この厚膜を空気中、酸素気流中または酸素プラズマ中
で、850−950℃、2−60hrで熱処理してペロブスカイト
相とし、次に同じ雰囲気中200−700℃、5−24hrで、充
分酸化して超電導相とする。厚膜の厚さが300μmより
大きいと、圧搾超急冷によっても、内部ではランダムと
なって斜方晶系のC面を表面と平行にできなくなり、結
晶の配向性が得られなくなる。また、YBa2Cu3Oyに代表
されるABa2Cu3Oy(A:Y、La、Prなど)ペロブスカイト相
(いわゆる1−2−3相)では、y=6.2では正方晶相
であり、超電導性を示さない。この相を酸化性雰囲気下
で比較的低温(200〜700℃)で熱処理して充分酸素を吸
収させ、斜方晶相に転移させ、始めて良好な超電導性を
発現し得る。したがって、熱平衡条件より、700℃より
も高い温度では、非超電導相の正方晶相が安定なため、
厚膜中への酸素の侵入が効率的に行われず、一方、200
℃より低い温度では酸化が期待できない。
This method forms a superconducting thick film ceramic having a thickness of 5 to 300 μm. More specifically, for example, as an example of a high temperature oxide superconductor having a perovskite type structure, a Y—Ba—Cu—O-based material is used. In this case, the constituent oxides of Y, Ba, Cu, etc., hydroxides, carbonates, nitrates or oxalates are mixed and pulverized at a predetermined ratio, and 500-950
It is heated at 1 ° C for 1 to 12 hours to volatilize and eliminate water, carbonate radicals, nitrate radicals, and oxalate radicals to form a perovskite phase. The use of an oxide raw material having a perovskite phase as a raw material means that when a large amount of oxygen increases due to oxidation in a thermal oxidation treatment in a later step, the thick film expands in volume and a large strain is generated, which easily causes cracking. This is for preventing the above-mentioned phenomenon and for ensuring the uniformity (that is, not containing a different phase) of the finally obtained superconducting perovskite. Then, as shown in FIG. 1 of the accompanying drawings, for example, the powder or lump 1 obtained in this process is put into a platinum nozzle 2 and melted at a temperature of 1250-1450 ° C. for 1-5 minutes, A gas 3 such as air is jetted from above the nozzle 2 and a lump of melt is blown out from a hole 4 below the nozzle, and a thick film (length 10-80 mm, width 5-15 mm, Thickness 5-30
0 μm) is formed. The phase of the material at this point is an amorphous metastable phase or several crystalline phases separated.
This thick film is heat-treated in air, in an oxygen stream or in oxygen plasma at 850-950 ° C for 2-60 hours to form a perovskite phase, and then sufficiently oxidized in the same atmosphere at 200-700 ° C for 5-24 hours. And make it a superconducting phase. If the thickness of the thick film is larger than 300 μm, even if it is squeezed and rapidly quenched, the inside becomes random and the C-plane of the orthorhombic system cannot be made parallel to the surface, and the crystal orientation cannot be obtained. Further, in ABa 2 Cu 3 Oy (A: Y, La, Pr, etc.) perovskite phase (so-called 1-2-3 phase) represented by YBa 2 Cu 3 Oy, it is a tetragonal phase at y = 6.2, and the superconductivity is high. Does not show sex. This phase can be heat-treated at a relatively low temperature (200 to 700 ° C.) in an oxidizing atmosphere to sufficiently absorb oxygen and transform into the orthorhombic phase, and good superconductivity can be exhibited for the first time. Therefore, since the tetragonal phase of the non-superconducting phase is stable at a temperature higher than 700 ° C from the thermal equilibrium condition,
Invasion of oxygen into thick film is not performed efficiently, while 200
Oxidation cannot be expected at temperatures below ℃.

その後、四端子法により、低温に下げながら電気抵抗を
測定し、臨界温度、臨界電流を決める。
After that, the electrical resistance is measured by the four-terminal method while the temperature is lowered to a low temperature, and the critical temperature and the critical current are determined.

ペロブスカイト型構造を有する超電導セラミック原料お
よび厚膜には、YBa2Cu3O7−δを基本組成とする(A
xBy)(CupMq)Orの化合物を用いることができる。
The basic composition of the superconducting ceramic raw material and thick film having a perovskite structure is YBa 2 Cu 3 O 7-δ (A
can be used x B y) (compound of Cu p M q) O r.

ここでA:Y,Sc,希土類Ln(La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,
Dy,Ho,Er,Tm,Yb,Lu),B:Ba,Sr,Ca,Mg,M:V,Nb,Zn,Ni,Co,
Fe,Mn,Ag,Cu:銅,O:酸素を意味し、x,y,p,qの範囲は、0.
5≦x≦1.5,1.5≦y≦2.5,2.0≦p≦4.0,0≦q≦1.5,r
はA,B,Cu,Mの価数によって決まる。各元素は、この範囲
を超えない限りにおいて混合物であってもよい。
Where A: Y, Sc, rare earth Ln (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb,
Dy, Ho, Er, Tm, Yb, Lu), B: Ba, Sr, Ca, Mg, M: V, Nb, Zn, Ni, Co,
Fe, Mn, Ag, Cu: copper, O: oxygen, and the range of x, y, p, q is 0.
5 ≦ x ≦ 1.5, 1.5 ≦ y ≦ 2.5, 2.0 ≦ p ≦ 4.0, 0 ≦ q ≦ 1.5, r
Is determined by the valences of A, B, Cu and M. Each element may be a mixture as long as it does not exceed this range.

この発明の方法においては、厚膜を形成する際に、この
厚膜の化学耐久性および伸延性を具備させ、かつ結晶の
核生成、成長および配向性を制御する、または基板との
熱膨張係数を一致させるために、B2O3,SiO2,GeO2,P2O5,
Al2O3などのガラス網目形成酸化物または低融点ガラス
(PbO−ZnO−B2O3系、PbO−Tl2O−B2O3系,Bi2O3−Tl2O
系など)を最大20mol%加えることができる。
In the method of the present invention, when the thick film is formed, the chemical durability and the ductility of the thick film are provided, and the nucleation, growth and orientation of the crystal are controlled, or the thermal expansion coefficient with the substrate is increased. B 2 O 3 , SiO 2 , GeO 2 , P 2 O 5 ,
Glass network forming oxides such as Al 2 O 3 or low melting glass (PbO-ZnO-B 2 O 3 system, PbO-Tl 2 O-B 2 O 3 system, Bi 2 O 3 -Tl 2 O
System) can be added up to 20 mol%.

この発明に用いる圧搾急冷装置には、双ロール融体超急
冷装置、双ソフトロール融体超急冷装置、片ロール式融
体超急冷装置、ピストン−アンビル装置等があり、百万
度/sec程度の超急冷速度が得られる。この際、融体作製
用の加熱方式として、電気炉、高周波炉、赤外線集光
炉、レーザー光などを使用することができる。
The squeeze quencher used in the present invention includes a twin roll melt quenching device, a twin soft roll melt quenching device, a single roll melt quenching device, a piston-anvil device, etc., and about one million degrees / sec. Super quenching rate of At this time, an electric furnace, a high-frequency furnace, an infrared focusing furnace, a laser beam, or the like can be used as a heating method for producing the melt.

以上詳しく説明したこの発明の方法により作製すること
のできる超電導性セラミック厚膜は、組成が均一、高密
度(95−99.9%)であり、高臨界温度かつシャープな物
性をしめす。このことから高臨界電流が期待できる。本
法では、製造工程で溶融状態を経過するので、原子レベ
ルで混合がなされるから、組成は均一である。通常の焼
結技術では、二次元的に大きく、かつ密度が100%近い
厚膜を得ることは困難であるが、本法では、厚さ300μ
m以下の薄い厚膜を容易に作製することができる。性能
の良い超電導性厚膜が、安価にかつ容易に製造可能とな
る。
The superconducting ceramic thick film that can be produced by the method of the present invention described in detail above has a uniform composition and a high density (95-99.9%), and exhibits high critical temperature and sharp physical properties. From this, a high critical current can be expected. In this method, since a molten state is passed in the manufacturing process, mixing is performed at the atomic level, so that the composition is uniform. It is difficult to obtain a thick film with a two-dimensionally large size and a density close to 100% by ordinary sintering technology.
A thin film having a thickness of m or less can be easily manufactured. A superconducting thick film having good performance can be easily manufactured at low cost.

この方法による厚膜を強電の分野(電力貯蔵用線輪、磁
気浮上用物体など)に利用するときは、均一かつ高密度
であるため、高電流密度をうることができる。さらに弱
電の分野に応用するときは、高密度に加えて、厚さが薄
いため高感度センサーを作製することができる。
When the thick film formed by this method is used in the field of high electric current (power storage coil, magnetic levitation object, etc.), it is uniform and has a high density, so that a high current density can be obtained. Further, when applied to the field of weak electric current, a high-sensitivity sensor can be manufactured because of its high density and thin thickness.

また、作製した厚膜の多数片をセラミック基板または金
属板上に、タイル状に並べて、加熱により基板に密着さ
せて大面積の超電導膜を形成し、電力貯蔵用線輪を作製
することができる。さらには、作製した厚膜を積層させ
加熱により密着させて、大容量の電流を流せる超電導物
体を形成し、磁気浮上装置として利用することができ
る。
In addition, a large number of thick film pieces thus prepared are arranged in a tile shape on a ceramic substrate or a metal plate, and they are brought into close contact with the substrate by heating to form a large-area superconducting film, so that a power storage coil can be produced. . Further, the produced thick films are laminated and brought into close contact with each other by heating to form a superconducting object capable of passing a large amount of current, which can be used as a magnetic levitation device.

次に実施例を示して、さらに詳しくこの発明の方法につ
いて説明する。もちろん、この発明が以下の実施例によ
って限定されるものでないことはいうまでもない。
Next, the method of the present invention will be described in more detail with reference to examples. Needless to say, the present invention is not limited to the examples below.

実施例 YBa2Cu3O7−δ組成の超電導セラミック厚膜の製造例を
以下に示す。
Example A production example of a superconducting ceramic thick film having a YBa 2 Cu 3 O 7-δ composition is shown below.

原料には試薬特級のY2(CO3、BaCO3、およびCuOを
用い、希望の組成となるように所定量を合計10g秤量
し、めのう乳鉢で30分間粉砕し、混合した。
As a raw material, reagent grade Y 2 (CO 3 ) 3 , BaCO 3 and CuO were used, and a predetermined amount of 10 g was weighed so that the desired composition was obtained, and crushed in an agate mortar for 30 minutes and mixed.

この粉末をプレスして円盤状に成形後、800℃、3時間
で仮焼した。つぎに、950℃、10hrで反応を完結させペ
ロブスカイト相を得た。焼結体の一片(0.2g)を、第1
図の装置において、白金ノズル中に入れ、シリコンカー
バイド電気炉中で、1300℃、1分間溶融した。溶融後、
白金ノズル上部より空気圧(1.2kg/cm2)で溶融物を100
0−3000rpmで回転している双ロール間に落下させること
により、ただちに幅約10mm、長さ30−50mm、平均厚さ30
〜50μmの厚膜が得られた。この厚膜を空気中または酸
素中で、950℃、10時間熱処理した後、酸化を充分行う
ために、空気中で700〜200℃の間を約6時間かけて通過
させた後、室温まで徐冷した。その後、ワイアーソーに
より5×10mm2に切断し、銀ペーストを塗り、四端子法
により低温での電気抵抗を測定し、臨界温度Tc=87K
(零抵抗の温度)の記録を達成した。
This powder was pressed into a disk shape and then calcined at 800 ° C. for 3 hours. Next, the reaction was completed at 950 ° C. for 10 hours to obtain a perovskite phase. 1 piece (0.2g) of the sintered body
In the apparatus shown in the figure, it was placed in a platinum nozzle and melted at 1300 ° C. for 1 minute in a silicon carbide electric furnace. After melting,
From the platinum nozzle upper part, air pressure (1.2 kg / cm 2 ) is used to melt 100
By dropping it between twin rolls rotating at 0-3000 rpm, the width is immediately about 10 mm, the length is 30-50 mm, and the average thickness is 30 mm.
A thick film of ˜50 μm was obtained. After this thick film was heat-treated in air or oxygen at 950 ° C for 10 hours, in order to perform sufficient oxidation, it was allowed to pass between 700 and 200 ° C in air for about 6 hours, and then slowly cooled to room temperature. Chilled After that, it is cut into 5 × 10 mm 2 with a wire saw, coated with silver paste, and the electrical resistance at low temperature is measured by the four-terminal method. Critical temperature T c = 87K
A record of (zero resistance temperature) was achieved.

第2図の温度−電気抵抗の依存性の測定値は、YBa2Cu3O
7−δの組成からなる膜厚50μmの超電導性セラミック
厚膜を、超急冷後上記の条件で加熱処理及び酸化処理し
た場合の結果を示している。
The measured value of the temperature-electrical resistance dependence in Fig. 2 is YBa 2 Cu 3 O.
The results are shown when a superconducting ceramic thick film having a thickness of 50 μm and having a composition of 7-δ was subjected to heat treatment and oxidation treatment under the above-mentioned conditions after super-quench cooling.

この発明により合成された厚膜は、超電導線輪素材また
赤外線/ミリ波検出素子として充分な性能を有している
ことは、以上の実施例からも明らかである。
It is clear from the above examples that the thick film synthesized according to the present invention has sufficient performance as a superconducting wire material or an infrared / millimeter wave detecting element.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の方法に用いる双ロール式融体急冷装
置の一例を示したものである。また、第2図は、この発
明の超電導性セラミック厚膜の一例について、温度と電
気抵抗の依存関係を示した相関図である。 1……試料粉末,試料塊状体、 2……白金ノズル、 3……気体、 4……穴、 5……双ロール超急冷装置。
FIG. 1 shows an example of a twin roll type melt quenching apparatus used in the method of the present invention. Further, FIG. 2 is a correlation diagram showing the dependence of temperature and electric resistance on an example of the superconducting ceramic thick film of the present invention. 1 ... Sample powder, sample agglomerate, 2 ... Platinum nozzle, 3 ... Gas, 4 ... Hole, 5 ... Twin roll ultra-quenching device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ペロブスカイト型構造を有する超電導性セ
ラミックの原料として、予めペロブスカイト相を有する
粉末または塊状体を用い、この原料をその融点以上に加
熱溶融し、融液を圧搾超急冷して厚さ5〜300μmの厚
膜とした後、酸素含有雰囲気または酸素プラズマ中で85
0〜950℃、2〜60hrで加熱処理してペロブスカイト相と
し、次いで同じ雰囲気中で200〜700℃、5〜24hrで酸化
処理することを特徴とする超電導性セラミック厚膜の形
成方法。
1. A powder or agglomerate having a perovskite phase is used as a raw material for a superconducting ceramic having a perovskite structure, and the raw material is heated and melted to a temperature equal to or higher than its melting point, and the melt is squeezed and rapidly cooled to a thickness. After forming a thick film of 5 to 300 μm, 85 in an oxygen-containing atmosphere or oxygen plasma
A method for forming a superconducting ceramic thick film, which comprises heat-treating at 0 to 950 ° C for 2 to 60 hours to form a perovskite phase, and then performing oxidation treatment at 200 to 700 ° C at 5 to 24 hours in the same atmosphere.
JP62231393A 1987-09-16 1987-09-16 Method for forming superconducting ceramic thick film Expired - Lifetime JPH0764618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62231393A JPH0764618B2 (en) 1987-09-16 1987-09-16 Method for forming superconducting ceramic thick film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62231393A JPH0764618B2 (en) 1987-09-16 1987-09-16 Method for forming superconducting ceramic thick film

Publications (2)

Publication Number Publication Date
JPS6472958A JPS6472958A (en) 1989-03-17
JPH0764618B2 true JPH0764618B2 (en) 1995-07-12

Family

ID=16922902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62231393A Expired - Lifetime JPH0764618B2 (en) 1987-09-16 1987-09-16 Method for forming superconducting ceramic thick film

Country Status (1)

Country Link
JP (1) JPH0764618B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193483A (en) * 1987-10-05 1989-04-12 Kanegafuchi Chem Ind Co Ltd Production of superconductive material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645945A (en) * 1987-06-29 1989-01-10 Hitachi Ltd Production of oxide superconducting tape

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JapaneseJournalofAppliedPhysicsVol.26No.7P.L1148〜L1149

Also Published As

Publication number Publication date
JPS6472958A (en) 1989-03-17

Similar Documents

Publication Publication Date Title
US5846912A (en) Method for preparation of textured YBa2 Cu3 Ox superconductor
WO1991019029A1 (en) Oxide superconductor and production thereof
JPH10101336A (en) Production of superconductor
Barik et al. Effect of Cr doping on the electrical conductivity and Seebeck coefficient in the superconductors obtained from the Bi–Pb–Sr–Ca–Cu–Cr–O-type glassy precursors by annealing
US5591698A (en) Low temperature (T lower than 950° C.) preparation of melt texture YBCO superconductors
Nassau et al. Crystallization of a rapidly quenched high Tc Bi-containing glass composition
JPH0764618B2 (en) Method for forming superconducting ceramic thick film
JP2600076B2 (en) Bismuth-based superconducting ceramic thick film forming method
US5126321A (en) Preparation of Bi-Sr-Ca-Cu-O superconductors from oxide-glass precursors
US5270292A (en) Method for the formation of high temperature semiconductors
US5545610A (en) Oxide-based superconductor, a process for preparing the same and a wire material of comprising the same
Khan et al. Thermal and phase characterization of Bi-2223 superconductors
JP2822329B2 (en) Superconductor manufacturing method
JPH0453805B2 (en)
CA1339720C (en) High temperature processing of cuprate oxide superconducting
JPS63240005A (en) Manufacture of superconducting material
JP2966119B2 (en) Manufacturing method of oxide superconductor
JPH0613429B2 (en) Method for manufacturing oxide superconductor
JPH0640721A (en) Preparation of superconductive body with high critical electric current density
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JPH01239003A (en) Production of orientative superconducting composite oxide material
JPH03112810A (en) Production of oxide superconducting film
JPH0226807A (en) Oriented compound oxide superconducting material
Haugan et al. Growth of Bi2Sr2CaCu2O x/Ag single layer and multilayer superconducting tape systems
JPH08725B2 (en) Manufacturing method of bismuth superconductor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term