JPH0764116A - Liquid crystal display device and its production - Google Patents

Liquid crystal display device and its production

Info

Publication number
JPH0764116A
JPH0764116A JP21463093A JP21463093A JPH0764116A JP H0764116 A JPH0764116 A JP H0764116A JP 21463093 A JP21463093 A JP 21463093A JP 21463093 A JP21463093 A JP 21463093A JP H0764116 A JPH0764116 A JP H0764116A
Authority
JP
Japan
Prior art keywords
conductor
liquid crystal
linear resistance
film
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21463093A
Other languages
Japanese (ja)
Inventor
Hiroshi Morita
廣 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21463093A priority Critical patent/JPH0764116A/en
Publication of JPH0764116A publication Critical patent/JPH0764116A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily produce the liquid crystal display device free from flickering and seizure by simple stages by executing required connection by using the same transparent conductive films as the transparent conductive films constituting transparent electrodes for liquid crystal driving. CONSTITUTION:The first conductor and second conductor of a wiring part 13 and the second conductor 21a and wiring part 13 of one MIM element 18a are connected by the same transparent conductive film 22 as the transparent conductive film constituting the transparent electrode 14 for liquid crystal driving and are connected to the second conductor 21b of another MIM element 18b by the transparent conductive film 22 constituting the transparent electrode 14 for liquid crystal driving. Then, the liquid crystal display device having a nonlinear resistance element part 12 is supplied with a driving voltage to the transparent electrode 14 from the wiring part 13 via two pieces of the MIM elements 18a, 18b connected in series to reverse polarities. The number of times of thin film formation and etching is decreased by such constitution and the high-grade liquid crystal display device free from the flickering and seizure is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、液晶表示装置および
その製造方法に係り、スイッチング素子として、MIM
からなる非線形抵抗素子を有するマトリックス型液晶表
示装置およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device and a method for manufacturing the same, and relates to a MIM as a switching element.
And a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、液晶表示器を用いた表示装置が、
パーソナル・コンピューター、ワードプロセッサー、さ
らにはOA機器の端末機器、TV用画像表示装置などの
大用量情報の表示用として使用されるようになり、それ
にともなって、より高画質の画像表示が要求されてい
る。
2. Description of the Related Art In recent years, a display device using a liquid crystal display has been
It has come to be used for the display of large dose information in personal computers, word processors, terminal equipment of office automation equipment, image display devices for TV, etc., and accordingly higher quality image display is required. .

【0003】これら大用量情報の表示には、所定配列の
複数個のスイッチング素子からなるスイッチングアレイ
の形成されたマトリックス型液晶表示装置が用いられ
る。そのスイッチング素子としては、既に各種構成のも
のが知られているが、構造が簡単でありかつ製造が容易
な2端子の非線形抵抗素子として、なかでもMIM(導
体/非線形抵抗膜/導体)素子が実用化されている。
A matrix type liquid crystal display device having a switching array formed of a plurality of switching elements arranged in a predetermined array is used for displaying the large dose information. Various types of switching elements are already known as the switching element, but a MIM (conductor / nonlinear resistance film / conductor) element is particularly preferable as a two-terminal nonlinear resistance element having a simple structure and easy to manufacture. It has been put to practical use.

【0004】このMIM素子は、図3にマトリックス型
液晶表示装置の1画素分について示すように、液晶(図
示せず)を挟んで対向する一方のガラス基板1の対向面
に形成されたTa薄膜からなる第1導体2、この第1導
体2の表面を覆うTaの酸化膜からなる非線形抵抗膜
3、この非線形抵抗膜3と一部が重なるように基板1の
対向面に設けられたCr薄膜からなる第2導体4からな
り、その第2導体4と一部が重なり合うように、ガラス
基板1の対向面に液晶駆動用透明導電膜5(画素電極)
が形成されている。
As shown in FIG. 3 for one pixel of the matrix type liquid crystal display device, this MIM element is a Ta thin film formed on the facing surface of one glass substrate 1 facing each other with a liquid crystal (not shown) in between. A first conductor 2 made of, a non-linear resistance film 3 made of a Ta oxide film covering the surface of the first conductor 2, and a Cr thin film provided on the opposite surface of the substrate 1 so as to partially overlap the non-linear resistance film 3. And a transparent conductive film 5 for driving liquid crystal (pixel electrode) on the opposite surface of the glass substrate 1 so as to partially overlap with the second conductor 4.
Are formed.

【0005】この複数個のMIM素子を有するアレイ基
板の製造方法は、スパッタリング法や真空蒸着法などの
薄膜形成法によりガラス基板1の対向面にTa薄膜を形
成し、フォトエッチング法によりパターニングして、配
線とともにMIM素子の一方の電極である第1導体2を
形成する。つぎにたとえばクエン酸水溶液を用いた陽極
酸化により上記Ta薄膜の表面部を酸化して、上記第1
導体2上にTaの酸化膜からなる非線形抵抗膜3を形成
する。さらにこの非線形抵抗膜3上に薄膜形成・加工法
により、Cr薄膜からなるMIM素子の他方の電極であ
る第2導体4を形成する。その後、スパッタリング法お
よびフォトエッチング法により、その第2導体4と一部
が重なり合うようにガラス基板1の対向面に液晶駆動用
透明導電膜5を形成することにより製造される。
In the method of manufacturing an array substrate having a plurality of MIM elements, a Ta thin film is formed on the opposite surface of the glass substrate 1 by a thin film forming method such as a sputtering method or a vacuum vapor deposition method, and patterned by a photo etching method. , The first conductor 2 which is one electrode of the MIM element is formed together with the wiring. Next, the surface of the Ta thin film is oxidized by, for example, anodic oxidation using an aqueous solution of citric acid,
A non-linear resistance film 3 made of an oxide film of Ta is formed on the conductor 2. Further, a second conductor 4 which is the other electrode of the MIM element made of a Cr thin film is formed on the nonlinear resistance film 3 by a thin film forming / processing method. Then, a transparent conductive film 5 for driving a liquid crystal is formed on the facing surface of the glass substrate 1 by sputtering and photoetching so as to partially overlap the second conductor 4.

【0006】このMIM素子の基本的な製造技術は、特
公昭55−161273号公報に開示されており、また
その改良技術が、特開昭58−178320号公報など
に開示されている。
The basic manufacturing technique of this MIM element is disclosed in Japanese Examined Patent Publication No. 55-161273, and its improved technique is disclosed in Japanese Unexamined Patent Publication No. 58-178320.

【0007】ところで、上記のように形成されたMIM
素子を有するマトリックス型液晶表示装置は、MIM素
子の電流−電圧特性の非対称性のために、フリッカーや
焼付きなどが発生し、画質が劣化するという問題があ
る。
By the way, the MIM formed as described above
The matrix type liquid crystal display device having elements has a problem that flicker or image sticking occurs due to the asymmetry of the current-voltage characteristics of the MIM element and the image quality is deteriorated.

【0008】すなわち、マトリックス型液晶表示装置
は、一般に信頼性の点で交流駆動、つまり正負対称な交
流電圧によって駆動され、MIM素子に極性の異なる電
圧が周期的に印加される。この場合、MIM素子の非線
形抵抗性は、第1、第2導体2,4の材料の相違、第
1、第2導体2,4と非線形抵抗膜3との界面状態の相
違などにより、正負対称にならない場合が生ずる。すな
わち、正負対称の駆動電圧を印加しても、液晶に印加さ
れる電圧は正負非対称となり、液晶にオフセット電圧
(DC成分)が残り、フリッカーや焼付きなどが発生す
る。
That is, the matrix type liquid crystal display device is generally driven by an alternating current in terms of reliability, that is, driven by a positive and negative symmetrical alternating voltage, and voltages having different polarities are periodically applied to the MIM element. In this case, the non-linear resistance of the MIM element is positive / negative symmetrical due to the difference in the materials of the first and second conductors 2 and 4 and the difference in the interface state between the first and second conductors 2 and 4 and the non-linear resistance film 3. There are cases where it does not become. That is, even if positive and negative symmetric drive voltages are applied, the voltage applied to the liquid crystal becomes positive and negative asymmetric, and an offset voltage (DC component) remains in the liquid crystal, causing flicker and burn-in.

【0009】この原因は、必ずしも明確ではないが、電
流の発生機構が酸化膜(非線形抵抗膜3)のバルクの物
性に依存しており、酸化膜の膜質の不均一や経時変化な
どによるものと考えられる。
The cause of this is not necessarily clear, but it is considered that the current generation mechanism depends on the physical properties of the bulk of the oxide film (nonlinear resistance film 3), and the film quality of the oxide film is not uniform or changes with time. Conceivable.

【0010】上記MIM素子の問題を回避する手段とし
て、たとえば特開昭57−144584号公報には、2
個のMIM素子を逆極性に直列接続して、スイッチング
素子とするとよいことが示されている。このスイッチン
グ素子は、図4に示すように、一方のガラス基板1の対
向面に形成されたTaまたは窒素をドープしたTa薄膜
からなる所定パターンに形成された第1導体2と、この
第1導体2上に被着形成されたTa酸化膜または窒素を
ドープしたTa酸化膜からなる非直線抵抗膜3と、この
非直線抵抗膜3の両側部上に形成されたCu、Alなど
からなる2個の第2導体4a ,4b とからなり、その第
2導体4b と一部が重なり合うように、一方の基板1の
対向面にSnO2 、In2 3 などからなる液晶駆動用
透明電極5が形成されている。
As a means for avoiding the above-mentioned problem of the MIM element, for example, Japanese Patent Laid-Open No. 57-144584 discloses that
It is shown that it is preferable that the MIM elements are connected in series with opposite polarities to form a switching element. As shown in FIG. 4, this switching element includes a first conductor 2 formed in a predetermined pattern made of Ta or a nitrogen-doped Ta thin film formed on the opposite surface of one glass substrate 1, and this first conductor. 2, a non-linear resistance film 3 made of a Ta oxide film or a Ta-oxide film doped with nitrogen, and two pieces made of Cu, Al, etc. formed on both sides of the non-linear resistance film 3. Liquid crystal driving transparent electrode 5 made of SnO 2 , In 2 O 3 or the like is formed on the facing surface of one substrate 1 so as to partially overlap the second conductor 4a and 4b. Has been done.

【0011】このようにMIM素子を逆極性に直列接続
してスイッチング素子とすると、必要な駆動電圧が倍に
なり、その駆動電圧の上昇により電流−電圧特性の対称
性が向上し、フリッカーや焼付きなどを軽減できる。
When the MIM elements are serially connected in reverse polarity to form a switching element, the required driving voltage is doubled, and the symmetry of the current-voltage characteristics is improved due to the increase of the driving voltage, and flicker or burning is caused. It can reduce sticking.

【0012】しかしこのMIM素子を逆極性に直列接続
してスイッチング素子とする液晶表示装置は、製造に当
り、第1導体2のパターニング、非直線抵抗膜3のパタ
ーニング、第2導体4a ,4b のパターニング、液晶駆
動用透明電極5のパターニングと4回の薄膜形成、エッ
チングが必要であり、製造工程が複雑である。
However, in manufacturing a liquid crystal display device in which the MIM elements are connected in series with opposite polarities as switching elements, the first conductor 2 is patterned, the non-linear resistance film 3 is patterned, and the second conductors 4a and 4b are patterned. Patterning, patterning of the liquid crystal driving transparent electrode 5, thin film formation and etching four times are required, and the manufacturing process is complicated.

【0013】[0013]

【発明が解決しようとする課題】上記のように、MIM
素子をスイッチング素子とする液晶表示装置は、正負対
称な交流電圧を印加しても、MIM素子の第1、第2導
体の材料の相違や第1、第2導体と非線形抵抗膜との界
面状態の相違などにより、正負対称にならない場合が生
じ、フリッカーや焼付きなどか発生し、画質が劣化する
という問題がある。
SUMMARY OF THE INVENTION As described above, the MIM
In a liquid crystal display device using an element as a switching element, even if a positive and negative symmetrical alternating voltage is applied, the material difference between the first and second conductors of the MIM element and the interface state between the first and second conductors and the nonlinear resistance film In some cases, due to the difference, etc., positive and negative symmetry may not occur, and flicker or image sticking may occur, resulting in a problem of deterioration of image quality.

【0014】このMIM素子の問題を回避する手段とし
て、2個のMIM素子を逆極性に直列接続してスイッチ
ング素子とするとよいことが知られている。しかしこの
液晶表示装置は、製造に当り、第1導体のパターニン
グ、非直線抵抗膜のパターニング、第2導体のパターニ
ング、液晶駆動用透明電極のパターニングと4回の薄膜
形成、エッチングが必要であり、製造工程が複雑である
という問題がある。
As a means for avoiding the problem of the MIM element, it is known that two MIM elements may be connected in series in reverse polarity to form a switching element. However, this liquid crystal display device requires the patterning of the first conductor, the patterning of the non-linear resistance film, the patterning of the second conductor, the patterning of the liquid crystal driving transparent electrode and the four thin film formations and etchings in the manufacturing process. There is a problem that the manufacturing process is complicated.

【0015】この発明は、上記問題点に鑑みてなされた
ものであり、フリッカーや焼付きなどのない液晶表示装
置を簡単な工程で容易に製造し得るようにすることを目
的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to make it possible to easily manufacture a liquid crystal display device free from flicker and image sticking in a simple process.

【0016】[0016]

【課題を解決するための手段】液晶を挟んで対向する一
方の基板の対向面に配線部、液晶駆動用透明電極および
2つの非線形抵抗素子からなる非線形抵抗素子部が形成
され、その各非線形抵抗素子が第1導体を共通の導体と
して第1導体/第1導体の酸化膜からなる非線形抵抗膜
/第2導体の積層構造に形成され、一方の非線形抵抗素
子の第2導体が配線部に接続され、他方の非線形抵抗素
子の第2導体が液晶駆動用透明電極に接続されてなる液
晶表示装置において、配線部を第1導体/第1導体の酸
化膜/第2導体の積層構造に形成し、この配線部の第1
導体と第2導体およびこの配線部と一方の非線形抵抗素
子の第2導体が液晶駆動用透明電極を構成する透明導電
膜と同じ透明導電膜により接続し、他方の非線形抵抗素
子の第2導体と液晶駆動用透明電極が同じく液晶駆動用
透明電極を構成する透明導電膜と同じ透明導電膜により
接続した。
A wiring portion, a liquid crystal driving transparent electrode, and a non-linear resistance element portion composed of two non-linear resistance elements are formed on the facing surface of one substrate facing each other across a liquid crystal, and each non-linear resistance thereof is formed. The element is formed in a laminated structure of a first conductor / a non-linear resistance film composed of an oxide film of the first conductor / a second conductor with the first conductor as a common conductor, and the second conductor of one of the non-linear resistance elements is connected to a wiring portion. In the liquid crystal display device in which the second conductor of the other non-linear resistance element is connected to the liquid crystal driving transparent electrode, the wiring portion is formed in a laminated structure of the first conductor / oxide film of the first conductor / second conductor. , The first of this wiring part
The conductor and the second conductor, and the wiring portion and the second conductor of the one non-linear resistance element are connected by the same transparent conductive film as the transparent conductive film forming the liquid crystal driving transparent electrode, and the other non-linear resistance element second conductor. The liquid crystal driving transparent electrode was connected by the same transparent conductive film as the transparent conductive film forming the liquid crystal driving transparent electrode.

【0017】またその液晶表示装置の製造方法として、
一方の基板の対向面に第1導体/第1導体の酸化膜/第
2導体の積層構造層を形成する工程と、その積層構造層
を所定パターンに形成する工程と、その所定パターンの
積層構造層の第1導体の側面部を酸化してこの側面部に
第1導体の酸化膜を形成する工程と、その第1導体の側
面部に酸化膜の形成された所定パターンの積層構造層を
第1導体/第1導体の酸化膜からなる非線形抵抗膜/第
2導体の積層構造からなる素子部と第1導体/第1導体
の酸化膜/第2導体の積層構造からなる配線部とに分断
する工程と、透明導電膜を形成して、配線部の第1導体
と第2導体およびこの配線部と素子部の分割された一方
の第2導体を接続すると同時に、透明導電膜により透明
電極を形成し、かつこの透明電極と素子部の分割された
他方の第2導体を接続する工程と、素子部の第2導体を
2分割して2個の第2導体を形成する工程とにより配線
部、液晶駆動用透明電極および非線形抵抗素子部を形成
するようにした。
As a method of manufacturing the liquid crystal display device,
A step of forming a laminated structure layer of a first conductor / an oxide film of the first conductor / a second conductor on the opposite surface of one substrate, a step of forming the laminated structure layer in a predetermined pattern, and a laminated structure of the predetermined pattern A step of oxidizing a side surface portion of the first conductor of the layer to form an oxide film of the first conductor on the side surface portion; and a step of forming a laminated structure layer having a predetermined pattern in which the oxide film is formed on the side surface portion of the first conductor. Divided into an element portion having a laminated structure of 1 conductor / a non-linear resistance film made of an oxide film of a first conductor / a second conductor and a wiring portion made of a laminated structure of a first conductor / an oxide film of a first conductor / a second conductor And the step of forming a transparent conductive film, and connecting the first conductor and the second conductor of the wiring part and one of the divided second conductors of the wiring part and the element part, and at the same time, forming the transparent electrode by the transparent conductive film. And the transparent electrode and the other divided second conductor of the element part A step of connection, and so as to form the wiring portion, a transparent electrode and a non-linear resistance element portion for driving the liquid crystal by a step of the second conductor to form two second conductor is divided into two of the element portion.

【0018】[0018]

【作用】上記のように、液晶表示装置を構成すると、従
来の2個のMIM素子を逆極性に直列接続してスイッチ
ング素子とする液晶表示装置の製造にくらべて、薄膜形
成、エッチングの回数を減らすことができ、フリッカー
や焼付きなどのない高品位液晶表示装置とすることがで
きる。また導電層間の接続が良好になり、配線抵抗を小
さくでき、大型高精細液晶表示装置の実用化に有効であ
る。
When the liquid crystal display device is constructed as described above, the number of times of thin film formation and etching is reduced as compared with the conventional manufacturing of a liquid crystal display device in which two MIM elements are connected in series with opposite polarities to form a switching element. It is possible to reduce the number, and it is possible to obtain a high-quality liquid crystal display device without flicker or image sticking. In addition, the connection between the conductive layers becomes good, and the wiring resistance can be reduced, which is effective for practical application of a large-sized high-definition liquid crystal display device.

【0019】[0019]

【実施例】以下、図面を参照してこの発明を実施例に基
づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described based on embodiments with reference to the drawings.

【0020】図1(a)にこの発明の一実施例に係るマ
トリックス型液晶表示装置の一方の基板に形成される1
画素の平面構造を、同(b)にそのB−B断面を、同
(c)にC−C断面を示す。この液晶表示装置は、液晶
10を挟んで対向する一方のガラス基板11の対向面
に、非線形抵抗素子部12、配線部13および液晶駆動
用透明電極14(画素電極)が、さらにその上に配向膜
(図示せず)が設けられ、他方のガラス基板15の対向
面にも、透明電極16およびその上に配向膜(図示せ
ず)が設けられた構造に形成されている。
FIG. 1 (a) is a schematic view of a matrix type liquid crystal display device according to an embodiment of the present invention formed on one substrate 1.
The plane structure of the pixel is shown in the same section (b) as the BB section and in the same section (c) as the CC section. In this liquid crystal display device, a non-linear resistance element section 12, a wiring section 13, and a liquid crystal driving transparent electrode 14 (pixel electrode) are further aligned on the facing surface of one glass substrate 11 which faces the liquid crystal 10 in between. A film (not shown) is provided, and a transparent electrode 16 and an alignment film (not shown) thereon are also provided on the opposite surface of the other glass substrate 15 to form a structure.

【0021】上記非線形抵抗素子部12は、2個のMI
M素子18a 、18b により構成されている。その各M
IM素子18a 、18b は、一方の基板11の対向面に
形成されたTa薄膜からなる第1導体19を共通の導体
とし、この第1導体19の表面を覆うTa酸化膜からな
る非線形抵抗膜20、およびこの非線形抵抗膜20上に
分離形成されたTi薄膜からなる2つの第2導体21a
、21b により構成されている。また配線部13は、
上記MIM素子18a 、18b と同様にTa薄膜からな
る第1導体、この第1導体の表面を覆うTa酸化膜およ
びこのTa酸化膜上に形成されたTi薄膜からなる第2
導体により構成されている。また液晶駆動用透明電極1
4は、ITO(Indium Tin Oxide)からなる透明導電膜
により構成されている。
The non-linear resistance element section 12 includes two MIs.
It is composed of M elements 18a and 18b. Each M
In the IM elements 18a and 18b, the first conductor 19 made of a Ta thin film formed on the opposing surface of the one substrate 11 is used as a common conductor, and the nonlinear resistance film 20 made of a Ta oxide film covering the surface of the first conductor 19 is used. , And two second conductors 21a made of a Ti thin film formed separately on the nonlinear resistance film 20.
, 21b. In addition, the wiring unit 13
Similar to the MIM elements 18a and 18b, a first conductor made of a Ta thin film, a Ta oxide film covering the surface of the first conductor, and a second thin film made of a Ti thin film formed on the Ta oxide film.
It is composed of a conductor. In addition, the transparent electrode for driving the liquid crystal 1
4 is composed of a transparent conductive film made of ITO (Indium Tin Oxide).

【0022】そしてこの液晶表示装置においては、上記
配線部13の第1導体と第2導体、および一方のMIM
素子18a の第2導体21a と配線部13とが、液晶駆
動用透明電極14を構成する透明導電膜と同じ透明導電
膜22により接続され、また他方のMIM素子18b の
第2導体21b と液晶駆動用透明電極14とが、この液
晶駆動用透明電極14を構成する透明導電膜22により
接続されている。
In this liquid crystal display device, the first conductor and the second conductor of the wiring portion 13 and one MIM
The second conductor 21a of the element 18a and the wiring portion 13 are connected by the same transparent conductive film 22 as the transparent conductive film forming the liquid crystal driving transparent electrode 14, and the second conductor 21b of the other MIM element 18b and the liquid crystal driving The transparent electrode 14 is connected to the transparent electrode 14 by the transparent conductive film 22 that constitutes the transparent electrode 14 for driving the liquid crystal.

【0023】したがって上記非線形抵抗素子部12を有
する液晶表示装置は、逆極性に直列接続された2個のM
IM素子18a 、18b を介して配線部13から透明電
極14に駆動電圧が供給される。
Therefore, the liquid crystal display device having the non-linear resistance element section 12 has two Ms connected in series with opposite polarities.
A drive voltage is supplied from the wiring portion 13 to the transparent electrode 14 via the IM elements 18a and 18b.

【0024】つぎに、この液晶表示装置の製造方法を、
図2(a)ないし(f)により説明する。この図2の
(a)ないし(c)および(f)は、それぞれ図1
(a)のB−B線断で示した図であり、(d)および
(e)は、それぞれ同部近傍の平面図である。
Next, a method of manufacturing this liquid crystal display device will be described.
This will be described with reference to FIGS. 2 (a) to (c) and (f) are shown in FIG.
It is the figure shown by the BB line disconnection of (a), and (d) and (e) are each the top views of the same vicinity.

【0025】まず、図1(a)に示すように、板厚0.
7mmの一方のガラス基板11の対向面にたとえばSiO
2 からなるアルカリ防御膜(図示せず)を形成し、この
アルカリ防御膜上に、スパッタリング法により、膜厚3
000オングストロームのTa薄膜23を形成する。つ
ぎにこのTa薄膜23の全面を酸化して、その表面部に
均一なTa酸化膜24を形成する。このTa酸化膜24
の形成は、Ta薄膜23を陽極とし、Ptめっきを施し
たTiメッシュを陰極とし、1重量%ほう酸アンモニウ
ム水溶液を電解液とする陽極酸化により形成することが
できる。一例として、上記陰陽両極間に24Vの電圧を
印加して、膜厚400オングストロームの均一なTa酸
化膜24を形成することができる。この場合、Ta薄膜
23の表面部の160オングストロームの厚さの部分が
400オングストロームの厚さのTa酸化膜24にな
る。つぎにスパッタリング法により、このTa酸化膜2
4の全面に膜厚1200オングストロームのTi薄膜2
5を形成する。
First, as shown in FIG.
On the opposite surface of one glass substrate 11 of 7 mm, for example, SiO
An alkaline protective film (not shown) consisting of 2 is formed, and a film thickness of 3 is formed on the alkaline protective film by sputtering.
A Ta thin film 23 of 000 angstrom is formed. Next, the entire surface of this Ta thin film 23 is oxidized to form a uniform Ta oxide film 24 on the surface thereof. This Ta oxide film 24
Can be formed by anodic oxidation using the Ta thin film 23 as an anode, a Pt-plated Ti mesh as a cathode, and a 1 wt% ammonium borate aqueous solution as an electrolytic solution. As an example, a voltage of 24 V can be applied between the positive and negative electrodes to form a uniform Ta oxide film 24 having a film thickness of 400 angstrom. In this case, a portion of the surface of the Ta thin film 23 having a thickness of 160 Å becomes the Ta oxide film 24 having a thickness of 400 Å. Next, this Ta oxide film 2 is formed by a sputtering method.
Ti thin film 2 with a thickness of 1200 Å on the entire surface of 4
5 is formed.

【0026】つぎに上記Ti薄膜25の全面に、たとえ
ばポジタイプの感光剤を塗布し、所定パターンの形成さ
れたフォトマスクを用いて露光し現像して、同(b)に
示すように、所定パターンのレジスト膜27を形成す
る。その後、ウエットエッチングによりレジスト膜27
の形成されていない部分のTi薄膜を除去し、つづいて
ケミカルドライエッチングによりTa酸化膜24および
Ta薄膜23のレジスト膜27の形成されていない部分
を除去する。そのウエットエッチングは、EDTA(エ
チレンジアミン−テトラアセティックアシド)9g、水
400cc、アンモニア水3mlの割合いで混合したエッチ
ング液を室温に保っておこなわれる。またケミカルドラ
イエッチングは、CF4 とO2 との等量混合ガスを用い
たプラズマエッチングでおこなわれる。
Next, for example, a positive type photosensitizer is applied to the entire surface of the Ti thin film 25, exposed and developed using a photomask on which a predetermined pattern is formed, and then, as shown in FIG. The resist film 27 is formed. Then, the resist film 27 is formed by wet etching.
The Ti thin film in the portions where the resist film 27 is not formed is removed, and then the portions where the resist film 27 of the Ta oxide film 24 and the Ta thin film 23 is not formed are removed by chemical dry etching. The wet etching is carried out by keeping an etching solution obtained by mixing 9 g of EDTA (ethylenediamine-tetraacetic acid), 400 cc of water and 3 ml of ammonia water at room temperature. The chemical dry etching is performed by plasma etching using a mixed gas of CF 4 and O 2 .

【0027】つぎに同(c)に示すように、レジスト膜
27の残存した状態で、上記エッチングにより形成され
たTa薄膜23の側面を酸化してTa酸化膜24aを形
成する。このTa酸化膜24aの形成は、前記Ta薄膜
の表面部全面にTa酸化膜を形成する場合と同様に、T
a薄膜23を陽極とし、Ptめっきを施したTiメッシ
ュを陰極とし、1重量%ほう酸アンモニウム水溶液を電
解液とする陽極酸化によりおこなわれる。特にこの場
合、前記Ta薄膜の表面部全面にTa酸化膜を形成する
場合にくらべ陰陽両極間に印加する電圧を高くして、T
a酸化膜の膜厚を厚く形成する。具体的には、陰陽両極
間に100Vの電圧を印加して、膜厚1600オングス
トロームのTa酸化膜24aを形成する。
Next, as shown in (c), while the resist film 27 remains, the side surface of the Ta thin film 23 formed by the above etching is oxidized to form a Ta oxide film 24a. The formation of the Ta oxide film 24a is similar to the case where the Ta oxide film is formed on the entire surface of the Ta thin film.
a thin film 23 is used as an anode, Pt-plated Ti mesh is used as a cathode, and 1% by weight ammonium borate aqueous solution is used as an electrolytic solution for anodic oxidation. In this case, in particular, in comparison with the case where a Ta oxide film is formed on the entire surface of the Ta thin film, the voltage applied between the positive and negative electrodes is increased to
The oxide film is formed thick. Specifically, a voltage of 100 V is applied between the positive and negative electrodes to form a Ta oxide film 24a having a film thickness of 1600 angstroms.

【0028】その後、上記レジスト膜27を除去して、
同(d)に示すように、配線部13と素子部29とが繋
がったパターン(平面形状)にしたのち、このパターン
の形成されたガラス基板の全面に、たとえばポジタイプ
の感光剤を塗布し、フォトマスクを用いて露光し現像し
て、所定パターンのレジスト膜を形成する。そして前記
Ti薄膜、Ta酸化膜、Ta薄膜のエッチングと同様
に、ウエットエッチングによりTi薄膜をエッチング
し、つづいてケミカルドライエッチングによりTa酸化
膜およびTa薄膜エッチングして、同(e)に示すよう
に、Ta薄膜からなる第1導体およびTa酸化膜からな
る非線形抵抗膜をもつ素子部29と、Ta薄膜およびT
a酸化膜からなる配線部30とに分断する。この場合、
その分断部分にTa薄膜およびTi薄膜の側面30が露
出する。
Thereafter, the resist film 27 is removed,
As shown in (d), after forming a pattern (planar shape) in which the wiring portion 13 and the element portion 29 are connected, for example, a positive type photosensitizer is applied to the entire surface of the glass substrate on which the pattern is formed, Exposure and development are performed using a photomask to form a resist film having a predetermined pattern. Then, similar to the etching of the Ti thin film, the Ta oxide film, and the Ta thin film, the Ti thin film is etched by wet etching, and then the Ta oxide film and the Ta thin film are etched by chemical dry etching, as shown in (e). , A first conductor made of Ta thin film and a non-linear resistance film made of Ta oxide film, and Ta thin film and T
a The wiring portion 30 made of an oxide film is divided. in this case,
The side surface 30 of the Ta thin film and the Ti thin film is exposed at the divided portion.

【0029】つぎに上記素子部29と配線部13とが形
成されたガラス基板の全面に、スパッターリング法によ
り、膜厚1000オングストロームのITOからなる透
明導電膜を形成する。さらにこの透明導電膜上に、たと
えばポジタイプの感光剤を塗布し、フォトマスクを用い
て露光し現像して、所定パターンのレジスト膜を形成す
る。ついで塩酸、硝酸、水を1:0.1:1の容量比で
混合したエッチング液を30℃に加熱してエッチング
し、レジスト膜の形成されていない部分の透明導電膜を
除去して、同(f)に示すように、透明電極14、配線
部13と素子部29のTa薄膜からなる一方の2導体形
成部分とを接続する所定パターンの透明導電膜22、お
よび透明電極14と素子部29のTi薄膜からなる他方
の第2導体形成部分とを接続する所定パターンの透明導
電膜22を形成する。この配線部13と素子部29とを
接続する透明導電膜22は、配線部13のTa薄膜23
とTi薄膜25の露出側面上にも形成され、配線部13
のTa薄膜23とTi薄膜25とは、この露出側面上に
形成された透明導電膜22により接続される。
Next, a transparent conductive film made of ITO having a film thickness of 1000 angstrom is formed on the entire surface of the glass substrate on which the element portion 29 and the wiring portion 13 are formed by a sputtering method. Further, for example, a positive type photosensitizer is applied on the transparent conductive film, exposed and developed using a photomask to form a resist film having a predetermined pattern. Then, an etching solution prepared by mixing hydrochloric acid, nitric acid and water in a volume ratio of 1: 0.1: 1 is heated to 30 ° C. to perform etching to remove the transparent conductive film in the portion where the resist film is not formed. As shown in (f), the transparent electrode 14, the transparent conductive film 22 of a predetermined pattern that connects the wiring portion 13 and one of the two conductor forming portions of the element portion 29 formed of the Ta thin film, and the transparent electrode 14 and the element portion 29. The transparent conductive film 22 having a predetermined pattern is formed so as to connect to the other second conductor forming portion made of the Ti thin film. The transparent conductive film 22 that connects the wiring portion 13 and the element portion 29 is the Ta thin film 23 of the wiring portion 13.
And the wiring portion 13 is also formed on the exposed side surface of the Ti thin film 25.
The Ta thin film 23 and the Ti thin film 25 are connected by the transparent conductive film 22 formed on this exposed side surface.

【0030】つぎに上記透明導電膜22をレジストパタ
ーンとして、上記素子部29の2つの第2導体形成部分
間の露出部分を、前記Ti薄膜のエッチングと同様のウ
エットエッチングにより除去し、素子部29に2つの第
2導体21a ,21b を形成して非線形抵抗素子部とす
る。
Next, using the transparent conductive film 22 as a resist pattern, the exposed portion between the two second conductor forming portions of the element portion 29 is removed by wet etching similar to the etching of the Ti thin film, and the element portion 29 is removed. Two second conductors 21a and 21b are formed on the above to form a non-linear resistance element section.

【0031】液晶表示装置の製造は、その後、上記のよ
うに形成されたアレイ基板の非線形抵抗素子部、配線部
13および透明電極14の形成された面(一方のガラス
基板の対向面)にポリイミド樹脂を塗布し焼成して配向
膜を形成する。そして液晶の配向方向を規制するラビィ
ングをおこなう。一方、他方のガラス基板15の対向面
にも、上記一方のガラス基板の透明電極の形成方法と同
様の方法により透明電極16を形成し、さらにポリイミ
ド樹脂を塗布し焼成して配向膜を形成する。そして上記
アレイ基板に対して、約90°捩じった方向にラビィン
グする。つぎに液晶分子の長軸方向が上記2種類の基板
間で約90°捩れるように、両基板を5〜10μm の間
隔を保って接合し、両基板間に液晶を注入して液晶セル
を形成する。その後、この液晶セルの外面に、偏光軸を
約90°捩った形で偏光板を配置して液晶表示装置とす
る。
After manufacturing the liquid crystal display device, a polyimide is formed on the surface of the array substrate formed as described above on which the nonlinear resistance element portion, the wiring portion 13 and the transparent electrode 14 are formed (opposing surface of one glass substrate). A resin is applied and baked to form an alignment film. Then, the rubbing for controlling the alignment direction of the liquid crystal is performed. On the other hand, on the opposite surface of the other glass substrate 15, the transparent electrode 16 is formed by the same method as the method for forming the transparent electrode of the above one glass substrate, and then a polyimide resin is applied and baked to form an alignment film. . Then, the array substrate is rubbed in a direction twisted by about 90 °. Next, the two substrates are bonded together with a space of 5 to 10 μm so that the major axis direction of the liquid crystal molecules is twisted about 90 ° between the above two types of substrates, and liquid crystal is injected between the two substrates to form a liquid crystal cell. Form. After that, a polarizing plate is arranged on the outer surface of the liquid crystal cell in such a manner that the polarization axis is twisted by about 90 ° to form a liquid crystal display device.

【0032】ところで、上記のように液晶表示装置を構
成すると、従来の2個のMIM素子を逆極性に直列接続
してスイッチング素子とする液晶表示装置の製造にくら
べて、薄膜形成、エッチングの回数を1回少なくして、
3回の薄膜形成、エッチングにより液晶表示装置を製造
することができ、容易にフリッカーや焼付きなどのない
高品位液晶表示装置とすることができる。また導電層間
の接続が良好となり、配線抵抗を小さくできるため、大
型高精細液晶表示装置の実用化に有効であるなどの効果
が得られる。
By the way, when the liquid crystal display device is constructed as described above, the number of times of thin film formation and etching is different from that in the conventional manufacture of a liquid crystal display device in which two MIM elements are connected in series in opposite polarities to form a switching element. Less once,
A liquid crystal display device can be manufactured by forming a thin film three times and etching, and a high-quality liquid crystal display device without flicker or image sticking can be easily obtained. Further, the connection between the conductive layers becomes good and the wiring resistance can be reduced, so that it is possible to obtain effects such as being effective for practical application of a large-sized high-definition liquid crystal display device.

【0033】[0033]

【発明の効果】一方の基板の対向面に配線部、液晶駆動
用透明電極および2つの非線形抵抗素子からなる非線形
抵抗素子部が形成され、その各非線形抵抗素子が第1導
体を共通の導体として第1導体/第1導体の酸化膜から
なる非線形抵抗膜/第2導体の積層構造に形成され、一
方の非線形抵抗素子の第2導体が配線部に接続され、他
方の非線形抵抗素子の第2導体が液晶駆動用透明電極に
接続されてなる液晶表示装置において、配線部を第1導
体/第1導体の酸化膜/第2導体の積層構造に形成し、
この配線部の第1導体と第2導体およびこの配線部と一
方の非線形抵抗素子の第2導体が液晶駆動用透明電極を
構成する透明導電膜と同じ透明導電膜により接続し、他
方の非線形抵抗素子の第2導体と液晶駆動用透明電極が
同じく液晶駆動用透明電極を構成する透明導電膜と同じ
透明導電膜により接続すると、従来の2個のMIM素子
を逆極性に直列接続してスイッチング素子とする液晶表
示装置の製造にくらべて、薄膜形成、エッチングの回数
を少なくして液晶表示装置を製造することができ、容易
にフリッカーや焼付きなどのない高品位液晶表示装置と
することができる。また導電層間の接続が良好となり、
配線抵抗を小さくできるため、大型高精細液晶表示装置
の実用化に有効であるなどの効果が得られる。
EFFECTS OF THE INVENTION A wiring portion, a transparent electrode for driving a liquid crystal, and a non-linear resistance element portion composed of two non-linear resistance elements are formed on opposite surfaces of one substrate, and each non-linear resistance element uses the first conductor as a common conductor. It is formed in a laminated structure of a non-linear resistance film / a second conductor composed of a first conductor / an oxide film of the first conductor, a second conductor of one non-linear resistance element is connected to a wiring portion, and a second non-linear resistance element of the other non-linear resistance element is connected. In a liquid crystal display device in which a conductor is connected to a liquid crystal driving transparent electrode, a wiring portion is formed in a laminated structure of a first conductor / an oxide film of the first conductor / a second conductor,
The first conductor and the second conductor of this wiring portion and this wiring portion and the second conductor of the one non-linear resistance element are connected by the same transparent conductive film as the transparent conductive film forming the liquid crystal driving transparent electrode, and the other non-linear resistance is connected. When the second conductor of the element and the transparent electrode for driving the liquid crystal are connected by the same transparent conductive film as the transparent conductive film that also constitutes the transparent electrode for driving the liquid crystal, two conventional MIM elements are connected in series in opposite polarities to form a switching element. The liquid crystal display device can be manufactured by reducing the number of thin film formations and etchings as compared with the manufacturing of the liquid crystal display device described above, and a high-quality liquid crystal display device without flicker or image sticking can be easily obtained. . Also, the connection between the conductive layers is good,
Since the wiring resistance can be reduced, it is possible to obtain effects such as being effective in putting a large-sized high-definition liquid crystal display device to practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)はこの発明の一実施例に係るマトリ
ックス型液晶表示装置の一方の基板に形成される1画素
分の平面構造を示す図、図1(b)はそのB−B断面
図、図1(c)はそのC−C断面図である。
1A is a diagram showing a planar structure for one pixel formed on one substrate of a matrix type liquid crystal display device according to an embodiment of the present invention, and FIG. FIG. 1C is a sectional view taken along line B-C of FIG. 1B.

【図2】図2(a)ないし(f)はそれぞれこの発明の
一実施例であるマトリックス型液晶表示装置の製造方法
を説明するための図である。
FIGS. 2A to 2F are views for explaining a method of manufacturing a matrix type liquid crystal display device which is an embodiment of the present invention.

【図3】従来のマトリックス型液晶表示装置の要部構成
を示す図である。
FIG. 3 is a diagram showing a main part configuration of a conventional matrix type liquid crystal display device.

【図4】従来の2個のMIM素子を逆極性に直列接続し
たマトリックス型液晶表示装置の要部構成を示す図であ
る。
FIG. 4 is a diagram showing a main part configuration of a matrix type liquid crystal display device in which two MIM elements of the related art are connected in series with opposite polarities.

【符号の説明】[Explanation of symbols]

11…一方のガラス基板 12…非直線抵抗素子部 13…配線部 14…液晶駆動用透明電極 15…他方のガラス基板 16…透明電極 18a ,18b …MIM素子 19…第1導体 20…非直線抵抗膜 21a ,21b …第2導体 22…透明導電膜 23…Ta薄膜 24…Ta酸化膜 25…Ti薄膜 27…レジスト膜 11 ... One glass substrate 12 ... Non-linear resistance element portion 13 ... Wiring portion 14 ... Liquid crystal driving transparent electrode 15 ... Other glass substrate 16 ... Transparent electrodes 18a, 18b ... MIM element 19 ... First conductor 20 ... Non-linear resistance Films 21a, 21b ... Second conductor 22 ... Transparent conductive film 23 ... Ta thin film 24 ... Ta oxide film 25 ... Ti thin film 27 ... Resist film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液晶を挟んで対向する一方の基板の対向
面に配線部、液晶駆動用透明電極および2つの非線形抵
抗素子からなる非線形抵抗素子部が形成され、上記各非
線形抵抗素子が第1導体を共通の導体として第1導体/
第1導体の酸化膜からなる非線形抵抗膜/第2導体の積
層構造に形成され、一方の非線形抵抗素子の第2導体が
上記配線部に接続され、他方の非線形抵抗素子の第2導
体が上記液晶駆動用透明電極に接続されてなる液晶表示
装置において、 上記配線部が第1導体/第1導体の酸化膜/第2導体の
積層構造に形成され、この配線部の第1導体と第2導体
およびこの配線部と上記一方の非線形抵抗素子の第2導
体が上記液晶駆動用透明電極を構成する透明導電膜と同
じ透明導電膜により接続され、上記他方の非線形抵抗素
子の第2導体と上記液晶駆動用透明電極が同じく上記液
晶駆動用透明電極を構成する透明導電膜と同じ透明導電
膜により接続されていることを特徴とする液晶表示装
置。
1. A non-linear resistance element section comprising a wiring section, a liquid crystal driving transparent electrode and two non-linear resistance elements is formed on the facing surface of one of the substrates facing each other across the liquid crystal, and each of the non-linear resistance elements is the first. 1st conductor with conductor as common conductor
It is formed in a laminated structure of a non-linear resistance film / a second conductor made of an oxide film of a first conductor, the second conductor of one of the non-linear resistance elements is connected to the wiring portion, and the second conductor of the other non-linear resistance element is the above-mentioned. In a liquid crystal display device connected to a liquid crystal driving transparent electrode, the wiring portion is formed in a laminated structure of a first conductor / an oxide film of the first conductor / a second conductor, and the first conductor and the second conductor of the wiring portion are formed. The conductor and this wiring portion and the second conductor of the one non-linear resistance element are connected by the same transparent conductive film as the transparent conductive film forming the liquid crystal driving transparent electrode, and the second conductor of the other non-linear resistance element and the above A liquid crystal display device, wherein the liquid crystal driving transparent electrode is connected by the same transparent conductive film as the transparent conductive film forming the liquid crystal driving transparent electrode.
【請求項2】 液晶を挟んで対向する一方の基板の対向
面に配線部、液晶駆動用透明電極および2つの非線形抵
抗素子からなる非線形抵抗素子部が形成され、上記各非
線形抵抗素子が第1導体を共通の導体として第1導体/
第1導体の酸化膜からなる非線形抵抗膜/第2導体の積
層構造に形成され、一方の非線形抵抗素子の第2導体が
上記配線部に接続され、他方の非線形抵抗素子の第2導
体が上記液晶駆動用透明電極に接続されてなる液晶表示
装置の製造方法において、 上記一方の基板の対向面に第1導体/第1導体の酸化膜
/第2導体の積層構造層を形成する工程と、上記積層構
造層を所定パターンに形成する工程と、上記所定パター
ンの積層構造層の第1導体の側面部を酸化してこの側面
部に第1導体の酸化膜を形成する工程と、上記第1導体
の側面部に酸化膜の形成された所定パターンの積層構造
層を第1導体/第1導体の酸化膜からなる非線形抵抗膜
/第2導体の積層構造からなる素子部と第1導体/第1
導体の酸化膜/第2導体の積層構造からなる配線部とに
分断する工程と、透明導電膜を形成して、上記配線部の
第1導体と第2導体およびこの配線部と上記素子部の分
割された一方の第2導体を接続すると同時に、上記透明
導電膜により透明電極を形成し、かつこの透明電極と上
記素子部の分割された他方の第2導体を接続する工程
と、上記素子部の第2導体を2分割して2個の第2導体
を形成する工程とにより上記配線部、液晶駆動用透明電
極および非線形抵抗素子部を形成することを特徴とする
液晶表示装置の製造方法。
2. A non-linear resistance element section composed of a wiring section, a liquid crystal driving transparent electrode and two non-linear resistance elements is formed on the facing surface of one of the substrates facing each other with the liquid crystal interposed therebetween, and each of the non-linear resistance elements is the first. 1st conductor with conductor as common conductor
It is formed in a laminated structure of a non-linear resistance film / a second conductor made of an oxide film of a first conductor, the second conductor of one of the non-linear resistance elements is connected to the wiring portion, and the second conductor of the other non-linear resistance element is the above-mentioned. In a method for manufacturing a liquid crystal display device connected to a liquid crystal driving transparent electrode, a step of forming a laminated structure layer of a first conductor / an oxide film of the first conductor / a second conductor on the opposite surface of the one substrate, A step of forming the laminated structure layer in a predetermined pattern; a step of oxidizing a side surface portion of the first conductor of the laminated structure layer in the predetermined pattern to form an oxide film of the first conductor on the side surface portion; A layered structure layer having a predetermined pattern in which an oxide film is formed on the side surface of the conductor is provided with an element portion composed of a layered structure of a first conductor / a non-linear resistance film composed of an oxide film of the first conductor / a second conductor 1
A step of dividing the conductor into an oxide film / a wiring part having a laminated structure of a second conductor; and forming a transparent conductive film to form the first conductor and the second conductor of the wiring part, and the wiring part and the element part. A step of connecting one of the divided second conductors and at the same time forming a transparent electrode by the transparent conductive film, and connecting the transparent electrode and the other divided second conductor of the element part; And a step of forming two second conductors by dividing the second conductor into two, the wiring portion, the liquid crystal driving transparent electrode, and the non-linear resistance element portion are formed.
JP21463093A 1993-08-31 1993-08-31 Liquid crystal display device and its production Pending JPH0764116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21463093A JPH0764116A (en) 1993-08-31 1993-08-31 Liquid crystal display device and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21463093A JPH0764116A (en) 1993-08-31 1993-08-31 Liquid crystal display device and its production

Publications (1)

Publication Number Publication Date
JPH0764116A true JPH0764116A (en) 1995-03-10

Family

ID=16658926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21463093A Pending JPH0764116A (en) 1993-08-31 1993-08-31 Liquid crystal display device and its production

Country Status (1)

Country Link
JP (1) JPH0764116A (en)

Similar Documents

Publication Publication Date Title
JP3238223B2 (en) Liquid crystal display device and display device
JPH06250210A (en) Liquid crystal display device and its production
JP2957901B2 (en) Active matrix array substrate and manufacturing method thereof
JPH0764116A (en) Liquid crystal display device and its production
JP2778746B2 (en) Liquid crystal display device and method of manufacturing electrode substrate
US6157422A (en) Two-terminal nonlinear element having insulating films of different thickness formed on the flat top surface of a lower electrode
JP2654661B2 (en) Electro-optical display
JPH0822032A (en) Production of liquid crystal display device
JPH0822031A (en) Liquid crystal display device and its production
JPH0764117A (en) Production of liquid crystal display device
JPS62272228A (en) Liquid crystal cell
JPH08271932A (en) Liquid crystal display device
JP2585465B2 (en) Matrix array substrate
JP3603974B2 (en) Wiring board and display device
JPH06160911A (en) Liquid crystal display device
JPH06308539A (en) Production of matrix array substrate
JPH07225400A (en) Production of liquid crystal display device
JPH08286198A (en) Liquid crystal display device and its production
JPH06308538A (en) Production of liquid crystal display device
JPH05196970A (en) Liquid crystal display device
JPH05232517A (en) Substrate for liquid crystal display device and its production
JPH0720492A (en) Liquid crystal display device and its production
JPH05196968A (en) Liquid crystal display device
JPS61170725A (en) Liquid crystal display device
JP2003050403A (en) Liquid crystal display device and its manufacturing method