JPH0763721A - Corrosion forecasting method and apparatus metal material - Google Patents
Corrosion forecasting method and apparatus metal materialInfo
- Publication number
- JPH0763721A JPH0763721A JP21145993A JP21145993A JPH0763721A JP H0763721 A JPH0763721 A JP H0763721A JP 21145993 A JP21145993 A JP 21145993A JP 21145993 A JP21145993 A JP 21145993A JP H0763721 A JPH0763721 A JP H0763721A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- metal material
- ions
- solution
- potential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 69
- 230000007797 corrosion Effects 0.000 title claims abstract description 69
- 239000007769 metal material Substances 0.000 title claims abstract description 26
- 238000013277 forecasting method Methods 0.000 title 1
- 150000002500 ions Chemical class 0.000 claims abstract description 21
- 238000001514 detection method Methods 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 11
- 230000002269 spontaneous effect Effects 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 9
- -1 triiodide ions Chemical class 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 4
- 238000011088 calibration curve Methods 0.000 abstract description 2
- 238000010828 elution Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 16
- 239000000126 substance Substances 0.000 description 5
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- WRTMQOHKMFDUKX-UHFFFAOYSA-N triiodide Chemical compound I[I-]I WRTMQOHKMFDUKX-UHFFFAOYSA-N 0.000 description 2
- 229940006158 triiodide ion Drugs 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 238000011481 absorbance measurement Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、三ハロゲン化物イオン
を含む溶液と接触している金属材料の腐食状態を予測す
るのに最適な腐食予測方法及びその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optimum corrosion prediction method and apparatus for predicting the corrosion state of a metal material in contact with a solution containing a trihalide ion.
【0002】[0002]
【従来の技術】化学プラント及び産業廃棄物プラントの
運転環境中には、腐食性の強い塩素(Cl2)、臭素
(Br2)及びヨウ素(I2)等のハロゲンガスが含まれ
ている場合が多く、その高温度部分においては腐食によ
る装置のリーク事故発生の要因となっている。このため
前記プラントでは運転中の機器の腐食発生や進行状態を
検知、管理する必要が生じ、従来においては、次の腐食
管理方法が提案されている。2. Description of the Related Art When the operating environment of a chemical plant or an industrial waste plant contains halogen gas such as highly corrosive chlorine (Cl 2 ), bromine (Br 2 ) and iodine (I 2 ). In many cases, the high temperature part is a cause of equipment leakage accidents due to corrosion. Therefore, in the plant, it is necessary to detect and control the occurrence of corrosion and the progress of corrosion of the equipment under operation. Conventionally, the following corrosion management method has been proposed.
【0003】 三ヨウ化物イオンによる腐食は金属材
料表面と接触している液内のI3~イオンが濃縮するため
に進行するので、このI3~イオン濃度をその伝導度を介
してモニターすることにより腐食を管理する方法(特願
平2−74246号)。Corrosion due to triiodide ions proceeds due to the concentration of I 3 -ions in the liquid in contact with the surface of the metal material. Therefore, the concentration of I 3 -ions should be monitored via its conductivity. To control corrosion by Japanese Patent Application No. 2-74246.
【0004】 腐食性I3~イオンの色を吸光度測定に
よりモニターすることにより腐食を管理する方法。Corrosive I 3 ~ A method of controlling corrosion by monitoring the color of ions by absorbance measurement.
【0005】 理論式を利用して、腐食量をモニター
する方法(特願平4−57882号)。A method of monitoring the amount of corrosion using a theoretical formula (Japanese Patent Application No. 4-57882).
【0006】 腐食速度が分極抵抗に反比例する原理
を利用して分極抵抗を電気的に測定する方法(特公平3
−44659号公報)。A method for electrically measuring the polarization resistance by utilizing the principle that the corrosion rate is inversely proportional to the polarization resistance (Japanese Patent Publication No.
No. 44659).
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上記従
来の腐食管理方法は、三ハロゲン化物イオンの濃度が約
0.1M以上になると計測が不可能になると云う問題が
あった。However, the above-mentioned conventional corrosion control method has a problem that measurement becomes impossible when the concentration of trihalide ion is about 0.1 M or more.
【0008】本発明の目的は、高濃度の三ハロゲン化物
イオンによる金属材料腐食の管理において、その腐食形
態と腐食量を予測する金属材料の腐食予測方法とその装
置を提供することである。An object of the present invention is to provide a metal material corrosion prediction method and apparatus for predicting the corrosion form and the amount of corrosion in the management of metal material corrosion due to a high concentration of trihalide ions.
【0009】[0009]
【課題を解決するための手段】上記課題を達成するた
め、本願第1発明は、三ハロゲン化物イオンを含む溶液
と接触している金属材料の腐食予測方法において、前記
溶液の自然電位を電気化学的に測定し、該自然電位の測
定値と予め入力された腐食データに基づいて、前記自然
電位に対応する腐食形態と腐食量を予測することであ
る。In order to achieve the above-mentioned object, the first invention of the present application is a method for predicting corrosion of a metal material which is in contact with a solution containing a trihalide ion, wherein the spontaneous potential of the solution is electrochemically determined. It is to predict the corrosion form and the corrosion amount corresponding to the natural potential based on the measured value of the natural potential and the corrosion data input in advance.
【0010】本願第2発明は、三ハロゲン化物イオンを
含む溶液と接触している金属材料の腐食予測装置におい
て、三ハロゲン化物イオンを含む溶液の自然電位を検知
する電気化学的センサーと、前記溶液の温度を検知する
温度センサーと、前記両センサーの検知信号に基づいて
自然電位及び温度を計測する計測部とを有し、該計測部
の計測信号と予め入力された腐食データに基づき前記金
属材料の腐食形態と腐食量を予測する演算部とを備えた
ものである。The second invention of the present application is, in a corrosion predicting apparatus for a metal material which is in contact with a solution containing a trihalide ion, an electrochemical sensor for detecting a spontaneous potential of a solution containing a trihalide ion, and the solution. A temperature sensor that detects the temperature of the metal material, and a measuring unit that measures the natural potential and the temperature based on the detection signals of the both sensors, and the metal material based on the measurement signal of the measuring unit and the corrosion data input in advance. It is provided with a calculation unit that predicts the corrosion form and the amount of corrosion.
【0011】[0011]
【作用】本発明に係る金属材料の腐食予測方法及びその
装置は、次のように作用する。三ハロゲン化物イオン、
例えば三ヨウ化物イオンは腐食の進行と共に次のような
化学反応を起こす。The metal material corrosion prediction method and apparatus according to the present invention operate as follows. Trihalide ion,
For example, triiodide ions cause the following chemical reactions as corrosion progresses.
【0012】[0012]
【化1】 [Chemical 1]
【0013】[0013]
【化2】 [Chemical 2]
【0014】従って、溶液中のI3~イオンの電位Eは次
式で表される。Therefore, the potential E of I 3 -ion in the solution is expressed by the following equation.
【0015】[0015]
【数1】 [Equation 1]
【0016】但し、 R : ガス定数 T : 絶対温度 F : ファラデイー定数 a(I2) : I2の活量 a(I~) : I~の活量 a(I3~): I3~の活量 E0 :(a(I3~)/(a(I2)−a(I
~)))=1の場合の電位 溶液に含まれる三ヨウ化物イオンは、ハロゲンガスの供
給により前記化学式(1)及び(2)に従い、金属材料
の溶出により濃縮する。このため、溶液の濃度の増大が
電位の低下になるので、自然電位E及び絶対温度Tを測
定することにより、上記数式(3)からI3~イオンの活
量a(I3~)を一様に求めることが出来る。計算結果
は、発生した腐食形態と共に、腐食量が表示部に表示さ
れる。However, R: Gas constant T: Absolute temperature F: Faraday constant a (I 2 ): I 2 activity a (I ~): I ~ activity a (I 3 ~): I 3 ~ Activity E 0 : (a (I 3 ~) / (a (I 2 ) −a (I
Potential when ~))) = 1 The triiodide ion contained in the solution is concentrated by the elution of the metal material according to the chemical formulas (1) and (2) by the supply of the halogen gas. Therefore, an increase in the concentration of the solution causes a decrease in the potential. Therefore, by measuring the spontaneous potential E and the absolute temperature T, the activity a (I 3 ~) of I 3 ~ ion can be calculated from the above formula (3). Can be asked. As for the calculation result, the amount of corrosion is displayed on the display unit together with the type of corrosion that has occurred.
【0017】[0017]
【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。図1は、I3~イオンを含む溶液に接触して
いる金属材料の腐食進行に伴う自然電位Eと経過時間の
関係を示すグラフで、自然電位E(SCE)を縦軸に、
経過時間(H)を横軸にとっている。経過時間と共に金
属材料の腐食が進行し、前記化学式(1)、(2)によ
って、I3~イオンが濃縮され、自然電位Eは低下する。
A〜B間の電位低下は浸漬された金属材料の不働態皮膜
を通して溶解する金属により濃縮するI3~イオンに起因
する。電位がB点に達すると孔食が発生し進行を開始す
る。B〜C間は孔食が発生、進行している区間である。
自然電位Eが急速に低下し始めるC点に達するあたりで
全面腐食が開始する。C〜D間は全面腐食に対応する。
従って、自然電位Eを測定することにより腐食形態と腐
食量を予測することが可能である。Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a graph showing the relationship between the spontaneous potential E and the elapsed time associated with the progress of corrosion of a metal material in contact with a solution containing I 3 to ions, where the natural potential E (SCE) is on the vertical axis.
The horizontal axis represents the elapsed time (H). Corrosion of the metal material progresses with the lapse of time, the ions I 3 to are concentrated and the spontaneous potential E is lowered by the chemical formulas (1) and (2).
The decrease in potential between A and B is due to I 3 − ions concentrated by the metal dissolved through the passive film of the immersed metallic material. When the electric potential reaches the point B, pitting corrosion occurs and starts to progress. Between B and C is a section where pitting corrosion is occurring and progressing.
The general corrosion starts around the point C where the natural potential E starts to decrease rapidly. Between C and D corresponds to general corrosion.
Therefore, by measuring the natural potential E, it is possible to predict the corrosion form and the corrosion amount.
【0018】図2は、本発明の金属材料の腐食予測装置
の一実施例を示す系統図である。腐食予測装置1は、計
測部5と演算部6及び表示部7とを備え、計測部5に
は、電気化学的センサー3と温度センサー4が接続され
ている。電気化学的センサー3と温度センサー4は、三
ヨウ化物イオンを含む溶液2の中に浸漬されている。
尚、8は三ヨウ化物イオンを含む溶液2を保持する金属
製容器であり、9はハロゲンガス注入管である。FIG. 2 is a system diagram showing an embodiment of the corrosion predicting apparatus for metallic materials according to the present invention. The corrosion prediction apparatus 1 includes a measurement unit 5, a calculation unit 6, and a display unit 7, and the measurement unit 5 is connected to an electrochemical sensor 3 and a temperature sensor 4. The electrochemical sensor 3 and the temperature sensor 4 are immersed in the solution 2 containing triiodide ions.
Incidentally, 8 is a metal container for holding the solution 2 containing triiodide ions, and 9 is a halogen gas injection tube.
【0019】この腐食予測装置1は、次のように作用す
る。三ヨウ化物イオンの溶液2に浸漬されている電気化
学的センサー3と温度センサー4とは、各々検知信号を
発生し、伝達経路10、11を介して計測部5に入り、
自然電位E及び絶対温度Tが計測される。計測部5によ
り計測された自然電位E及び絶対温度Tは、演算部6で
前記数式(3)に従い、活量a(I3~)が計算される。
そして、予め入力されたI3~の活量と腐食形態及び腐食
量とのキャリブレーションカーブより本計算値a(I
3~)に対する腐食形態が求められ、腐食量が計算され
る。演算部6での計算結果は、三つの腐食形態、即ち不
働態保持状態、孔食及び全面腐食と共に腐食量が表示部
7に表示される。The corrosion predicting device 1 operates as follows. The electrochemical sensor 3 and the temperature sensor 4 immersed in the triiodide ion solution 2 generate detection signals, respectively, and enter the measuring unit 5 via the transmission paths 10 and 11,
The natural potential E and the absolute temperature T are measured. With respect to the natural potential E and the absolute temperature T measured by the measuring unit 5, the calculating unit 6 calculates the activity a (I 3 ~) according to the mathematical expression (3).
Then, pre-input I 3 corrosion configuration and activity of ~ and the calculated value from the calibration curve of the amount of corrosion a (I
Corrosion morphology for 3 ~) is calculated and the amount of corrosion is calculated. As a result of calculation by the calculation unit 6, the amount of corrosion is displayed on the display unit 7 together with three types of corrosion forms, that is, the passive state holding state, pit corrosion and general corrosion.
【0020】[0020]
【発明の効果】本発明によれば、三ハロゲン化物イオン
を含む溶液に接触している金属材料の腐食管理につい
て、三ハロゲン化物イオンの濃度が高い場合であって
も、その濃度を計測出来るので、金属材料の腐食形態と
腐食量を予測することが出来、金属材料の腐食予測方法
とその装置を提供することが出来る。According to the present invention, the corrosion control of a metal material in contact with a solution containing a trihalide ion can be measured even if the concentration of the trihalide ion is high. It is possible to predict the corrosion form and corrosion amount of a metal material, and to provide a corrosion prediction method for a metal material and its apparatus.
【図1】I3~イオンを含む溶液に接触している金属材料
の腐食進行に伴う自然電位Eと経過時間の関係を示すグ
ラフである。FIG. 1 is a graph showing the relationship between the spontaneous potential E and the elapsed time accompanying the progress of corrosion of a metal material in contact with a solution containing I 3 to ions.
【図2】本発明の金属材料の腐食予測装置の一実施例を
示す系統図である。FIG. 2 is a system diagram showing one embodiment of a corrosion prediction apparatus for metallic materials according to the present invention.
1 腐食予測装置 2 溶液 3 電気化学的センサー 4 温度センサー 5 計測部 6 演算部 7 表示部 8 金属製容器 9 ハロゲンガス注入管 1 Corrosion Prediction Device 2 Solution 3 Electrochemical Sensor 4 Temperature Sensor 5 Measuring Section 6 Computing Section 7 Display Section 8 Metal Container 9 Halogen Gas Injection Pipe
Claims (2)
している金属材料の腐食予測方法において、前記溶液の
自然電位を電気化学的に測定し、該自然電位の測定値と
予め入力された腐食データに基づいて、前記自然電位に
対応する腐食形態と腐食量を予測することを特徴とする
金属材料の腐食予測方法。1. A method of predicting corrosion of a metal material which is in contact with a solution containing trihalide ions, wherein the spontaneous potential of the solution is electrochemically measured, and the measured value of the spontaneous potential and the corrosion previously input. A corrosion prediction method for a metal material, characterized by predicting a corrosion form and a corrosion amount corresponding to the natural potential based on the data.
している金属材料の腐食予測装置において、三ハロゲン
化物イオンを含む溶液の自然電位を検知する電気化学的
センサーと、前記溶液の温度を検知する温度センサー
と、前記両センサーの検知信号に基づいて自然電位及び
温度を計測する計測部とを有し、該計測部の計測信号と
予め入力された腐食データに基づき前記金属材料の腐食
形態と腐食量を予測する演算部とを備えた金属材料の腐
食予測装置。2. In a corrosion prediction device for a metal material, which is in contact with a solution containing trihalide ions, an electrochemical sensor for detecting a spontaneous potential of a solution containing trihalide ions, and a temperature of the solution. Having a temperature sensor and a measuring unit that measures the spontaneous potential and temperature based on the detection signals of both sensors, and the corrosion form of the metal material based on the measurement signal of the measuring unit and the corrosion data input in advance, An apparatus for predicting corrosion of metallic materials, comprising: an arithmetic unit for predicting the amount of corrosion.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP21145993A JPH0763721A (en) | 1993-08-26 | 1993-08-26 | Corrosion forecasting method and apparatus metal material |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP21145993A JPH0763721A (en) | 1993-08-26 | 1993-08-26 | Corrosion forecasting method and apparatus metal material |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0763721A true JPH0763721A (en) | 1995-03-10 |
Family
ID=16606294
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP21145993A Pending JPH0763721A (en) | 1993-08-26 | 1993-08-26 | Corrosion forecasting method and apparatus metal material |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0763721A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPWO2023058126A1 (en) * | 2021-10-05 | 2023-04-13 |
-
1993
- 1993-08-26 JP JP21145993A patent/JPH0763721A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPWO2023058126A1 (en) * | 2021-10-05 | 2023-04-13 | ||
| WO2023058126A1 (en) * | 2021-10-05 | 2023-04-13 | 三菱電機株式会社 | Method for manufacturing substrate and method for manufacturing semiconductor device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8005629B2 (en) | Method for monitoring sensor function | |
| US5006786A (en) | Device for in situ monitoring of corrosion rates of polarized or unpolarized metals | |
| CN117288825B (en) | Coal mine equipment safety control method and system | |
| CN214225012U (en) | Process analysis system | |
| US11946905B2 (en) | Evaluation of fluid quality with signals | |
| EP0593168A1 (en) | Method and apparatus for measuring underdeposit localized corrosion rate or metal corrosion rate under tubercles in cooling water systems | |
| JPH0763721A (en) | Corrosion forecasting method and apparatus metal material | |
| US5517181A (en) | Hazardous fluid leak detector | |
| WO2000014523A2 (en) | Apparatus for monitoring the operability of an electrochemical sensor | |
| JP3314645B2 (en) | How to monitor pitting | |
| CN205426744U (en) | Corrode measurement system | |
| US4256542A (en) | Process and device for monitoring the change in the surface condition of a metal component in an installation containing an ionic phase | |
| CN101221144B (en) | Method of monitoring an electrochemical half-cell | |
| CN114002122B (en) | Concrete ion invasion resistance test equipment and test method under continuous load effect | |
| JP2004037315A (en) | Method for calculating the flow rate of leak water containing seawater in groundwater, flow rate calculation device, and control device for leakage pumping amount | |
| JPH07209173A (en) | Method and apparatus for estimating statistical and probabilistic quantity of corrosion | |
| JPH05113397A (en) | Method and apparatus for estimating corrosion of metal material | |
| JPH0331792B2 (en) | ||
| JPH05142139A (en) | Method for predicting crevice corrosion of metallic material | |
| JP3265185B2 (en) | Corrosion rate measuring method and apparatus | |
| KR20040082133A (en) | Automatic monitoring device and method of cooling water system | |
| KR0121438Y1 (en) | Ratio control unit of chemical liquid for pcb manufacture | |
| JPH0438294B2 (en) | ||
| Clarke et al. | Model-Based Validation of a DOx Sensor | |
| US20200124567A1 (en) | Apparatus and method for determining water chloride concentration |