JP2004037315A - Flow rate calculation method and flow rate calculation device of leak of ground water including sea water, and control device of amount of pumped water leak - Google Patents

Flow rate calculation method and flow rate calculation device of leak of ground water including sea water, and control device of amount of pumped water leak Download PDF

Info

Publication number
JP2004037315A
JP2004037315A JP2002196202A JP2002196202A JP2004037315A JP 2004037315 A JP2004037315 A JP 2004037315A JP 2002196202 A JP2002196202 A JP 2002196202A JP 2002196202 A JP2002196202 A JP 2002196202A JP 2004037315 A JP2004037315 A JP 2004037315A
Authority
JP
Japan
Prior art keywords
flow rate
water
leak
leakage
electric conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002196202A
Other languages
Japanese (ja)
Other versions
JP4065154B2 (en
Inventor
Hiroyuki Sakai
坂井 宏行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2002196202A priority Critical patent/JP4065154B2/en
Publication of JP2004037315A publication Critical patent/JP2004037315A/en
Application granted granted Critical
Publication of JP4065154B2 publication Critical patent/JP4065154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To determine simply the flow rate of a water leak including sea water without being influenced by alkaline earth metal ions such as a calcium ion which is a component derived from the sea water. <P>SOLUTION: The flow rate of the water leak including sea water has a linear relation with its electric conductivity. The relational expression is determined beforehand, and the electric conductivity of the water leak measured by using an electrode for electric conductivity measurement which is hardly influenced by the component derived from the sea water such as calcium ions for a long period is substituted into the determined relational expression, to thereby calculate the flow rate of the water leak. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、海底トンネル等の地下構造物のように海底や海岸近傍にあって、地下水に海水を含む漏水がある場合における漏水の流量算出方法、流量算出装置および漏水汲み出し量の制御装置の技術分野に属するものである。
【0002】
【従来技術】
こんにち、地下水面や海面より低い位置にトンネルやボックスカルバート等の地下構造物を築造することが頻繁に行われ、このような地下構造物では、漏出した水の自然排水ができない場合があり、このときには地下構造物の水没を避けるため漏出した水を動力を使って地上に排出することが要求される。この様な地下構造物における漏水の要因には地下水の存在があげられるが、当該地下水の供給量は、梅雨や台風による集中的な大雨や逆に渇水等の自然環境(特に雨量)に左右されることもあって、緩慢ではあるが変化する。ところが、構造物の内部に漏出したこのような水の排出能力については漏水流量に対応させることが効率上好ましいだけでなく、漏水状態を把握することもメンテナンスの管理上、また、構造物の保安上の理由から要求される。そのためには、漏水流量を定期的に測定することが必要になり、このようなことは海水が漏水中に混入する海底や海岸に近い位置に築造した地下構造物についても同じことがいえる。
そしてこのような漏水流量の測定には、例えば三角ぜき(または四角ぜき)法というものが従来から採用されている。この方法は、一般的に広く用いられる流量測定法であって、流水をせき止めることができる三角ぜきを適宜位置に形成し、該三角ぜきにせき止められ、これを乗り越えてくる流水の深さから単位時間当たり(例えば1時間とか1日当たり)の漏水流量を算出するという直接的な測定手法である。ところが該三角ぜき法は、せき止め部位からの漏水がないよう粘土等のシール材を用いてしっかりとした目止めを素早く形成する必要がある一方で、測定後においては、排水のため設けられた貯留槽に前記シール材が流れ込まないよう使用ずみのシール材を完全に除去する必要に迫られ、測定作業が面倒、かつ、煩雑になり、しかも長時間を要するという問題がある。さらに三角ぜき法は、測定者個人が微妙な貯留水量を実測するものであるため、測定値に公正を期すため複数の測定者が必要で、作業能率が低いという問題もある。
【0003】
そこで本発明の発明者は、特開2001−141545号公報に示されるように、陸上側から漏洩する地下水量は自然環境等により変化するのに対し、海底から漏洩する海水量は殆ど変化がないと共に海水成分も略一定であると予測し、この予測に基づいて、地下水に海水を含んだ漏水(以下「海水含有漏水」という)中の海水由来成分である特定イオン(例えばナトリウムイオン)の濃度と漏水流量とが一次の関係になるのではないかという推論をした。そしてこれを立証するため、実際に、地下構造物から漏洩する海水含有漏水について、特定イオンの濃度とそのときの漏水流量とを測定してみたところ、該特定イオンの濃度と漏水流量とは、推論どおり一次の関係式に近似できることを見出し、これにより、該一次の関係式をあらかじめ求めておけば、以降は、海水含有漏水中の特定イオンの濃度を測定し、その測定値を一次の関係式に代入することで海水含有漏水の流量を簡単に算出できる手法を開発し、これにより、三角ぜき法によるような面倒な測定をすることなく、能率の良い流量算出ができるようになった。
【0004】
【発明が解決しようとする課題】
ところが前記開発した漏水流量を算出する手法は、該算出をするにあたり、漏水中の特定イオンの濃度を測定する必要があるが、そのような濃度測定法としては、イオンクロマトグラフィーを用いた手法やイオン選択性電極を用いた手法がある。ところが前者の場合、現場での測定はできず、現場で汲み上げた漏水を実験室まで運び込んでの濃度測定となって面倒、かつ、煩雑であるだけでなく、装置自体も大きく、またコスト高になるという問題がある。一方、後者のものは、現場の漏水にイオン選択性電極を浸漬することにより簡単な濃度測定が可能となるが、該イオン選択性電極を用いて濃度測定する場合、イオン選択性電極は良く洗浄したものを用いて測定するのが原則であるが、漏水位置が複数あり、これらを纏めて測定しようとする場合、いちいち洗浄するのが面倒であるばかりでなく、洗浄不良により測定値の正確度が損なわれるという問題がある。一方、イオン選択性電極を測定現場に据え置いて漏水に浸漬し続けたままとし、測定値を人手を用いることなく随時入力できるようにすることも提唱されるが、イオン選択性電極を長期間浸漬し続けたままにすると、イオン選択性電極に、例えばカルシウムイオン等のアルカリ土類金属イオンが累積的に付着することになって測定値が不安定化し、場合によっては突然、異常な測定値が観測されることがあることもあって信頼性に欠け、これを回避するには、イオン選択性電極を定期的に洗浄する等して付着しているイオンを除去する作業が必要になるという問題があり、ここにも本発明の解決すべき課題がある。
さらにまた、海水含有漏水のある地下構造物では、該漏水をポンプによって汲み出す必要があるが、漏水流量の継続的な把握が難しく、このためポンプの駆動効率が低いという問題もあり、これらに本発明が解決せんとする課題がある。
【0005】
【課題を解決するための手段】
本発明は、上記のような実情に鑑み、これらの課題を解決することを目的として創作されたものであって、請求項1の発明は、地下水に海水を含んだ漏水の流量を、該漏水の流量と電気伝導率との関係を関数化し、該関数化されたものに、測定した漏水の電気伝導率を代入して算出するようにしたことを特徴とする地下水に海水を含む漏水の流量算出方法である。
また、請求項2の発明は、地下水に海水を含んだ漏水の流量を算出するにあたり、漏水の流量と電気伝導率との関係を関数化する手段と、漏水の電気伝導率の測定値を前記関数化されたものに代入して漏水の流量を算出する手段とを備えたことを特徴とする地下水に海水を含む漏水の流量算出装置である。
そしてこれらのようにすることで、イオンの付着には殆ど影響を受けることがない電気伝導率電極を用いて得た電気伝導率の測定値に基づいて地下水に海水を含んだ漏水流量を算出できることになって、長期に亘って安定した漏水流量の算出ができる。
請求項3の発明は、請求項1または2において、漏水の流量と電気伝導率との関係は一次関数であることを特徴とするもので、このようにすることにより、より簡便な漏水流量の算出ができる。
請求項4の発明は、請求項3の発明において、一次関数は、漏水の流量と電気伝導率との測定値から求めたものであることを特徴とするものであり、また請求項5の発明は、請求項3において、一次関数は、漏水の流量と海水由来成分濃度との測定値を、海水由来成分濃度と電気伝導率との関係式で補正して求めたものであることを特徴とするものであり、これらのようにすることで、請求項3の一次関数を求めることが、直接的に、または間接的にできることになる。
請求項6の発明は、地下水に海水を含む漏水を地下構造物から汲み出すためのポンプ手段と、該ポンプ手段の汲み出し量の制御をする制御手段とを備えて漏水汲み出しの制御装置を構成するにあたり、前記制御手段には、漏水の電気伝導率の測定値を入力する入力手段と、あらかじめ測定された漏水の流量と電気伝導率とのあいだから求められた関数式に前記入力した電気伝導率の測定値を当てはめて得た漏水流量に基づいてポンプ手段の汲み出し量を決定する決定手段とが設けられて構成されていることを特徴とする漏水汲み出し量の制御装置である。そしてこのように構成することにより、地下構造物からのポンプ手段による漏水汲み出しを、漏水流量に応じてできることになってポンプ手段の駆動効率が向上する。
請求項7の発明は、請求項6において、制御装置は、あらかじめ設定された漏水のある任意の場所に据え置かれた電気伝導率測定用の電極に接続され、該電極で測定された電気伝導率の測定値を入力するようになっていることを特徴とするものであり、このようにしたときには、電気伝導率の測定が人手をかけることなく効率的にできることになる。
請求項8の発明は、請求項7において、測定位置は複数設定され、これら複数の測定位置での電気伝導率の各測定値から算出される漏水流量を合算して漏水総流量を算出し、該漏水総流量に基づいてポンプ手段の汲み出し量を決定するものであることを特徴とするものであり、このようにすることで、より精度の高い漏水汲み出し制御ができることになる。
【0006】
【発明の実施の形態】
前述したように、地下構造物において漏出する海水含有漏水は、自然環境等により変化する地下水と海底から漏洩するほぼ一定量の海水との単純な希釈律に支配されているとの予測のとおり、海水含有漏水中の特定海水由来成分の濃度と該漏水の流量とは一次の関係式に近似できることを見出したが、さらに海水由来成分が生物代謝されず、また化学変化もしなければ、海水含有漏水中の海水由来成分の濃度はそのまま漏水の電気伝導率に置き換えられるのではないかという推論をし、そこでこれを立証するため、海水含有漏水中の海水由来成分の濃度と、該漏水の電気伝導率との関係を調べたところ、これらは一次関数の関係になっていることを見出し、本発明を完成するに至った。
つまり、地下構造物における海水含有漏水の流量と海水由来成分の濃度とが一次の関係にあることは既に前記公開公報に記載されるように確認しており、このことに、海水含有漏水の海水由来成分の濃度と電気伝導率とが一次の関係にあることを勘案することで、海水含有漏水の流量、海水由来成分の濃度、そして電気伝導率とが相互に一次の関係にあり、このことから、海水含有漏水の流量と電気伝導率との関係をあらかじめ求めて関数化しておけば、以降は、イオンの付着に影響されることがない電気伝導率電極を用いて海水含有漏水の電気伝導率を測定し、その測定値を前記求めた関数に代入することにより確実で安定した海水含有漏水の流量を算出することができることを確認し、本発明が完成したものである。
そしてこの場合においてあらかじめ求められる海水含有漏水の流量と電気伝導率との関係は、海水含有漏水の流量と特定海水由来成分の濃度とのあいだにある一次の関係を、該特定海水由来成分の濃度と電気伝導率とのあいだにある一次の関係に基づいて補正して間接的に得たものに限定されず、海水含有漏水の流量と電気伝導率とを測定して両者のあいだにある関係を直接的に求めてもよいことは勿論である。
【0007】
ところで本発明を実施するにあたり、海水含有漏水中の地下水分の流量はもちろんのこと、海水分の流量についても、海底や海岸と測定位置とのあいだの地盤や漏水経路等に影響されるため各測定位置に固有なものであり、この結果、任意の位置での漏水流量と電気伝導率との関係は、該任意の位置に固有なもので、これを他の全ての位置の関数として用いることができるというものではなく、個々の測定位置においてあらかじめ漏水の流量と電気伝導率との関係についてそれぞれ関数化しておくことが必要となる。この関数化のためには、対応する測定値について統計学上の処理をすることが精度向上のためには好ましく、その場合に、例えば通常知られた最小二乗法等の計算法を用いることができる。
因みに、地下水中にもナトリウムイオン等の各種の地下水由来成分を含有することから、例えば海水含有漏水のナトリウムイオン濃度と電気伝導率との関係は、測定位置によって変動することになるが、地下水由来成分が微量で海水由来成分に対して無視できるような場合には、海水を純水で希釈して得たナトリウムイオン濃度と電気伝導率とのあいだの関係式を、海水含有漏水のナトリウムイオン濃度と電気伝導率とのあいだの関係式として採用することができる。
【0008】
【実施例】
次に、本発明の実施例について図面を用いて説明する。図1は既存の海底トンネルの概略縦断面図であって、該海底トンネルは、本坑1および作業坑2を有し、そのうちの本坑1は、トンネルの中間に向かうほど深くなるこう配変更点を有する略V字形の傾斜状態で築造されている。これに対して作業抗2は、前記本坑1の最深位置をこう配変更点として坑口に至るほど深くなるよう傾斜した略逆V字形に築造され、そして各坑口側の地上位置においてたて坑3、4が築造されている。
【0009】
そして前記本坑1の(a)〜(e)位置ならびに作業坑2の(f)〜(i)位置について、漏水の流量(m 日−1:メートルの3乗 日のマイナス1乗)を三角ぜき法にて測定すると共に、その漏水中の電気伝導率(mS cm−1:ミリジーメンス センチメートルのマイナス1乗)およびナトリウムイオン濃度(μg mL−1:マイクログラム ミリリットルのマイナス1乗)を測定した。図2に電気伝導率とナトリウムイオン濃度との測定値をプロットしたものを、また図3〜図9に前記各位置(a)〜(g)における電気伝導率と漏水流量との測定値をプロットしたものを示す。これらプロットされたグラフ図を観察したときに、図2において、漏水中の電気伝導率とナトリウムイオン濃度との関係が一次関数に極めて合致していることが確認され、そこで最小二乗法により一次関数を求め、これを線引きした。そしてこの一次関数とプロット値との相関係数(r)の二乗値を算出したところ、「r=0.9938」となって「1」に極めて近似し、漏水中の電気伝導率とナトリウムイオン濃度とが高い一次関数の関係にあることが確認された。因みに、電気伝導率と海水由来成分の濃度とのあいだの一次の関係は、ナトリウムイオンとのあいだだけでなく、カリウムイオン、マグネシウムイオン、カルシウムイオン、塩化物イオン、硫酸イオンについてもあることを別途確認している。
【0010】
このように漏水の流量、海水由来成分であるナトリウムイオン濃度、そして電気伝導率が相互に一次の関係にあることが確認され、そこであらかじめ漏水の流量とナトリウムイオン濃度との測定値データが複数ある場合には、これら測定値データ(または漏水の流量とナトリウムイオン濃度との関係式)を、前記電気伝導率とナトリウムイオン濃度との一次の関係式で補正することで漏水の流量と電気伝導率との関係が間接的に求められる。また、漏水の流量と電気伝導率との測定値データが複数あれば、これらから対応する漏水の流量と電気伝導率との関係を直接的に求めることができる。そして、図3〜図9のものは、測定位置(a)〜(g)における漏水の流量と電気伝導率の測定値データからこれらの関係式(測定位置(h)および(i)は図示を省略する)を求め、線引きしたものであるが、これら関係式は、漏水の流量とナトリウムイオン濃度との測定値データを、前記電気伝導率とナトリウムイオン濃度との関係式で補正して得た関係式と殆ど一致することを確認しており、このことから、何れの手法で求めたものであっても本発明の関係式として用いてよいことが確認される。
【0011】
次に、図10に、一方のたて坑3の漏水汲み出しの制御装置を兼ねた漏水流量算出装置を示す(他方のたて坑4の漏水汲み出し制御も同様に実施できるので、その詳細については省略する)が、該算出装置5は、キーボード等の入力手段6、ディスプレイ表示部7を備えた制御部(パーソナルコンピューター等)8から構成され、該制御部8には、算出(演算)手段9、登録(記憶)手段10ならびに漏水の汲み出し量を決定する決定手段11を備えていると共に、該制御部8には、前記各対応する漏水位置(c)〜(g)の漏水にそれぞれ浸漬するよう据え置き配設された電気伝導率測定用の各電極(センサー:通常は白金電極により構成されている)12、前記一方のたて坑3の漏水貯留槽3aに貯留された漏水を汲み上げるポンプ部13、該漏水貯留槽3aに設けられた貯留漏水量検知センサー14がそれぞれ接続され、前記各電極12からそれぞれ入力した測定値に基づいて漏水流量を算出し、該算出した漏水流量の合算となる漏水総流量Xと貯留漏水量センサー14で測定される測定貯留量Yに基づいてポンプ部13の汲み上げ量を制御するように構成されている。
【0012】
まず、前記制御部8では、適宜設定された各漏水位置ごとの漏水の流量と電気伝導率との測定値が入力手段6を介して入力され、該入力した測定値に基づいて漏水位置毎の漏水の流量と電気伝導率との一次の関係式を算出手段5で各演算をし、該各一次の関係式が登録手段10に登録される設定になっている。そして制御部8は、各漏水位置に配した電極12から入力した測定値を前記登録される一次の関係式に代入し、これに基づいて各対応位置の漏水流量の算出をし、これらをディスプレイ表示部7に表示すると共に、ポンプ部13の汲み上げ量制御をするようになっている。
【0013】
ここにおいて前記汲み上げ量制御は、算出された漏水流量から漏水貯留槽3aに流れ込む漏水の漏水総流量Xを演算し、該演算された漏水総流量Xに基づいてポンプ部13の汲み上げ制御をするが、その制御例を図11のフローチャート図に基づいて説明する。ここでポンプ部13は、定容量型の第一、第二のポンプ15、16が並設され、各別に貯留漏水を汲み出すことができるものであるとして説明する。前述した制御部8は、対応ソフトを起動することでシステムスタートをし、データ読み込み等初期設定がなされることになるが、このものではまず、前述した各測定位置での漏水の電気伝導率の測定値に基づいて算出された漏水流量から漏水総流量Xを算出する。そしてこの漏水総流量Xが、あらかじめ設定される第一設定総流量A以下であるか否か(X≦A?)の判断がなされる。そして漏水総流量Xが第一設定総流量A以下であると判断された場合に、さらに貯留漏水量センサー14で測定される測定貯留量Yが、あらかじめ設定される第一設定貯留量R以下であるか否か(Y≦R?)の判断がなされ、第一設定貯留量R以下であると判断された場合には、貯留漏水が少なく、かつ、漏水流量も少ないとして第一、第二ポンプ15、16は共に停止制御されて、リターンする。これに対し、前記測定貯留量Yが第一設定貯留量Rより大きい(Y>R)と判断された場合、さらに該測定貯留量Yが、前記第一設定貯留量Rよりも大きい値として設定される第二設定貯留量S(R<S)以下であるか否か(Y≦S?)の判断がなされ、該第二設定貯留量S以下であると判断された場合には、漏水流量は通常範囲で、かつ、貯留漏水も通常量であるとして第一ポンプ15のみを駆動して通常状態の汲み上げ制御をする。これに対して、測定貯留量Yが第二設定貯留量Sよりも大きい(Y>S)と判断された場合には、漏水流量は通常範囲であるが貯留漏水量が多いとして第一、第二ポンプ15、16をそれぞれ駆動して早期の汲み上げをするように制御され、リターンする。
【0014】
これに対し、漏水総流量Xが第一設定総流量Aより大きい(A<X)と判断された場合、さらに該漏水総流量Xが、第一設定総流量Aよりも大きい値としてあらかじめ設定される第二設定総流量B(A<B)以下であるか否か(X≦B?)の判断がなされる。そして第二設定総流量B以下であると判断された場合には、さらに前記測定貯留量Yが、前記第一設定貯留量R以下であるか否か(Y≦R?)の判断がなされ、該第一設定貯留量R以下であると判断された場合、漏水流量はかなり多いものの貯留漏水量は少ないとして第一ポンプ15のみの駆動制御をするが、測定貯留量Yが第一設定貯留量Rよりも多い(R<Y)と判断された場合には、貯留漏水量は通常であるが漏水流量はかなり多いとして第一、第二ポンプ15、16をそれぞれ駆動制御するようにし、このようにして大量の漏水に対応する汲み上げ量制御がなされる。
【0015】
一方、本実施の形態では、漏水総流量Xが第二設定総流量Bよりも大きいと判断される場合、これは異常漏水であると判断し、第一、第二ポンプ15、16の駆動制御をすると共に、その旨をディスプレイ表示し、あるいはブザー音を発したりして報知する制御がなされ、このようにして異常漏水に対応する制御が実行されるようになっている。因みに、このような異常漏水に対しては、別途配設した非常用のポンプを駆動する等して大量の漏水汲み出しをするように制御できることは言うまでもない。
【0016】
このように、本発明が実施された形態のものは、地下構造物における漏水流量を、継続的に海水含有漏水に浸漬してもほとんど影響されることがない電気伝導率測定用の電極を測定現場に据え付けて連続的に得られる電気伝導率の測定値を入力し、これに基づいて漏水流量を算出し、この算出結果に基づいて漏水汲み出し量の決定(前期実施の形態では第一、第二ポンプ15、16の駆動−停止制御)がなされ、その制御ができることとなって、地下構造物における漏水汲み出し管理が確実、かつ、容易になる。因みに、前述したような漏水の汲み出し制御は、複数台のポンプ設置に限らず、汲み出し容量可変型のポンプを用いても実施できることは言うまでもない。
【0017】
そのうえこの実施の形態のものでは、連続的な漏水流量の入力に基づいての漏水汲み出し制御が人手を要することなくできるので、作業の大幅な効率アップが計れ、しかもこのものは算出された複数位置での漏水流量に基づいての漏水汲み出し制御が実施できるため、その精度が向上することになる。
【0018】
さらにまた、本発明の漏水量算出装置としては、前述したようなものでなく、持ち運び可能なハンディタイプのものとしても提供することができる。図12にその概略図を示すが、この算出装置17は、記憶部を備えたマイクロコンピューターを制御部18として有し、記憶部には、前記各測定位置(a)〜(i)での漏水量と電気伝導率との関係式が入力されている。さらに制御部18には、前記各測定位置を選択切換できる切換え操作具19を備え、かつ、電気伝導率を測定するための電極20が接続されている。そして操作員が算出装置17を持って適宜の測定位置に赴き、該測定位置の選択をした状態で電極20を漏水に直接浸漬して電気伝導率を測定すると、該測定値が制御部18に入力され、この測定値を前記関係式に代入することで漏水流量が算出される。この算出された漏水流量は、ディスプレイ部21に表示することもでき、また漏水流量値あるいは電気伝導率の測定値を登録しておいて、別途備えたパーソナルコンピューターに入力することも勿論できることは言うまでもない。
【図面の簡単な説明】
【図1】海底トンネルの概略縦断面図である。
【図2】漏水のナトリウムイオン濃度と電気伝導率との関係を示すグラフ図である。
【図3】測定位置(a)における漏水流量と電気伝導率との関係を示すグラフ図である。
【図4】測定位置(b)における漏水流量と電気伝導率との関係を示すグラフ図である。
【図5】測定位置(c)における漏水流量と電気伝導率との関係を示すグラフ図である。
【図6】測定位置(d)における漏水流量と電気伝導率との関係を示すグラフ図である。
【図7】測定位置(e)における漏水流量と電気伝導率との関係を示すグラフ図である。
【図8】測定位置(f)における漏水流量と電気伝導率との関係を示すグラフ図である。
【図9】測定位置(g)における漏水流量と電気伝導率との関係を示すグラフ図である。
【図10】漏水汲み上げ装置の概略を示す断面図である。
【図11】漏水汲み上げ制御例を示すフローチャート図である。
【図12】ハンディタイプの漏水流量算出装置を示す概略斜視図である。
【符号の説明】
5  漏水流量算出装置
8  制御部
9  算出手段
11  決定手段
12  電気伝導率測定用の電極
13  ポンプ部
14  貯留漏水量検知センサー
15  第一ポンプ
16  第二ポンプ
17  漏水量算出装置
20  電気伝導率測定用電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for calculating a flow rate of leaked water, a flow rate calculating device, and a control device for controlling the amount of leaked water when there is a leak containing seawater in the groundwater, such as an underground structure such as an undersea tunnel, which is located near the seabed or the coast. Belongs to the field.
[0002]
[Prior art]
Today, underground structures such as tunnels and box culverts are frequently constructed below the water table or sea level, and such underground structures may not be able to drain the leaked water naturally. At this time, it is necessary to discharge the leaked water to the ground using power to avoid submergence of underground structures. The presence of groundwater is one of the causes of water leakage in such underground structures, but the amount of groundwater supplied depends on the natural environment (particularly rainfall) such as intensive heavy rainfall due to the rainy season and typhoons and drought. Sometimes, though slow, it changes. However, regarding the ability to discharge such water that has leaked into the structure, it is preferable not only in terms of efficiency to correspond to the flow rate of the leaked water, but also to grasp the state of the water leakage in terms of maintenance management and the security of the structure. Required for the above reasons. For that purpose, it is necessary to periodically measure the leakage flow rate, and the same can be said for an underground structure constructed near the seabed or the coast where seawater is mixed into the leakage water.
For measuring such a water leakage flow rate, for example, a triangular weir (or square weir) method is conventionally employed. This method is a generally widely used flow rate measuring method, in which a triangular weir capable of damming flowing water is formed at an appropriate position, and the depth of flowing water that is dammed up by the triangular weir and overcomes this. This is a direct measurement method of calculating the water leakage flow rate per unit time (for example, per hour or per day) from. However, in the triangular weir method, it is necessary to quickly form a firm seal using a sealing material such as clay so as not to leak water from the damming part, but after the measurement, it is provided for drainage. It is necessary to completely remove the used sealing material so that the sealing material does not flow into the storage tank, and there is a problem that the measuring operation is troublesome, complicated, and requires a long time. In addition, the triangulation method is a method in which the individual measurer actually measures a delicate amount of stored water, so that a plurality of measurers are required to ensure fairness in the measured value, and there is also a problem that the work efficiency is low.
[0003]
Then, the inventor of the present invention, as shown in Japanese Patent Application Laid-Open No. 2001-141545, shows that while the amount of groundwater leaking from the land side changes depending on the natural environment and the like, the amount of seawater leaking from the sea floor hardly changes. And the seawater component is predicted to be substantially constant. Based on this prediction, the concentration of a specific ion (for example, sodium ion), which is a component derived from seawater, in a leak containing seawater in groundwater (hereinafter referred to as “seawater-containing leak”) I guessed that there would be a first-order relationship with the leakage flow rate. And to prove this, actually, when measuring the concentration of specific ions and the leakage flow rate at that time for seawater-containing leakage leaking from underground structures, the concentration of specific ions and the leakage flow rate were We found that we could approximate the primary relational expression as inferred, and if we found the primary relational expression in advance, after that, we measured the concentration of specific ions in the seawater-containing water leakage, and converted the measured value to the primary relational expression. By developing a method that can easily calculate the flow rate of seawater-containing leaked water by substituting it into the equation, it has become possible to calculate the flow rate efficiently without the need for complicated measurements such as the triangular weir method. .
[0004]
[Problems to be solved by the invention]
However, the method for calculating the leaked water flow rate that has been developed requires the measurement of the concentration of specific ions in the leaked water to perform the calculation.As such a concentration measuring method, a method using ion chromatography, There is a method using an ion-selective electrode. However, in the former case, measurement at the site cannot be performed, and the leakage measured at the site is carried to the laboratory to measure the concentration, which is not only troublesome and complicated, but also the device itself is large and the cost is high. Problem. On the other hand, the latter can easily measure the concentration by immersing the ion-selective electrode in the on-site water leakage, but when the concentration is measured using the ion-selective electrode, the ion-selective electrode is thoroughly washed. In principle, measurement should be carried out using a sample that has been leaked.However, when there are multiple locations where water is leaked, it is not only troublesome to wash each one, but also the accuracy of the measured values due to poor cleaning. There is a problem that is damaged. On the other hand, it has been proposed that the ion-selective electrode be placed at the measurement site and kept immersed in the leaked water so that the measured values can be input at any time without using humans. If the measurement is continued, alkaline earth metal ions such as calcium ions will accumulate on the ion-selective electrode in a cumulative manner, destabilizing the measured values, and in some cases suddenly causing abnormal measured values. In some cases, the ion-selective electrode is not reliable because it may be observed. To avoid this, it is necessary to periodically clean the ion-selective electrode and remove the adhering ions. There are also problems to be solved by the present invention.
Furthermore, in an underground structure having a seawater-containing leak, it is necessary to pump out the leak by a pump. However, it is difficult to continuously grasp the leak flow rate, and there is a problem that the driving efficiency of the pump is low. There is a problem to be solved by the present invention.
[0005]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has been made for the purpose of solving these problems. The invention of claim 1 relates to a method of controlling the flow rate of leakage of groundwater containing seawater. Function of the relationship between the flow rate and the electric conductivity of the groundwater, the flow rate of the leaking water containing seawater in the groundwater, characterized in that the measured electric conductivity of the leaked water is substituted into the function and calculated. This is a calculation method.
Further, in the invention of claim 2, when calculating the flow rate of the leakage water containing seawater in the groundwater, the means for functioning the relationship between the flow rate of the leakage water and the electric conductivity, and the measured value of the electric conductivity of the leakage water Means for calculating the flow rate of leaked water by substituting it into a functionized one, to calculate the flow rate of leaked water.
By doing so, it is possible to calculate the leakage flow rate of seawater in the groundwater based on the measured value of the electric conductivity obtained using the electric conductivity electrode which is hardly affected by the adhesion of ions. Thus, a stable calculation of the leakage flow rate can be performed over a long period of time.
The invention of claim 3 is characterized in that, in claim 1 or 2, the relationship between the flow rate of water leakage and the electrical conductivity is a linear function. Can be calculated.
According to a fourth aspect of the present invention, in the third aspect of the invention, the linear function is obtained from a measured value of the flow rate of the water leakage and the electric conductivity. Wherein, in claim 3, the linear function is obtained by correcting the measured value of the flow rate of the leaked water and the concentration of the seawater-derived component by a relational expression between the concentration of the seawater-derived component and the electric conductivity. By doing so, the linear function of claim 3 can be obtained directly or indirectly.
According to a sixth aspect of the present invention, there is provided a control device for pumping water leakage, comprising: pump means for pumping water containing seawater from underground water from an underground structure; and control means for controlling the amount of water pumped by the pump means. In the meantime, the control means includes an input means for inputting a measured value of the electric conductivity of the water leakage, and the electric conductivity inputted into a function formula obtained because the flow rate of the water leakage and the electric conductivity are measured in advance. And a determining means for determining a pumping amount of the pump means based on a leakage flow rate obtained by applying the measured value of the above. With this configuration, pumping of water leakage from the underground structure by the pump means can be performed according to the leakage flow rate, and the driving efficiency of the pump means is improved.
According to a seventh aspect of the present invention, in the sixth aspect, the control device is connected to an electrode for measuring electric conductivity which is set up at an arbitrary place where a predetermined water leakage occurs, and the electric conductivity measured by the electrode is measured. In this case, the measurement of the electric conductivity can be efficiently performed without human intervention.
In the invention according to claim 8, in claim 7, a plurality of measurement positions are set, and a total leakage flow rate is calculated by adding a leakage flow rate calculated from each measured value of the electric conductivity at the plurality of measurement positions, It is characterized in that the pumping amount of the pump means is determined based on the total flow rate of the leaked water. By doing so, it is possible to perform the leaking pumping control with higher accuracy.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, seawater-containing leakage that leaks from underground structures is governed by a simple dilution rule of groundwater that changes due to the natural environment and almost a certain amount of seawater that leaks from the sea floor, It has been found that the concentration of a specific seawater-derived component in a seawater-containing leak and the flow rate of the leak can be approximated by a linear relational expression.However, if the seawater-derived component is not bio-metabolized and undergoes no chemical change, the seawater-containing leak Inferring that the concentration of seawater-derived components in the water could be directly replaced by the electrical conductivity of the leak, and in order to prove this, the concentration of the seawater-derived components in the seawater-containing leak and the electrical conductivity of the leak Examination of the relationship with the rate revealed that they had a linear function relationship, and completed the present invention.
That is, it has already been confirmed as described in the above-mentioned publication that the flow rate of the seawater-containing leak in the underground structure and the concentration of the component derived from the seawater are in a primary relationship, By taking into account that the concentration of the derived component and the electrical conductivity have a primary relationship, the flow rate of the seawater-containing leakage, the concentration of the seawater-derived component, and the electrical conductivity are in a linear relationship with each other. From this, if the relationship between the flow rate of seawater-containing leakage water and the electric conductivity is obtained in advance and a function is obtained, the electric conductivity of the seawater-containing leakage water can be determined using an electric conductivity electrode that is not affected by the adhesion of ions. The present invention has been completed by confirming that a reliable and stable flow rate of seawater-containing leakage can be calculated by measuring the rate and substituting the measured value into the function obtained above.
In this case, the relationship between the flow rate of the seawater-containing leak and the electrical conductivity, which is determined in advance, is a linear relationship between the flow rate of the seawater-containing leak and the concentration of the specific seawater-derived component, and the concentration of the specific seawater-derived component. It is not limited to that obtained indirectly by correcting based on the primary relationship between the electric conductivity and the electric conductivity, but the flow rate and electric conductivity of the seawater-containing leakage are measured to determine the relationship between the two. Of course, it may be determined directly.
[0007]
By the way, in carrying out the present invention, not only the flow rate of the underground water in the seawater-containing leakage water but also the flow rate of the seawater is affected by the ground and the leakage path between the seabed or the seashore and the measurement position, and so on. It is specific to the measurement position, and as a result, the relationship between the water leakage flow rate and the electrical conductivity at any position is specific to the arbitrary position and should be used as a function of all other positions. However, it is necessary to previously formulate the relationship between the flow rate of water leakage and the electrical conductivity at each measurement position. For this functionalization, it is preferable to perform statistical processing on the corresponding measurement values in order to improve accuracy.In this case, it is preferable to use a generally known calculation method such as a least square method. it can.
By the way, since groundwater also contains various groundwater-derived components such as sodium ions, for example, the relationship between the sodium ion concentration and the electrical conductivity of seawater-containing leakage water varies depending on the measurement position. If the amount of the component is small and negligible relative to the component derived from seawater, the relationship between the sodium ion concentration obtained by diluting seawater with pure water and the electrical conductivity is calculated as the sodium ion concentration of the seawater-containing leak. And the electrical conductivity can be adopted as a relational expression.
[0008]
【Example】
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view of an existing submarine tunnel. The submarine tunnel has a main shaft 1 and a working shaft 2, of which the main shaft 1 has a gradient change point that becomes deeper toward the middle of the tunnel. And is built in a substantially V-shaped inclined state. On the other hand, the work pit 2 is constructed in a substantially inverted V-shape which is inclined so that it becomes deeper toward the wellhead with the deepest position of the main well 1 being a gradient change point, and the vertical shaft 3 is located at a ground position on each wellhead side. 4 have been built.
[0009]
And for (a) ~ (e) the position and the work of anti-2 (f) ~ (i) position of the Honko 1, leakage flow rate: the (m 3 day -1 minus 1 square of the cube day meters) In addition to being measured by the triangular weir method, the electric conductivity (mS cm -1 : millisiemens centimeter minus 1 power) and sodium ion concentration (μg mL -1 : microgram milliliters minus 1 power) in the leaked water are measured. Was measured. FIG. 2 is a plot of the measured values of the electric conductivity and the sodium ion concentration, and FIGS. 3 to 9 are plots of the measured values of the electric conductivity and the water leakage flow rate at each of the positions (a) to (g). This is shown. When observing these plotted graphs, it was confirmed in FIG. 2 that the relationship between the electric conductivity in the leaked water and the sodium ion concentration was in excellent agreement with the linear function. And delineated this. Then, when the square value of the correlation coefficient (r) between the linear function and the plot value was calculated, “r 2 = 0.9938” was obtained, which was very close to “1”. It was confirmed that the ion concentration had a high linear function relationship. Incidentally, the primary relationship between the electrical conductivity and the concentration of seawater-derived components is not only between sodium ions, but also for potassium, magnesium, calcium, chloride, and sulfate ions. I have confirmed.
[0010]
As described above, it was confirmed that the flow rate of the leaked water, the concentration of sodium ion derived from seawater, and the electrical conductivity had a linear relationship with each other, and there were a plurality of measurement data of the flow rate of the leaked water and the sodium ion concentration in advance. In this case, the measured flow rate data (or the relational expression between the flow rate of the leaked water and the sodium ion concentration) is corrected by the linear relational expression between the electric conductivity and the sodium ion concentration to obtain the flow rate of the leaked water and the electric conductivity. Relationship is indirectly required. Further, if there are a plurality of measured value data of the flow rate of the water leakage and the electric conductivity, the relation between the flow rate of the water leakage and the electric conductivity corresponding thereto can be directly obtained. 3 to 9 show the relational expressions (measurement positions (h) and (i) are shown in the drawings) based on the measured values of the flow rate and electric conductivity of the water leakage at the measurement positions (a) to (g). These relational expressions were obtained by correcting measured value data of the flow rate of water leakage and sodium ion concentration with the above-mentioned relational expression of electric conductivity and sodium ion concentration. It has been confirmed that the relational expression almost coincides with the relational expression. From this, it is confirmed that any one obtained by any method may be used as the relational expression of the present invention.
[0011]
Next, FIG. 10 shows a leakage flow rate calculation device which also serves as a control device for pumping out water from one of the shafts 3 (the control of pumping out water from the other shaft 4 can be performed in the same manner. However, the calculating device 5 includes an input unit 6 such as a keyboard, and a control unit (such as a personal computer) 8 having a display unit 7. The control unit 8 includes a calculating (calculating) unit 9. , Registration (storage) means 10 and determination means 11 for determining the amount of water to be pumped out, and the control unit 8 is immersed in the water leaks at the corresponding water leak positions (c) to (g). Each electrode (sensor: usually formed of a platinum electrode) 12 for measuring the electric conductivity, which is disposed so as to be stationary, and a pump unit for pumping up the water stored in the water storage tank 3a of the one vertical shaft 3. 1 The storage leak detection sensors 14 provided in the leak storage tank 3a are respectively connected to calculate the leak flow based on the measurement values input from the respective electrodes 12, and calculate the sum of the calculated leak flow. The pumping amount of the pump unit 13 is controlled based on the total flow rate X and the measured storage amount Y measured by the stored leakage amount sensor 14.
[0012]
First, in the control unit 8, the measured values of the flow rate and the electric conductivity of each leak position set as appropriate are input via the input means 6, and based on the input measured values, A primary relational expression between the flow rate of water leakage and the electric conductivity is calculated by the calculating means 5, and the primary relational expression is registered in the registration means 10. Then, the control unit 8 substitutes the measured value input from the electrode 12 disposed at each leak position into the registered primary relational expression, calculates the leak flow rate at each corresponding position based on this, and displays them on the display. The information is displayed on the display unit 7 and the pumping amount of the pump unit 13 is controlled.
[0013]
Here, in the pumping amount control, the total leakage flow X of the leakage flowing into the leakage storage tank 3a is calculated from the calculated leakage flow, and the pumping control of the pump unit 13 is performed based on the calculated total leakage X. An example of the control will be described with reference to the flowchart of FIG. Here, the pump unit 13 will be described on the assumption that first and second constant-capacity pumps 15 and 16 are provided side by side, and can separately pump out stored leakage water. The above-mentioned control unit 8 performs a system start by activating the corresponding software and performs initial settings such as data reading. In this case, first, the electric conductivity of water leakage at each of the above-described measurement positions is first measured. The total leakage flow rate X is calculated from the leakage flow rate calculated based on the measured values. Then, it is determined whether or not the total leakage flow rate X is equal to or less than a first preset total flow rate A (X ≦ A?). When it is determined that the total leaked water flow X is equal to or less than the first set total flow amount A, the measured storage amount Y measured by the stored leak amount sensor 14 is further reduced to a predetermined first set storage amount R or less. It is determined whether or not there is (Y ≦ R?), And if it is determined that the storage amount is equal to or less than the first set storage amount R, the first and second pumps determine that the storage leakage is small and the leakage flow rate is small. 15 and 16 are both controlled to stop and return. On the other hand, when it is determined that the measured storage amount Y is larger than the first set storage amount R (Y> R), the measured storage amount Y is further set as a value larger than the first set storage amount R. It is determined whether or not (Y ≦ S?) Is equal to or less than the second set storage amount S (R <S). Is in the normal range, and the storage leakage is also the normal amount, and only the first pump 15 is driven to perform the pumping control in the normal state. On the other hand, if it is determined that the measured storage amount Y is larger than the second set storage amount S (Y> S), the leakage flow rate is in the normal range, but the first and second storage amounts are determined to be large. The two pumps 15 and 16 are controlled to drive the pumps at an early stage, respectively, and return.
[0014]
On the other hand, when it is determined that the total leaked water flow rate X is larger than the first set total flow rate A (A <X), the total leaked water flow rate X is set in advance as a value larger than the first set total flow rate A. It is determined whether or not (X ≦ B?) Is equal to or less than the second set total flow rate B (A <B). If it is determined that the measured storage amount Y is equal to or less than the second set total flow amount B, it is further determined whether the measured storage amount Y is equal to or smaller than the first set storage amount R (Y ≦ R?), When it is determined that the storage amount is equal to or less than the first set storage amount R, the drive control of only the first pump 15 is performed assuming that the leakage flow rate is considerably large but the storage leakage amount is small, but the measured storage amount Y is equal to the first set storage amount. When it is determined that R is larger than R (R <Y), the storage leakage amount is normal, but the leakage flow rate is considerably large, and the first and second pumps 15 and 16 are respectively driven and controlled. Then, pumping amount control corresponding to a large amount of water leakage is performed.
[0015]
On the other hand, in the present embodiment, when it is determined that the total leaked flow X is larger than the second set total flow B, it is determined that this is an abnormal leak, and the drive control of the first and second pumps 15 and 16 is performed. In addition to the above, a control to display a message to that effect or to emit a buzzer to notify the user is performed, and control corresponding to abnormal water leakage is performed in this manner. By the way, it is needless to say that control can be performed such that a large amount of water is pumped out by driving an emergency pump separately provided for such abnormal water leakage.
[0016]
As described above, the embodiment of the present invention measures the electrode for electric conductivity measurement, which is hardly affected even if the water leakage flow rate in the underground structure is continuously immersed in the seawater-containing leakage water. Input the measured value of the electric conductivity continuously obtained by installing it on the site, calculate the leakage flow rate based on this, and determine the amount of pumped water based on the calculation result (first and second in the previous embodiment). The drive-stop control of the two pumps 15 and 16) is performed, and the control can be performed, so that the leakage pumping management in the underground structure can be reliably and easily performed. By the way, it goes without saying that the above-described control of pumping out water leakage is not limited to the installation of a plurality of pumps, and can be carried out by using a pump of variable pumping capacity.
[0017]
In addition, in this embodiment, since the water leakage pumping control based on the continuous input of the water leakage flow rate can be performed without requiring any manpower, the efficiency of the operation can be greatly increased, and the operation can be performed at a plurality of calculated positions. Since the control of pumping out water can be performed based on the flow rate of water leaking at the time, the accuracy is improved.
[0018]
Still further, the water leakage calculating device of the present invention can be provided as a portable handy type device instead of the above-described device. FIG. 12 shows a schematic diagram of this. The calculating device 17 has a microcomputer provided with a storage unit as a control unit 18, and the storage unit stores water at each of the measurement positions (a) to (i). A relational expression between the quantity and the electric conductivity is input. Further, the control section 18 is provided with a switching operation tool 19 capable of selectively switching each of the measurement positions, and is connected to an electrode 20 for measuring electric conductivity. Then, when the operator goes to an appropriate measurement position with the calculation device 17, and immerses the electrode 20 directly in the water leak while measuring the electric conductivity while selecting the measurement position, the measured value is transmitted to the control unit 18. The leakage flow rate is calculated by inputting the measured value into the relational expression. It is needless to say that the calculated water leakage flow rate can be displayed on the display unit 21 and the leakage water flow rate value or the measured value of the electric conductivity can be registered and inputted to a personal computer provided separately. No.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a submarine tunnel.
FIG. 2 is a graph showing the relationship between the sodium ion concentration of water leakage and electric conductivity.
FIG. 3 is a graph showing a relationship between a water leakage flow rate and an electric conductivity at a measurement position (a).
FIG. 4 is a graph showing a relationship between a water leakage flow rate and an electric conductivity at a measurement position (b).
FIG. 5 is a graph showing a relationship between a water leakage flow rate and an electric conductivity at a measurement position (c).
FIG. 6 is a graph showing a relationship between a water leakage flow rate and an electric conductivity at a measurement position (d).
FIG. 7 is a graph showing a relationship between a water leakage flow rate and an electric conductivity at a measurement position (e).
FIG. 8 is a graph showing a relationship between a water leakage flow rate and an electric conductivity at a measurement position (f).
FIG. 9 is a graph showing a relationship between a water leakage flow rate and an electric conductivity at a measurement position (g).
FIG. 10 is a sectional view schematically showing a water leakage pumping device.
FIG. 11 is a flowchart illustrating an example of leakage water pumping control.
FIG. 12 is a schematic perspective view showing a handy type water leakage flow rate calculating device.
[Explanation of symbols]
5 Leakage flow rate calculating device 8 Control unit 9 Calculating means 11 Determining means 12 Electrode 13 for measuring electric conductivity Pump unit 14 Storage leak detecting sensor 15 First pump 16 Second pump 17 Leakage calculating device 20 For measuring electric conductivity electrode

Claims (8)

地下水に海水を含んだ漏水の流量を、該漏水の流量と電気伝導率との関係を関数化し、該関数化されたものに、測定した漏水の電気伝導率を代入して算出するようにしたことを特徴とする地下水に海水を含む漏水の流量算出方法。The flow rate of the leak containing seawater in the groundwater was calculated as a function of the relationship between the flow rate of the leak and the electric conductivity, and the measured electric conductivity of the leak was substituted into the function. A method for calculating the flow rate of leaked water containing seawater in groundwater. 地下水に海水を含んだ漏水の流量を算出するにあたり、漏水の流量と電気伝導率との関係を関数化する手段と、漏水の電気伝導率の測定値を前記関数化されたものに代入して漏水の流量を算出する手段とを備えたことを特徴とする地下水に海水を含む漏水の流量算出装置。In calculating the flow rate of the leak containing seawater in the groundwater, a means for functionalizing the relationship between the leak rate and the electrical conductivity, and substituting the measured value of the electrical conductivity of the leak into the functioned one. Means for calculating a flow rate of water leakage. A flow rate calculation apparatus for water leakage containing seawater in groundwater. 請求項1または2において、漏水の流量と電気伝導率との関係は一次関数であることを特徴とする地下水に海水を含む漏水の流量算出方法または流量算出装置。The flow rate calculating method or the flow rate calculating apparatus according to claim 1, wherein the relationship between the flow rate of the leaked water and the electric conductivity is a linear function. 請求項3において、一次関数は、漏水の流量と電気伝導率との測定値から求めたものであることを特徴とする地下水に海水を含む漏水の流量算出方法または流量算出装置。4. The flow rate calculating method or flow rate calculating apparatus according to claim 3, wherein the linear function is obtained from a measured value of a flow rate and an electrical conductivity of the leaked water. 請求項3において、一次関数は、漏水の流量と海水由来成分濃度との測定値を、海水由来成分濃度と電気伝導率との関係式で補正して求めたものであることを特徴とする地下水に海水を含む漏水の流量算出方法または流量算出装置。4. The groundwater according to claim 3, wherein the linear function is obtained by correcting a measured value of the flow rate of the leaked water and the concentration of the component derived from seawater by a relational expression between the concentration of the component derived from seawater and the electric conductivity. Calculation method or flow rate calculation device for water leakage including seawater. 地下水に海水を含む漏水を地下構造物から汲み出すためのポンプ手段と、該ポンプ手段の汲み出し量の制御をする制御手段とを備えて漏水汲み出しの制御装置を構成するにあたり、前記制御手段には、漏水の電気伝導率の測定値を入力する入力手段と、あらかじめ測定された漏水の流量と電気伝導率とのあいだから求められた関数式に前記入力した電気伝導率の測定値を当てはめて得た漏水流量に基づいてポンプ手段の汲み出し量を決定する決定手段とが設けられて構成されていることを特徴とする漏水汲み出し量の制御装置。In configuring a control device for pumping water leakage, comprising a pump means for pumping leakage water including seawater into the underground water from the underground structure, and a control means for controlling the pumping amount of the pump means, the control means includes: Input means for inputting the measured value of the electric conductivity of the leak, and applying the measured value of the input electric conductivity to the function formula obtained because the flow rate of the leak water and the electric conductivity measured in advance are obtained. And a determining means for determining a pumping amount of the pump means based on the leaked water flow rate. 請求項6において、制御装置は、あらかじめ設定された漏水のある任意の測定位置に据え置かれた電気伝導率測定用の電極に接続され、該電極で測定された電気伝導率の測定値を入力するようになっていることを特徴とする漏水汲み出し量の制御装置。In claim 6, the control device is connected to an electrode for measuring electric conductivity, which is set at an arbitrary measuring position having a preset water leak, and inputs a measured value of electric conductivity measured at the electrode. A control device for the amount of pumped water leaked, characterized in that: 請求項7において、測定位置は複数設定され、これら複数の測定位置での電気伝導率の各測定値から算出される漏水流量を合算して漏水総流量を算出し、該漏水総流量に基づいてポンプ手段の汲み出し量を決定するものであることを特徴とする漏水汲み出し量の制御装置。In claim 7, a plurality of measurement positions are set, and a total leakage flow rate is calculated by adding the leakage flow rates calculated from the respective measured values of the electrical conductivity at the plurality of measurement positions, and based on the total leakage flow rate. A control device for controlling the amount of pumped water for leakage, wherein the controller determines the amount of pumped water.
JP2002196202A 2002-07-04 2002-07-04 Leakage pumping amount control device Expired - Fee Related JP4065154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196202A JP4065154B2 (en) 2002-07-04 2002-07-04 Leakage pumping amount control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196202A JP4065154B2 (en) 2002-07-04 2002-07-04 Leakage pumping amount control device

Publications (2)

Publication Number Publication Date
JP2004037315A true JP2004037315A (en) 2004-02-05
JP4065154B2 JP4065154B2 (en) 2008-03-19

Family

ID=31704362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196202A Expired - Fee Related JP4065154B2 (en) 2002-07-04 2002-07-04 Leakage pumping amount control device

Country Status (1)

Country Link
JP (1) JP4065154B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076305A (en) * 2006-09-22 2008-04-03 Kagoshima Univ Component analytical evaluation device, river flow ratio measuring system, component analytical evaluation method, river flow ratio measuring method, and program
JP2009276259A (en) * 2008-05-16 2009-11-26 Railway Technical Res Inst Coating substance abnormality determination device of underground structure, and method therefor
JP2018512558A (en) * 2015-03-24 2018-05-17 ユーティリス イスラエル リミテッド Groundwater detection system and method
CN111458086A (en) * 2020-04-01 2020-07-28 井浩 Method for rapidly detecting waterproof quality of assembled box culvert seam
US10884128B2 (en) 2015-03-24 2021-01-05 Utilis Israel Ltd. System and method of underground water detection
CN112630467A (en) * 2020-11-24 2021-04-09 贵州大学 Method for measuring flow of acidic water body by neutralizing alkaline substances

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6676878B2 (en) 2001-01-31 2004-01-13 Electro Scientific Industries, Inc. Laser segmented cutting

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076305A (en) * 2006-09-22 2008-04-03 Kagoshima Univ Component analytical evaluation device, river flow ratio measuring system, component analytical evaluation method, river flow ratio measuring method, and program
JP2009276259A (en) * 2008-05-16 2009-11-26 Railway Technical Res Inst Coating substance abnormality determination device of underground structure, and method therefor
JP2018512558A (en) * 2015-03-24 2018-05-17 ユーティリス イスラエル リミテッド Groundwater detection system and method
US10884128B2 (en) 2015-03-24 2021-01-05 Utilis Israel Ltd. System and method of underground water detection
CN111458086A (en) * 2020-04-01 2020-07-28 井浩 Method for rapidly detecting waterproof quality of assembled box culvert seam
CN112630467A (en) * 2020-11-24 2021-04-09 贵州大学 Method for measuring flow of acidic water body by neutralizing alkaline substances
CN112630467B (en) * 2020-11-24 2022-06-14 贵州大学 Method for measuring flow of acidic water body by neutralizing alkaline substances

Also Published As

Publication number Publication date
JP4065154B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
Andrade et al. Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method
Elsener Corrosion rate of steel in concrete—Measurements beyond the Tafel law
Sun et al. A rapid, non-destructive methodology to monitor activity of sulfide-induced corrosion of concrete based on H2S uptake rate
JP5746155B2 (en) Method for determining characteristic values, in particular parameters, of an electric motor driven centrifugal pump device incorporated in equipment
JP2004037315A (en) Flow rate calculation method and flow rate calculation device of leak of ground water including sea water, and control device of amount of pumped water leak
Eid et al. Electro-migration of nitrate in sandy soil
JP2007278843A (en) Device and method for diagnosing corrosion in underground buried steel structure
JP2024020627A (en) Method of assessing water permeability of underground dam water stop walls
JP6947152B2 (en) Detection device, detection method, and detection program
WO2019225727A1 (en) Corrosion rate estimating device and method
KR20060083388A (en) A method analyzing infiltration/inflow using chloride ion concentrations and flow and a system monitoring sewer drainage pipes using the same
Robbins et al. Calculating pH from EC and SAR values in salinity models and SAR from soil and bore water pH and EC data.
JP4065163B2 (en) Prediction method and prediction device for maximum flow rate of underground water in leaking water containing seawater in groundwater
GB2437683A (en) Method for the optimalization of the supply of chemicals
RU2484448C1 (en) Method and device to realise contact of electrochemical protection parameters monitoring unit with pipe with applied weighting concrete coating
Roshidi et al. The development of water quality monitoring system at dam
JP2000258327A (en) Method for measuring viscosity of concrete
JP2019100755A (en) Corrosion amount estimation device and method therefor
Plugin et al. Independent diagnostic computer systems with the ability to restore operational characteristics of construction facilities
JP3880327B2 (en) Judgment method and apparatus for stability of underground structure
JP2004205479A (en) Simple measuring method and simple measuring instrument for ion concentration in water containing seawater
JP2001141545A (en) Method and device for measuring flow rate of leaking groundwater containing seawater
CN112832756A (en) Underground water environment quality evaluation method
Qian et al. Evaluation of Reinforcement Corrosion in Repaired Concrete Bridge SlabsA Case Study
Shevtsov et al. Evaluation of the effectiveness of migrating corrosion inhibitors and hydrophobizers for protection against corrosion of steel reinforcement in concrete using bimetallic batch sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees