JP2000258327A - Method for measuring viscosity of concrete - Google Patents

Method for measuring viscosity of concrete

Info

Publication number
JP2000258327A
JP2000258327A JP11064115A JP6411599A JP2000258327A JP 2000258327 A JP2000258327 A JP 2000258327A JP 11064115 A JP11064115 A JP 11064115A JP 6411599 A JP6411599 A JP 6411599A JP 2000258327 A JP2000258327 A JP 2000258327A
Authority
JP
Japan
Prior art keywords
concrete
measuring
viscosity
weight
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11064115A
Other languages
Japanese (ja)
Other versions
JP4011225B2 (en
Inventor
Yoichiro Muroga
陽一郎 室賀
Tetsuo Osuga
哲夫 大須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawajima Kenzai Kogyo Co Ltd
Ishikawajima Construction Materials Co Ltd
Original Assignee
Ishikawajima Kenzai Kogyo Co Ltd
Ishikawajima Construction Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima Kenzai Kogyo Co Ltd, Ishikawajima Construction Materials Co Ltd filed Critical Ishikawajima Kenzai Kogyo Co Ltd
Priority to JP06411599A priority Critical patent/JP4011225B2/en
Publication of JP2000258327A publication Critical patent/JP2000258327A/en
Application granted granted Critical
Publication of JP4011225B2 publication Critical patent/JP4011225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively and simply measure a viscosity of a concrete. SOLUTION: According to the method for measuring a viscosity of a concrete, an operation of perpendicularly sinking a measuring element 1 into a concrete 6 showing a Bingham plasticity and measuring a sinking distance per unit time is carried out by a plurality of the number of times by changing a weight of the measuring element 1. An expression of a line having the weight and a sinking speed of the measuring element 1 as variables is obtained. A plastic viscosity of the concrete 6 is obtained from a slope of the obtained line.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンクリートの粘
度測定方法に係り、特に、コンクリートの粘度を簡便に
測定する方法に関する。
The present invention relates to a method for measuring the viscosity of concrete, and more particularly to a method for easily measuring the viscosity of concrete.

【0002】[0002]

【従来の技術】例えば吹付コンクリートや自己充填コン
クリートのようなコンクリート(モルタル)の施工性評
価のための粘度測定に際しては、回転粘度計等の機器を
用いている。
2. Description of the Related Art For measuring the viscosity of concrete (mortar) such as shotcrete or self-compacting concrete for evaluating workability, a device such as a rotary viscometer is used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ような機器は高価であり、かつ取り扱いが煩雑であると
いう問題があった。本発明は上記事情に鑑みてなされた
もので、コンクリートの粘度を安価かつ簡便に測定する
方法を提供することをその目的としている。
However, there has been a problem that such devices are expensive and the handling is complicated. The present invention has been made in view of the above circumstances, and has as its object to provide a method for inexpensively and easily measuring the viscosity of concrete.

【0004】[0004]

【課題を解決するための手段】本発明のコンクリートの
粘度測定方法は、ビンガム塑性を示すコンクリート中に
測定子を垂直に沈入させ、単位時間当たりの沈入距離を
測定する操作を、上記測定子の重量を変えて複数回行う
ことにより、上記測定子の重量と沈入速度とを変数とす
る直線の式を求め、得られた直線の傾きから、上記コン
クリートの塑性粘度を求めることを特徴としている。
According to the method for measuring the viscosity of concrete of the present invention, the operation of vertically immersing a measuring element in concrete exhibiting Bingham plasticity and measuring the immersion distance per unit time is performed by the above measurement. By changing the weight of the contact point a plurality of times, a formula of a straight line with the weight of the contact point and the penetration speed as variables is obtained, and the plastic viscosity of the concrete is obtained from the slope of the obtained straight line. And

【0005】ここで、上記測定子の重量が、上記測定子
の上端部に着脱自在に支持される重りによって変更可能
とされていることが望ましい。
Here, it is desirable that the weight of the tracing stylus can be changed by a weight that is detachably supported at the upper end of the tracing stylus.

【0006】また、上記測定子には、例えば、シャフト
と、シャフトの下端部に設けられ、上記コンクリート中
への沈入時に、上記測定子を上記シャフトの軸に沿って
垂直に沈入させる安定板とを備えるものを用いる。
The stylus is provided, for example, at a shaft and a lower end portion of the shaft, and stabilizes the stylus vertically along the axis of the shaft when sinking into the concrete. A plate is used.

【0007】上記安定板には、例えば、上記シャフトの
下端部に、その軸回りに等間隔で配設された、シャフト
の軸と平行な複数枚の羽板を用いる。
As the stabilizer, for example, a plurality of blades parallel to the axis of the shaft, which are arranged at the lower end of the shaft at equal intervals around the axis, are used.

【0008】[0008]

【発明の実施の形態】以下、図面に基づき、本発明の実
施形態について説明する。本発明のコンクリートの粘度
測定方法に使用される測定子の例を図1に示す。測定子
1は、シャフト2と、シャフト2の下端部に設けられ、
後述するように測定子1をコンクリート中に沈入させた
際に、測定子1をシャフト2の軸に沿って垂直に沈入さ
せる複数枚の羽根(安定板)3とを備えている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of a probe used in the method for measuring the viscosity of concrete of the present invention. The tracing stylus 1 is provided at a lower end of the shaft 2 and the shaft 2,
As will be described later, a plurality of blades (stabilizers) 3 are provided for allowing the probe 1 to sink vertically along the axis of the shaft 2 when the probe 1 is sunk into concrete.

【0009】羽根3は、シャフト2の下端部に、その軸
回りに等間隔で配設された板状の部材で、羽根3の向き
は、シャフト2の軸と平行とされている。図1では、3
枚の羽根3が、120°間隔で配設されている。また、
羽根3の材質には、コンクリート中に沈入させた際に破
損しないよう、例えば銅や硬質プラスチック等が用いら
れる。
The blade 3 is a plate-like member disposed at the lower end of the shaft 2 at equal intervals around its axis. The direction of the blade 3 is parallel to the axis of the shaft 2. In FIG. 1, 3
The blades 3 are arranged at intervals of 120 °. Also,
The material of the blade 3 is, for example, copper or a hard plastic so as not to be damaged when immersed in concrete.

【0010】一方、シャフト2の上端部(測定子1をコ
ンクリート中に沈入させた際にコンクリートから突出す
る位置)にはフランジ4が形成されている。フランジ4
には、例えば符号5で示すような円筒状をなす重りが、
シャフト2を経て上方から着脱自在に支持可能とされ、
その結果、フランジ4上に支持される重り5の重量を変
えることにより、測定子1の重量が変更可能となってい
る。
On the other hand, a flange 4 is formed at the upper end of the shaft 2 (at a position where the probe 1 projects from the concrete when it is sunk into the concrete). Flange 4
Has, for example, a cylindrical weight as shown by reference numeral 5,
It can be detachably supported from above through the shaft 2,
As a result, the weight of the tracing stylus 1 can be changed by changing the weight of the weight 5 supported on the flange 4.

【0011】コンクリートの粘度測定に際しては、ま
ず、図2に示すように、コンクリート6が満たされた槽
7中に、測定子1を垂直に設置する。この場合、測定子
1をコンクリート6中に沈入させた際におけるコンクリ
ート6に対する測定子1の剪断面積が一定となるよう、
羽根3をコンクリート6内に完全に埋没させる。
When measuring the viscosity of the concrete, first, as shown in FIG. 2, the measuring element 1 is installed vertically in a tank 7 filled with the concrete 6. In this case, when the measuring element 1 is sunk into the concrete 6, the shearing area of the measuring element 1 with respect to the concrete 6 becomes constant.
The blades 3 are completely buried in the concrete 6.

【0012】次いで、測定子1を、その自重により図2
に矢印Dで示すようにコンクリート6中に垂直に沈入さ
せ、単位時間当たりの沈入距離を測定する。測定子1が
コンクリート6中に垂直に沈入するよう、測定子1をガ
イド等で支えてもよい。そして、上記操作を、重り5を
変えることにより測定子1の重量を変えて複数回(実際
には3回以上)行い、その結果から、測定子1の重量と
沈入速度とを変数とする直線の式を求める。
Next, the tracing stylus 1 is moved by its own weight in FIG.
Then, as shown by an arrow D, the steel is vertically immersed in the concrete 6, and the immersion distance per unit time is measured. The tracing stylus 1 may be supported by a guide or the like so that the tracing stylus 1 vertically sinks into the concrete 6. The above operation is performed a plurality of times (actually three or more times) by changing the weight of the tracing stylus 1 by changing the weight 5, and from the result, the weight of the tracing stylus 1 and the sinking speed are used as variables. Find the equation for the straight line.

【0013】測定子1の重量と沈入速度との関係を図3
に示す。図中符号Tは上記単位時間、符号Lは上記単位
時間T当たりの沈入距離、符号Wは測定子1の重量であ
る。個々の測定結果を、測定子1の重量Wを横軸、沈入
速度V(=L/T)を縦軸としてプロットすると、測定
子1の重量Wと沈入速度Vとの関係は、図3にF1で示
すような直線として表される。そして、直線F1の傾き
の逆数を算出することにより、コンクリート6の塑性粘
度ηが求められる。
FIG. 3 shows the relationship between the weight of the probe 1 and the sinking speed.
Shown in In the figure, the symbol T is the unit time, the symbol L is the sink distance per unit time T, and the symbol W is the weight of the tracing stylus 1. When the individual measurement results are plotted with the weight W of the tracing stylus 1 on the horizontal axis and the immersion velocity V (= L / T) on the ordinate, the relationship between the weight W of the tracing stylus 1 and the immersion velocity V is shown in FIG. 3 is represented as a straight line as indicated by F1. Then, by calculating the reciprocal of the slope of the straight line F1, the plastic viscosity η of the concrete 6 is obtained.

【0014】直線F1からコンクリート6の塑性粘度η
が求められる理由について以下に説明する。ビンガム塑
性を示す流体の剪断ひずみ速度γと剪断応力度τとの間
には、図4に直線F2で示すような関係があり、この流
体の塑性粘度ηは、直線F2の傾きの逆数として求めら
れることが知られている。
From the straight line F1, the plastic viscosity η of the concrete 6
The reason why is required is described below. There is a relationship between the shear strain rate γ of the fluid exhibiting Bingham plasticity and the shear stress τ as shown by a straight line F2 in FIG. 4, and the plastic viscosity η of this fluid is obtained as the reciprocal of the slope of the straight line F2. Is known to be.

【0015】従って、直線F2は、 γ=σy+τ/η として表される。ここで、沈入速度Vがγと比例すると
考えると、 γ=CV (Cは比例定数) として表され、 CV=σy+τ/η となる。更に、τ=W/A (Aは羽根3の全面積)と
考えると、 CV=σy+W/Aη となり、直線F2が、測定子1の重量Wと沈入速度Vと
の関係で表される。
Therefore, the straight line F2 is expressed as γ = σ y + τ / η. Here, assuming that the infiltration velocity V is proportional to γ, it is expressed as γ = CV (C is a proportional constant), and CV = σ y + τ / η. Further, assuming that τ = W / A (A is the entire area of the blade 3), CV = σ y + W / Aη, and a straight line F2 is expressed by the relationship between the weight W of the probe 1 and the penetration velocity V. You.

【0016】すなわち、コンクリート6の流動はビンガ
ム塑性を示すと考えられるので、直線F1の傾きの逆数
を算出することにより、コンクリート6の塑性粘度ηを
求めることができる。また、V=L/Tであるので、単
位時間T当たりの測定子1の沈入距離Lを測定子1の重
量Wを変えて複数回測定することにより、コンクリート
6の塑性粘度ηが求められる。
That is, since the flow of the concrete 6 is considered to indicate Bingham plasticity, the plastic viscosity η of the concrete 6 can be obtained by calculating the reciprocal of the slope of the straight line F1. Further, since V = L / T, the plastic viscosity η of the concrete 6 can be obtained by measuring the sink distance L of the tracing stylus 1 per unit time T a plurality of times while changing the weight W of the tracing stylus 1. .

【0017】上記方法によれば、高価な機器を使用する
ことなく、かつ簡単な操作で、コンクリートの粘度を測
定することが可能となる。従って、コンクリートの粘度
と施工性評価における評価対象事項との相関関係を予め
把握しておけば、吹付コンクリートや自己充填コンクリ
ート等の施工性評価を簡便に行うことが可能となる。
According to the above method, it is possible to measure the viscosity of concrete without using expensive equipment and with a simple operation. Therefore, if the correlation between the viscosity of the concrete and the items to be evaluated in the workability evaluation is grasped in advance, it is possible to easily evaluate the workability of shotcrete, self-compacting concrete, and the like.

【0018】[0018]

【発明の効果】以上説明した通り、本発明のコンクリー
トの粘度測定方法では、簡単な構造の測定子を用意し、
この測定子をコンクリート中に沈入させ、単位時間当た
りの沈入距離を測定子の重量を変えて複数回測定するだ
けで、コンクリートの粘度を測定できる。すなわち、本
発明のコンクリートの粘度測定方法によれば、コンクリ
ートの粘度を安価かつ簡便に測定することが可能とな
る。
As described above, according to the method for measuring the viscosity of concrete of the present invention, a measuring element having a simple structure is prepared.
The viscosity of the concrete can be measured only by allowing the probe to sink into the concrete and measuring the sink distance per unit time a plurality of times while changing the weight of the probe. That is, according to the method for measuring the viscosity of concrete of the present invention, it is possible to measure the viscosity of concrete inexpensively and easily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のコンクリートの粘度測定方法に使用
される測定子の例を示す上方斜視図である。
FIG. 1 is a top perspective view showing an example of a probe used in the method for measuring the viscosity of concrete according to the present invention.

【図2】 図1に示す測定子の使用状況の例を示す断面
図である。
FIG. 2 is a cross-sectional view showing an example of a usage state of the tracing stylus shown in FIG.

【図3】 測定子の重量とコンクリートへの沈入速度と
の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the weight of a tracing stylus and the speed of sinking into concrete.

【図4】 ビンガム塑性を示す流体の剪断ひずみ速度と
剪断応力度との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the shear strain rate of a fluid exhibiting Bingham plasticity and the degree of shear stress.

【符号の説明】[Explanation of symbols]

1 測定子 2 シャフト 3 羽根(安定板) 5 重り 6 コンクリート DESCRIPTION OF SYMBOLS 1 Measuring element 2 Shaft 3 Blade (stable plate) 5 Weight 6 Concrete

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ビンガム塑性を示すコンクリート中に測
定子を垂直に沈入させ、単位時間当たりの沈入距離を測
定する操作を、上記測定子の重量を変えて複数回行うこ
とにより、上記測定子の重量と沈入速度とを変数とする
直線の式を求め、得られた直線の傾きから、上記コンク
リートの塑性粘度を求めることを特徴とするコンクリー
トの粘度測定方法。
1. The measurement is performed by vertically immersing a measuring element into concrete exhibiting Bingham plasticity and performing a plurality of operations of measuring the immersion distance per unit time while changing the weight of the measuring element. A method for measuring the viscosity of concrete, comprising: obtaining a formula of a straight line having variables of the weight of a child and a sinking speed as variables, and obtaining a plastic viscosity of the concrete from a slope of the obtained straight line.
【請求項2】 上記測定子の重量が、上記測定子の上端
部に着脱自在に支持される重りによって変更可能とされ
ていることを特徴とする請求項1に記載のコンクリート
の粘度測定方法。
2. The method for measuring the viscosity of concrete according to claim 1, wherein the weight of the measuring element can be changed by a weight detachably supported on an upper end of the measuring element.
【請求項3】 上記測定子が、シャフトと、シャフトの
下端部に設けられ、上記コンクリート中への沈入時に、
上記測定子を上記シャフトの軸に沿って垂直に沈入させ
る安定板とを備えることを特徴とする請求項1または2
に記載のコンクリートの粘度測定方法。
3. The tracing stylus is provided on a shaft and a lower end portion of the shaft, and when immersed in the concrete,
A stabilizing plate for vertically sinking the probe along the axis of the shaft.
The method for measuring the viscosity of concrete described in 1.
【請求項4】 上記安定板が、上記シャフトの下端部
に、その軸回りに等間隔で配設された、シャフトの軸と
平行な複数枚の羽板であることを特徴とする請求項3に
記載のコンクリートの粘度測定方法。
4. The stabilizing plate is a plurality of blades disposed at a lower end of the shaft at equal intervals around an axis of the shaft and parallel to the axis of the shaft. The method for measuring the viscosity of concrete described in 1.
JP06411599A 1999-03-10 1999-03-10 Method for measuring viscosity of concrete Expired - Fee Related JP4011225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06411599A JP4011225B2 (en) 1999-03-10 1999-03-10 Method for measuring viscosity of concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06411599A JP4011225B2 (en) 1999-03-10 1999-03-10 Method for measuring viscosity of concrete

Publications (2)

Publication Number Publication Date
JP2000258327A true JP2000258327A (en) 2000-09-22
JP4011225B2 JP4011225B2 (en) 2007-11-21

Family

ID=13248760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06411599A Expired - Fee Related JP4011225B2 (en) 1999-03-10 1999-03-10 Method for measuring viscosity of concrete

Country Status (1)

Country Link
JP (1) JP4011225B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004015707A1 (en) * 2004-03-29 2005-11-03 Technische Universität Berlin Rheometer for measuring characteristics of a non-Newtonian medium includes a device measuring time taken for a ball-shaped body that falls through medium contained in a housing, optionally with assistance of additional weights
AT505670B1 (en) * 2007-05-24 2009-03-15 Maba Fertigteilind Gmbh TESTER FOR DETERMINING THE QUALITY OF FRESH BEVERONE
CN101339184B (en) * 2008-08-20 2012-02-08 燕山大学 Self-compacting mortar working performance tester and test method
CN102590040A (en) * 2012-01-17 2012-07-18 哈尔滨工业大学 Power-free concrete viscometer
CN102590041A (en) * 2012-02-10 2012-07-18 哈尔滨工业大学 Measuring device and measuring method of concrete viscosity
CN102607997A (en) * 2012-02-17 2012-07-25 哈尔滨工业大学 Fresh concrete viscosity measuring apparatus
CN106018175A (en) * 2016-07-01 2016-10-12 阮祥盛 Fluid viscosity measuring device
RU2730900C2 (en) * 2015-12-09 2020-08-26 Констракшн Рисёрч Энд Текнолоджи Гмбх Device and method for determining rheological properties of concrete

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435536A (en) * 2011-09-28 2012-05-02 中国建筑股份有限公司 Method for testing rheological property of engineering slurry

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004015707A1 (en) * 2004-03-29 2005-11-03 Technische Universität Berlin Rheometer for measuring characteristics of a non-Newtonian medium includes a device measuring time taken for a ball-shaped body that falls through medium contained in a housing, optionally with assistance of additional weights
AT505670B1 (en) * 2007-05-24 2009-03-15 Maba Fertigteilind Gmbh TESTER FOR DETERMINING THE QUALITY OF FRESH BEVERONE
CN101339184B (en) * 2008-08-20 2012-02-08 燕山大学 Self-compacting mortar working performance tester and test method
CN102590040A (en) * 2012-01-17 2012-07-18 哈尔滨工业大学 Power-free concrete viscometer
CN102590041A (en) * 2012-02-10 2012-07-18 哈尔滨工业大学 Measuring device and measuring method of concrete viscosity
CN102607997A (en) * 2012-02-17 2012-07-25 哈尔滨工业大学 Fresh concrete viscosity measuring apparatus
RU2730900C2 (en) * 2015-12-09 2020-08-26 Констракшн Рисёрч Энд Текнолоджи Гмбх Device and method for determining rheological properties of concrete
CN106018175A (en) * 2016-07-01 2016-10-12 阮祥盛 Fluid viscosity measuring device
CN106018175B (en) * 2016-07-01 2018-06-26 阮祥盛 fluid viscosity measuring device

Also Published As

Publication number Publication date
JP4011225B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
Puertas et al. Experimental approach to the hydraulics of vertical slot fishways
Ferro et al. Applying hypothesis of self-similarity for flow-resistance law in Calabrian gravel-bed rivers
JP2017534783A (en) Real-time test system and test method for cement content of cement stir pile
JP2000258327A (en) Method for measuring viscosity of concrete
CN104631517A (en) Bored pile concrete interface monitoring device and method
Azhari et al. Laboratory validation of buried piezoelectric scour sensing rods
US10180360B1 (en) Distributed temperature sensor probe
CN101825646B (en) Method for measuring flow rate of thin water flow by electrolyte tracing
CN105486487A (en) Wave detection system
Hallock et al. The fall rate of the T-7 XBT
Michel et al. 5 years of in situ reinforcement corrosion monitoring in the splash and submerged zone of a cracked concrete element
JP2002062239A (en) Viscosity measuring device
KR890010396A (en) Turbine Blade Cross Section Determination Method and Apparatus
Nielsen et al. Friction effects on quasi-steady dam-break wave propagation on horizontal beds
CN205301320U (en) Concrete slump detection device
JP2000171376A (en) Method and device for measuring liquid density
Wang et al. Flow aeration and surface fluctuations in moderate-slope stepped chute: From aeration inception to fully developed aerated flow
US7240537B2 (en) Method for the determination of the wall friction profile along pipes by pressure transients measurements
CN107676081B (en) While-drilling acoustic logging instrument testing device
CN214894767U (en) Device suitable for acid etching method survey cladding material weight
Kim Relationship between viscosity and sugar concentration in aqueous sugar solution using the Stokes’ Law and Newton’s First Law of Motion
CN207775952U (en) Sound detecting pipe protective device
Arulrajah et al. Factors affecting field settlement assessment and back-analysis by the Asaoka and hyperbolic methods
JP2004037315A (en) Flow rate calculation method and flow rate calculation device of leak of ground water including sea water, and control device of amount of pumped water leak
CN108625409B (en) Civil engineering building foundation pile detection and evaluation system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees