JPH0763712B2 - Biological denitrification method and apparatus - Google Patents

Biological denitrification method and apparatus

Info

Publication number
JPH0763712B2
JPH0763712B2 JP3023785A JP2378591A JPH0763712B2 JP H0763712 B2 JPH0763712 B2 JP H0763712B2 JP 3023785 A JP3023785 A JP 3023785A JP 2378591 A JP2378591 A JP 2378591A JP H0763712 B2 JPH0763712 B2 JP H0763712B2
Authority
JP
Japan
Prior art keywords
denitrification
reducing agent
liquid
denitrifying
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3023785A
Other languages
Japanese (ja)
Other versions
JPH04363198A (en
Inventor
隆幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP3023785A priority Critical patent/JPH0763712B2/en
Publication of JPH04363198A publication Critical patent/JPH04363198A/en
Publication of JPH0763712B2 publication Critical patent/JPH0763712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、上水,下水,し尿,用
水,海水,廃水等の液中に含有される窒素酸化物、ある
いはそれらの液の処理過程で生ずる窒素酸化物を生物学
的に還元処理する方法及びその装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to nitrogen oxides contained in liquids such as tap water, sewage, human waste, irrigation water, sea water and waste water, or nitrogen oxides produced during the treatment of these liquids. TECHNICAL FIELD The present invention relates to a method and an apparatus for the reduction treatment.

【0002】[0002]

【従来の技術】従来、微生物(脱窒菌)を生物付着媒体
の表面に付着して固定化したもの、あるいは樹脂等によ
って包括固定化したものを利用して、液中の窒素酸化物
を脱窒処理する技術が知られており、この方法は活性汚
泥方式の脱窒法に比較して装置がコンパクトになるとい
う長所がある。
2. Description of the Related Art Conventionally, nitrogen oxides in a liquid are denitrified by using microorganisms (denitrifying bacteria) immobilized on the surface of an organism-attached medium or entrapped and immobilized by a resin or the like. A treatment technology is known, and this method has an advantage that the apparatus becomes compact as compared with the activated sludge denitrification method.

【0003】[0003]

【発明が解決しようとする課題】ところで、液中の窒素
酸化物を、媒体に付着あるいは包括固定化した脱窒菌を
利用して脱窒処理する方法において、経済的かつ合理的
な処理を行なうためには、流入窒素酸化物の変動に対応
して適切な量の還元剤を注入することが必要である。こ
のため、脱窒処理液中に残留している還元剤、例えば汎
用されているメタノールの量をガスクロマトグラフィを
用いて検出し、メタノールの注入量を適切に制御する方
法が提案されている。しかしながら、ガスクロマトグラ
フィは価格が高く、分析機構が複雑であり、また液中に
微量のSS(浮遊固形物)が存在していても分析が困難
になる。本発明は、還元剤注入量が過剰になると液のS
S濃度が上昇するという知見に基づいてなされたもの
で、前記問題点を解消し、還元剤注入量を適正に制御
し、経済的に良質な処理液を得ることができる生物学的
脱窒方法及びその装置を提供することを目的とするもの
である。
By the way, in order to carry out economical and rational treatment in a method of denitrifying nitrogen oxides in a liquid by utilizing denitrifying bacteria adhered to or entrapped in a medium. It is necessary to inject an appropriate amount of reducing agent in response to fluctuations in inflowing nitrogen oxides. For this reason, a method has been proposed in which the amount of a reducing agent remaining in the denitrification treatment liquid, for example, commonly used methanol is detected using gas chromatography and the injection amount of methanol is appropriately controlled. However, gas chromatography is expensive, the analysis mechanism is complicated, and the analysis becomes difficult even if a small amount of SS (floating solid matter) is present in the liquid. In the present invention, when the reducing agent injection amount becomes excessive, the S
The biological denitrification method was made based on the finding that the S concentration is increased, and can solve the above-mentioned problems, appropriately control the injection amount of the reducing agent, and obtain an economically high-quality treatment liquid. And an apparatus thereof.

【0004】[0004]

【課題を解決するための手段】本発明は、窒素酸化物含
有液に還元剤を注入して液中の窒素酸化物を媒体に付着
あるいは包括固定化した脱窒菌を利用して還元脱窒する
方法において、流出する脱窒処理液中のSS濃度を吸光
光度法で検出し、その検出値に基づいて還元剤注入量を
制御することを特徴とする生物学的脱窒方法であり、ま
た還元剤注入設備を備え、媒体に付着あるいは包括固定
化した脱窒菌を利用して液中の窒素酸化物を還元脱窒す
る脱窒槽の脱窒処理液流出経路に吸光光度法SS測定装
置を連結し、該SS測定装置をその検出値により還元剤
注入量を制御する演算制御回路を介して前記還元剤注入
設備に連結したことを特徴とする生物学的脱窒装置であ
る。
According to the present invention, a reducing agent is injected into a liquid containing nitrogen oxides to carry out reductive denitrification by utilizing a denitrifying bacterium in which nitrogen oxides in the liquid are adhered to or entrapped in a medium. In the method, a biological denitrification method is characterized in that the SS concentration in the outflowing denitrification treatment liquid is detected by an absorptiometric method, and the reducing agent injection amount is controlled based on the detected value. An absorptiometric SS measuring device is connected to the denitrification treatment liquid outflow path of the denitrification tank that is equipped with agent injection equipment and uses the denitrifying bacteria attached to or entrapped in the medium to reduce and denitrify nitrogen oxides in the liquid. The biological denitrification device is characterized in that the SS measuring device is connected to the reducing agent injecting facility through an arithmetic and control circuit for controlling the reducing agent injecting amount according to the detected value.

【0005】[0005]

【作用】本発明の対象となる液は、窒素酸化物を含有す
る液、あるいは液中のNH3 −Nを予め好気的条件下に
ある硝化工程によって硝酸等の窒素酸化物に酸化した液
であり、これらの液にメタノール,エタノール,プロピ
ルアルコール等の還元剤を注入し、嫌気的条件下にある
活性炭,砂,ハニカムチューブ等の生物付着媒体の表面
に付着させて固定化した脱窒菌,あるいはポリビニール
樹脂等によって包括固定化した脱窒菌を利用した脱窒工
程に導き、液中の窒素酸化物が窒素ガスに還元され脱窒
される。この還元脱窒された脱窒処理液は、濁度計,透
視度計などの吸光光度法SS測定装置によって液中のS
Sが検出され、該SS測定装置からの検出信号は演算制
御回路に入力され、設定されたSS濃度と比較演算され
たのち、還元剤の注入量が制御される。この場合の設定
されたSS濃度とは、実験あるいは運転初期において、
還元剤が過不足なく注入された場合のSS濃度である。
このようにして、濁度,還元剤,BOD濃度の低減した
良質の脱窒処理液を得ることができる。還元剤注入量と
液中のSS濃度とは相関関係があり、還元剤注入量が過
剰になるとSS濃度が上昇する。還元剤注入量が過剰に
なった時にSS濃度が上昇するのは、脱窒菌の酸素源と
なる窒素酸化物が脱窒工程において十分に行き渡らず、
脱窒工程全体が絶対的な嫌気状態(溶存酸素も結合酸素
も無い状態)になったため、脱窒菌が失活して固定化物
から剥離するためである。特に、硫酸イオンが存在する
場合には、硫酸還元菌によって硫酸イオンが還元されて
コロイド状の硫黄粒子が発生するため、窒素酸化物が消
失した時にSS濃度の上昇が著しくなる。従って、本発
明は硫酸を含有する窒素酸化物含有液、例えばし尿の酸
化液や海水を含む廃水等には特に有効である。
The liquid which is the subject of the present invention is a liquid containing nitrogen oxides, or a liquid obtained by previously oxidizing NH 3 -N in the liquid to nitrogen oxides such as nitric acid by a nitrification step under aerobic conditions. The denitrifying bacteria immobilized by injecting a reducing agent such as methanol, ethanol or propyl alcohol into these liquids and adhering them to the surface of the biofouling medium such as activated carbon, sand or honeycomb tube under anaerobic conditions, Alternatively, it is introduced into a denitrification process using denitrifying bacteria that are entrapped and immobilized with polyvinyl resin or the like, and nitrogen oxides in the liquid are reduced to nitrogen gas to be denitrified. The denitrification treatment liquid that has been subjected to the reductive denitrification contains S in the liquid by an absorptiometry SS measuring device such as a turbidimeter or a fluorometer.
S is detected, the detection signal from the SS measuring device is input to the arithmetic control circuit, and the calculated SS concentration is compared and calculated, and then the injection amount of the reducing agent is controlled. In this case, the set SS concentration is
It is the SS concentration when the reducing agent is injected just enough.
In this way, a high-quality denitrification treatment liquid with reduced turbidity, reducing agent and BOD concentration can be obtained. There is a correlation between the reducing agent injection amount and the SS concentration in the liquid, and the SS concentration increases when the reducing agent injection amount becomes excessive. When the reducing agent injection amount becomes excessive, the SS concentration rises because nitrogen oxide, which is an oxygen source of the denitrifying bacteria, is not sufficiently distributed in the denitrification process,
This is because the entire denitrification process became an absolute anaerobic state (a state in which neither dissolved oxygen nor bound oxygen was present), so that the denitrifying bacteria were inactivated and separated from the immobilized product. In particular, when sulfate ions are present, the sulfate ions are reduced by the sulfate-reducing bacteria to generate colloidal sulfur particles, so that when the nitrogen oxides disappear, the SS concentration increases remarkably. Therefore, the present invention is particularly effective for a nitric oxide-containing liquid containing sulfuric acid, for example, an oxidizing liquid of human waste or wastewater containing seawater.

【0006】[0006]

【実施例】本発明の装置の一実施例を図1を参照して説
明すれば、1はアンスラサイト等の生物付着媒体の表面
に付着、固定化した脱窒菌、あるいはポリビニール樹脂
等によって包括、固定化した脱窒菌を充填した脱窒槽
で、ハニカムチューブ等を充填した硝化槽2で好気的条
件下で液中のNH3 −Nが硝酸等に酸化された硝化液、
あるいはその他の窒素酸化物含有液流入管3が連結さ
れ、この窒素酸化物含有液流入管3からの流入液にメタ
ノール等の還元剤4を注入する還元剤注入設備5が備え
られている。脱窒槽1に還元剤4と共に流入した窒素酸
化物含有液は、嫌気的条件下において窒素酸化物が窒素
ガスに還元脱窒され、その脱窒処理液は脱窒処理液流出
管6から流出するようになっているが、脱窒処理液流出
管6には流出する脱窒処理液のSS濃度を測定するため
の吸光光度法SS測定装置、例えば吸光光度法による濁
度計7が連結されている。さらに、濁度計7は、演算制
御回路8に連結され、濁度計7で検出された濁度の検出
値が演算制御回路8に入力され、設定された濁度と比較
演算されたのち、還元剤注入設備5による還元剤注入量
を制御するように演算制御回路8と還元剤注入設備5と
が連結されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the apparatus of the present invention will be described with reference to FIG. 1. Reference numeral 1 is a denitrifying bacterium adhered to or immobilized on the surface of a bioadhesive medium such as anthracite, or is covered with polyvinyl resin or the like. A nitrification solution in which NH 3 —N in the solution is oxidized to nitric acid or the like under aerobic conditions in a denitrification tank filled with immobilized denitrifying bacteria and in a nitrification tank 2 filled with a honeycomb tube or the like,
Alternatively, another nitrogen oxide-containing liquid inflow pipe 3 is connected, and a reducing agent injection facility 5 for injecting a reducing agent 4 such as methanol into the inflow liquid from the nitrogen oxide-containing liquid inflow pipe 3 is provided. The nitrogen oxide-containing liquid that has flowed into the denitrification tank 1 together with the reducing agent 4 undergoes denitrification of nitrogen oxides into nitrogen gas under anaerobic conditions, and the denitrification treatment liquid flows out from the denitrification treatment liquid outflow pipe 6. However, the denitrification treatment solution outflow pipe 6 is connected with an absorptiometry SS measuring device for measuring the SS concentration of the denitrification treatment solution flowing out, for example, a turbidimeter 7 by the absorptiometry method. There is. Further, the turbidity meter 7 is connected to the arithmetic control circuit 8, and the detected value of the turbidity detected by the turbidity meter 7 is input to the arithmetic control circuit 8 and, after being compared and calculated with the set turbidity, The arithmetic control circuit 8 and the reducing agent injection equipment 5 are connected so as to control the reducing agent injection amount by the reducing agent injection equipment 5.

【0007】次に、脱窒菌を付着固定化した3〜4mm
φのアンスラサイトを容量25l (180mmφ×10
00mm)の円筒タンクに充填して脱窒槽とし、流入す
る硝化水のNO3 −N濃度を変動せしめて下向流で脱窒
処理した場合の実験例を示す。実験条件は表1に示す通
りであり、硝化水として淡水及び海水により試薬NaN
3 で作製した人工硝化水を用いた。本発明の比較例と
して、従来行なわれているように、硝化水NO3 −Nの
高い場合にも脱窒が完全に行なわれる量のメタノールを
連続注入した。
Next, 3 to 4 mm with denitrifying bacteria adhered and immobilized
The volume of φ anthracite is 25 l (180 mmφ × 10
(00 mm) is filled in a cylindrical tank to form a denitrification tank, and an example of an experiment in the case where the NO 3 —N concentration of the inflowing nitrification water is changed and the denitrification treatment is performed in a downward flow is shown. The experimental conditions are as shown in Table 1, and the reagent NaN was used as fresh water and seawater as nitrifying water.
Artificial nitrification water prepared with O 3 was used. As a comparative example of the present invention, as is conventionally done, methanol was continuously injected in an amount sufficient to completely denitrify even when the nitrification water NO 3 —N was high.

【0008】[0008]

【表1】 このメタノールの連続注入を行なった時の実験1−1及
び2−1の脱窒槽流入硝化水のNO3 −N濃度、脱窒処
理水の残留メタノール及び濁度の変動パターンを図2と
図3に示す。これらの図から、NO3 −Nの変動でメタ
ノールが残留し、濁度が上昇するが、海水(実験2−
1)ではそれが特に著しいことが判る。これらの比較例
(実験1−1及び2−1)の結果は表2に示す通りであ
り、比較例と同一のNO3 −N濃度の時間変動を与え、
吸光光度法による自動濁度測定機で脱窒処理水の濁度を
検出してメタノール注入量を制御した本発明法(実験1
−2及び2−2)の結果も併せて表2に示した。
[Table 1] FIG. 2 and FIG. 3 show the fluctuation patterns of NO 3 —N concentration of nitrification water flowing into the denitrification tank, residual methanol of denitrification treated water, and turbidity of experiments 1-1 and 2-1 when continuous injection of methanol was performed. Shown in. From these figures, it can be seen that the fluctuation of NO 3 -N causes methanol to remain and the turbidity increases.
In 1), it turns out that it is especially remarkable. The results of these comparative examples (Experiments 1-1 and 2-1) are as shown in Table 2, and the same NO 3 -N concentration time variation as in the comparative example was given.
The method of the present invention in which the methanol injection amount was controlled by detecting the turbidity of denitrification-treated water with an automatic turbidity measuring instrument by the absorptiometric method
-2 and 2-2) are also shown in Table 2.

【0009】[0009]

【表2】 本発明法におけるメタノール注入量の制御は、脱窒処理
水を自動濁度測定機の50mmセルに連続的に通水し、
波長600nmで吸光値を連続的に検出して自動制御し
た。具体的には、実験1−2では、吸光値が0.010
に上昇した時点でメタノール注入量を設定値の50%に
減少し、吸光値が0.009に低下した時にメタノール
注入量を設定量(100%)になるようにした。実験2
−2では、吸光値が0.060に上昇した時点でメタノ
ール注入量が設定値の25%に減少し、吸光値が0.0
50に低下した時に設定値(100%)注入するように
した。なお、濁度は前記吸光値に82を掛けたものであ
る。硝化水にもともと濁度がある場合には、その濁度を
考慮してメタノール注入量の自動制御の濁度の設定を行
なうとよい。従って、濁度とメタノール注入量とNO3
−N除去率の関係は、予め実験的に把握し、実施段階に
おいて微調整するようにしておくとよい。
[Table 2] The amount of methanol injected in the method of the present invention is controlled by continuously passing denitrification treated water through a 50 mm cell of an automatic turbidity measuring instrument,
The absorption value was continuously detected at a wavelength of 600 nm and automatically controlled. Specifically, in Experiment 1-2, the absorption value was 0.010.
The amount of methanol injected was reduced to 50% of the set value when the value increased to 1, and the amount of methanol injected was adjusted to the set amount (100%) when the absorption value decreased to 0.009. Experiment 2
-2, when the absorption value increased to 0.060, the amount of methanol injected decreased to 25% of the set value, and the absorption value was 0.0
The set value (100%) was injected when the temperature dropped to 50. The turbidity is the absorption value multiplied by 82. When the nitrification water originally has turbidity, it is advisable to set the turbidity for automatic control of the amount of injected methanol in consideration of the turbidity. Therefore, the turbidity, the injection amount of methanol, and NO 3
The relationship of the -N removal rate may be experimentally grasped in advance and finely adjusted at the implementation stage.

【0010】[0010]

【効果】以上述べたように、本発明によれば、次のよう
な極めて有益なる効果を奏するものである。 吸光光
度法という簡単な手段で脱窒用還元剤注入量を制御する
ことができるため、還元剤の自動注入を簡単かつ安定し
て行なうことができる。 脱窒処理液の濁度、還元剤
BOD濃度を低減することができ、良質の処理液を得る
ことができる。 還元剤注入量を節減することがで
き、経済的な脱窒処理を行なうことができる。
As described above, according to the present invention, the following extremely beneficial effects are exhibited. Since the injection amount of the reducing agent for denitrification can be controlled by a simple means such as an absorptiometric method, automatic injection of the reducing agent can be performed easily and stably. The turbidity of the denitrification treatment liquid and the concentration of the reducing agent BOD can be reduced, and a high-quality treatment liquid can be obtained. The amount of reducing agent injected can be reduced, and economical denitrification can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の構成説明図である。FIG. 1 is an explanatory diagram of a configuration of a device of the present invention.

【図2】本発明に対する比較例である実験1−1の硝化
水NO3 −N濃度、脱窒処理水の残留メタノール及び濁
度の変動パターンを示す線図である。
FIG. 2 is a diagram showing fluctuation patterns of NO 3 —N concentration in nitrifying water, residual methanol in denitrification-treated water, and turbidity in Experiment 1-1, which is a comparative example to the present invention.

【図3】本発明に対する比較例である実験2−1の硝化
水NO3 −N濃度、脱窒処理水の残留メタノール及び濁
度の変動パターンを示す線図である。
FIG. 3 is a diagram showing fluctuation patterns of NO 3 —N concentration in nitrifying water, residual methanol in denitrification-treated water, and turbidity in Experiment 2-1 which is a comparative example to the present invention.

【符号の説明】[Explanation of symbols]

1 脱窒槽 2 硝化槽 3 窒素酸化物含有液流入管 4 還元剤 5 還元剤注入設備 6 脱窒処理液流出管 7 濁度計 8 演算制御回路 1 Denitrification tank 2 Nitrification tank 3 Nitrogen oxide-containing liquid inflow pipe 4 Reductant 5 Reductant injection facility 6 Denitrification treatment liquid outflow pipe 7 Turbidimeter 8 Operation control circuit

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 3/10 Z G01N 33/18 A 7055−2J // G01N 21/59 Z Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C02F 3/10 Z G01N 33/18 A 7055-2J // G01N 21/59 Z

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物含有液に還元剤を注入して液
中の窒素酸化物を媒体に付着あるいは包括固定化した脱
窒菌を利用して還元脱窒する方法において、流出する脱
窒処理液中のSS濃度を吸光光度法で検出し、その検出
値に基づいて還元剤注入量を制御することを特徴とする
生物学的脱窒方法。
1. A method for reductive denitrification using a denitrifying bacterium in which a reducing agent is injected into a nitrogen oxide-containing liquid and nitrogen oxide in the liquid is adhered to or entrapped in a medium, and denitrifying outflows. A biological denitrification method characterized by detecting the SS concentration in a liquid by an absorptiometric method and controlling the injection amount of the reducing agent based on the detected value.
【請求項2】 還元剤注入設備を備え、媒体に付着ある
いは包括固定化した脱窒菌を利用して液中の窒素酸化物
を還元脱窒する脱窒槽の脱窒処理液流出経路に吸光光度
法SS測定装置を連結し、該SS測定装置をその検出値
により還元剤注入量を制御する演算制御回路を介して前
記還元剤注入設備に連結したことを特徴とする生物学的
脱窒装置。
2. An absorptiometric method provided in a denitrification treatment solution outflow path of a denitrification tank for reducing and denitrifying nitrogen oxides in the solution by using denitrifying bacteria attached to or entrapped in a medium, which is equipped with a reducing agent injection facility. A biological denitrification device, comprising an SS measuring device connected to the reducing measuring agent injection device, and the SS measuring device is connected to the reducing agent injection equipment via an arithmetic and control circuit for controlling the reducing agent injection amount according to the detected value.
JP3023785A 1991-01-25 1991-01-25 Biological denitrification method and apparatus Expired - Lifetime JPH0763712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3023785A JPH0763712B2 (en) 1991-01-25 1991-01-25 Biological denitrification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3023785A JPH0763712B2 (en) 1991-01-25 1991-01-25 Biological denitrification method and apparatus

Publications (2)

Publication Number Publication Date
JPH04363198A JPH04363198A (en) 1992-12-16
JPH0763712B2 true JPH0763712B2 (en) 1995-07-12

Family

ID=12119984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3023785A Expired - Lifetime JPH0763712B2 (en) 1991-01-25 1991-01-25 Biological denitrification method and apparatus

Country Status (1)

Country Link
JP (1) JPH0763712B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923348B2 (en) * 2001-07-26 2012-04-25 栗田工業株式会社 Biological denitrification method
US6767464B2 (en) * 2001-12-13 2004-07-27 Environmental Operating Solutions, Inc. Process and apparatus for waste water treatment
JP2015016436A (en) * 2013-07-11 2015-01-29 水ing株式会社 Method and apparatus for biological denitrification

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946195A (en) * 1982-09-08 1984-03-15 Hitachi Ltd Controlling method for biological denitrification process

Also Published As

Publication number Publication date
JPH04363198A (en) 1992-12-16

Similar Documents

Publication Publication Date Title
US7147778B1 (en) Method and system for nitrifying and denitrifying wastewater
Tseng et al. Effect of influent chemical oxygen demand to nitrogen ratio on a partial nitrification/complete denitrification process
JP4678577B2 (en) Wastewater treatment system
JP3015426B2 (en) Wastewater management and treatment method
JP2002126779A (en) Sludge treatment method and apparatus used therefor
JPH0763712B2 (en) Biological denitrification method and apparatus
JP3870445B2 (en) Biological treatment equipment
JPH0461993A (en) Method and apparatus for biological nitration and denitrification of organic polluted water
JP2001170685A (en) Treating device for nitrogen-containing waste water
JPH0362480B2 (en)
JPH1157771A (en) Biological water treatment and equipment therefor
JPH0520160B2 (en)
JPS6043200B2 (en) Wastewater treatment method
JPH0688034B2 (en) Biological denitrification method and apparatus
JP3387718B2 (en) Wastewater treatment method and apparatus
JP3260558B2 (en) Control method of intermittent aeration type activated sludge method
JP3265884B2 (en) Solid-liquid separation method and apparatus for wastewater
JP3497542B2 (en) Operation of septic tank
CN110627294B (en) Sewage treatment method
JP2001029991A (en) Water treatment method
JP3260575B2 (en) Control method of intermittent aeration type activated sludge method
JP2607030B2 (en) Wastewater treatment method and apparatus
JP2003285093A (en) Biological denitrification method and apparatus therefor
JPS5814997A (en) Control method for biological denitrification process
JPH08309388A (en) Nitrating device