JPH0763559A - Method and device for measuring aircraft flight course - Google Patents

Method and device for measuring aircraft flight course

Info

Publication number
JPH0763559A
JPH0763559A JP24349193A JP24349193A JPH0763559A JP H0763559 A JPH0763559 A JP H0763559A JP 24349193 A JP24349193 A JP 24349193A JP 24349193 A JP24349193 A JP 24349193A JP H0763559 A JPH0763559 A JP H0763559A
Authority
JP
Japan
Prior art keywords
aircraft
data
antenna
noise
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24349193A
Other languages
Japanese (ja)
Other versions
JP2532344B2 (en
Inventor
Shinji Oohashi
心耳 大橋
Naoki Hayashi
直樹 林
Hideo Tokumaru
英雄 徳丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUTOUBOU ONKYO ENG KK
Original Assignee
NITSUTOUBOU ONKYO ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUTOUBOU ONKYO ENG KK filed Critical NITSUTOUBOU ONKYO ENG KK
Priority to JP5243491A priority Critical patent/JP2532344B2/en
Publication of JPH0763559A publication Critical patent/JPH0763559A/en
Application granted granted Critical
Publication of JP2532344B2 publication Critical patent/JP2532344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To arrange a wig tapping antenna, a detecting antenna and a sound receiving device adjacent to each other on one position near an airport, process the data obtained thereby by a computer, and easily perform an automatic measurement regardless of weather. CONSTITUTION:A wire tapping antenna A for transponder response signal, a rotating directional detect-ing antenna A' for detecting the arrival angle of the radio wave, and a sound receiving device B for detecting a sound vector in the arrival direction of an aircraft noise are provided. These are arranged adjacent to each other within a circle of a prescribed range on the ground, the antenna A, the antenna A' and the device B are connected to a reading device D, an arrival angle calculating device E, and a sound vector calculating device F, respectively. The data obtained from them are inputted to and stored in a computer C placed in an optional position, these data are calculated under a prescribed time condition to monitor the flight course data, and a target aircraft is specified and displayed on a printer G by a machine kind identification No. S.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、航空機の飛行コースを
地上の一地点において測定する方法及び装置に関し、特
に空港近傍の空域を飛行する離着陸航空機の飛行コース
の自動測定を、精度よく簡便に行い得る手段の提供を目
的とするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the flight course of an aircraft at one point on the ground, and more particularly, to the automatic measurement of the flight course of a takeoff and landing aircraft flying in the airspace near the airport with high accuracy and simplicity. The purpose is to provide means that can be performed.

【0002】[0002]

【従来の技術】空港に離着陸する航空機の安全確保或い
は空港近傍の航空機騒音対策のために、空港近傍空域に
おける航空機の飛行コースを確認することが必要であ
る。従来、空港から数100km以内の空域を飛行する
航空機は二次監視レーダー装置の航空管制下に飛行して
いるが、該航空管制システムでは空港近傍の空域におけ
る航空機飛行コースを正確に測定することは極めて困難
であるので、通常空港近傍の複数の地点に測定点を配置
し、その2点の測定値から三角測量法によって飛行位置
を算出して、その経時的データによって飛行コースを決
定する方法が採用されている。
2. Description of the Related Art It is necessary to confirm the flight course of an aircraft in the airspace near the airport in order to ensure the safety of the aircraft taking off and landing at the airport or to prevent aircraft noise near the airport. Conventionally, an aircraft flying in the airspace within a few hundred kilometers from an airport flies under the air traffic control of a secondary surveillance radar device, but this air traffic control system cannot accurately measure an aircraft flight course in the airspace near the airport. Since it is extremely difficult, there is usually a method of arranging measurement points at multiple points near the airport, calculating the flight position by triangulation from the measured values of those two points, and determining the flight course based on the temporal data. Has been adopted.

【0003】前記の飛行位置測定手段としては主として
下記3方法がある。 (1)立体座標軸に配置した4素子マイクロホン型の受
音装置によって、航空機が発する騒音の両測定点におけ
る到来音波のベクトルの方位角,仰角を同時測定して飛
行位置を算出する。 (2)航空機が発信するトランスポンダ応答信号電波の
到来方向を両測定点で同時測定するとともに、信号解読
して飛行高度を得て、電波到来方位角方向の交差角と飛
行高度によって飛行位置を算出する。 (3)セオドライドによる目視観測を両測定点で同時に
行ない、その方位角,仰角によって飛行位置を算出す
る。
The following three methods are mainly used as the flight position measuring means. (1) The flight position is calculated by simultaneously measuring the azimuth angle and elevation angle of the vector of the incoming sound wave at both measurement points of the noise emitted by the aircraft using a four-element microphone type sound receiving device arranged on the three-dimensional coordinate axes. (2) Simultaneously measure the arrival direction of the transponder response signal radio wave transmitted by the aircraft at both measurement points, decode the signal to obtain the flight altitude, and calculate the flight position by the crossing angle of the radio wave arrival azimuth direction and the flight altitude. To do. (3) Simultaneous visual observation with theodolide is performed at both measurement points, and the flight position is calculated from the azimuth angle and elevation angle.

【0004】[0004]

【発明が解決しようとする課題】従来の方法は離隔した
2つの測定点間の距離を基準として、各測定点において
同期測定した音波,電波の到来方向或いは機影観測方向
の角度によって航空機の空間位置を算出するものである
が、離隔した両測定点における同期測定が困難であると
もに、それぞれの測定誤差が重畳されるので、算出飛行
位置が不正確となり易い問題点があった。
The conventional method is based on the distance between two measurement points that are separated from each other, and the space of the aircraft is determined by the angle of the arrival direction of the sound wave or radio wave or the observation direction of the machine image measured synchronously at each measurement point. Although the position is calculated, there is a problem in that it is difficult to perform synchronous measurement at both measurement points that are apart from each other, and measurement errors are superimposed on each other, so that the calculated flight position tends to be inaccurate.

【0005】即ち、前記の各測定手段において、航空機
の騒音到来方向を測定する場合、4素子マイクロホン型
の受音装置による測角精度は±0.5°の誤差は避けら
れなく、しかも両測定点と航空機までの距離差によって
騒音到達時間差の補正が極めて困難であって、同期デー
タ採取が得難く、またトランスポンダ応答信号電波の方
向探知する手段では、両測定点における同期測定は容易
であるが、その測角精度は5素子ポールアンテナ型等の
回転指向性アンテナによる場合には±3°の誤差を生
じ、さらにセオドライドにより目視観測手段では±0.
1°以下の誤差とすることができるが、追尾測定上の難
点があり、しかも夜間,天候等によって観測不能となる
ものであった。
That is, when measuring the arrival direction of noise of an aircraft in each of the above-mentioned measuring means, an error of ± 0.5 ° inevitably occurs in the angle measurement accuracy of the 4-element microphone type sound receiving device, and both measurements are performed. It is extremely difficult to correct the noise arrival time difference due to the distance difference between the point and the aircraft, and it is difficult to obtain the synchronous data, and the method for finding the direction of the transponder response signal radio wave makes it easy to perform the synchronous measurement at both measurement points. , The angle measurement accuracy is ± 3 ° in the case of a rotational directional antenna such as a 5-element pole antenna type, and it is ± 0.
The error could be less than 1 °, but there was a problem in tracking measurement, and it was not observable due to night time, weather, etc.

【0006】さらに、前記の各測定手段は、両測定点か
らの航空機の測角方向の交差によってその飛行位置を決
定するものであるが、前記の両測定点からの測角方向の
交差角が30°以下および120°以上となると前記の
測定角度誤差により特に飛行位置の決定が著しく不正確
となりやすく、測定範囲が制限されるものであった。
Further, each of the above-mentioned measuring means determines its flight position by the intersection of the angle-measuring direction of the aircraft from both measurement points. When the angle is 30 ° or less and 120 ° or more, the flight angle is apt to be extremely inaccurately determined due to the measurement angle error, and the measurement range is limited.

【0007】[0007]

【課題を解決するための手段】本発明は前記のごとき2
測定点による三角測量方式による従来の航空機飛行位置
の測定手段の課題を、一測定点における航空機のトラン
スポンダ応答信号電波の傍受解読および電波到来方向の
検知と航空機の騒音到来方向を検知する受音との組合わ
せデータを用いることによって解決することに成功した
ものである。
The present invention includes the above-mentioned 2
The problem of the conventional aircraft flight position measurement method by the triangulation method at the measurement points is to analyze the interception of the transponder response signal of the aircraft at one measurement point, the detection of the direction of arrival of the radio wave, and the reception of the noise of the aircraft. We have succeeded in solving it by using the combination data of.

【0008】即ち、本発明は空港近傍の一地点に近接配
置した航空機が発信するトランスポンダ応答信号電波を
傍受する傍受アンテナ(A)と、該到来方向を知る探知
アンテナ(A′)と、航空機騒音の到来方向を検知する
受音装置(B)によって、トランスポンダ応答信号を解
読して機種識別,飛行高度データ、並びに該電波到来方
向の方位角データ、及び騒音到来方向の方位角仰角デー
タを得て、これらのデータを同時継続的にコンピュータ
(C)に入力し、前記電波と騒音の到来方位角が一致す
る時刻的条件下に飛行位置を計算して経時的に出力表示
することを特徴とする航空機の飛行コース測定方法およ
び該方法を実施する装置であり、さらに前記の構成中に
航空機の騒音レベルの測定手段を加えることも含むもの
である。
That is, according to the present invention, an interception antenna (A) for intercepting a transponder response signal radio wave transmitted from an aircraft arranged near a point near an airport, a detection antenna (A ') for knowing the arrival direction, and an aircraft noise. The sound receiving device (B) for detecting the direction of arrival of the radio waves decodes the transponder response signal to obtain model identification, flight altitude data, azimuth angle data of the radio wave arrival direction, and azimuth angle elevation data of the noise arrival direction. It is characterized in that these data are continuously and continuously inputted to the computer (C), the flight position is calculated under a time condition in which the arrival azimuth angles of the radio wave and the noise coincide with each other, and the data are output and displayed with time. A method for measuring a flight course of an aircraft and an apparatus for carrying out the method, which further includes adding means for measuring a noise level of the aircraft in the above-mentioned configuration.

【0009】上記に置いて、傍受アンテナ(A)は航空
機が発信するトランスポンダ応答信号電波(1090M
Hz)を傍受し得る無指向性アンテナであり、探知アン
テナ(A′)はトランスポンダ応答信号電波の到来方向
を検知し得る回転指向性例えは5素子ポールアンテナ型
回転指向性アンテナであり、航空機騒音の到来方向を検
知する受音装置(B)は4素子マイクロホン型の音響ベ
クトル測定による音響到来方位角及び仰角を計測し得る
ものであり、これらは地上の一地点に近接配置される。
In the above, the intercept antenna (A) is used as a transponder response signal radio wave (1090M) transmitted by the aircraft.
Hz) is a non-directional antenna that can be intercepted, and the detection antenna (A ') is a rotational directivity that can detect the arrival direction of a transponder response signal radio wave. The sound receiving device (B) for detecting the arrival direction of the device is capable of measuring the azimuth angle and the elevation angle of the sound by a four-element microphone type acoustic vector measurement, and these are arranged close to one point on the ground.

【0010】トランスポンダ応答信号電波は、当該航空
機の機種識別,飛行高度データを含むパルス信号を1秒
間に数10回繰り返して継続的に発信するものであり、
これを地上において傍受解読して秒単位の時刻ごとのデ
ータとして自動的に得ることができ、またその電波到来
方位角データも同様の時刻毎のデータとして得ることが
できる。一方、航空機騒音の到来方位角及び仰角データ
も、前記電波データと時刻的に同期して採取することが
できるが、該データは測定点と当該航空機との距離によ
って電波データに対して音速に基づく時間遅れを生ず
る。従って、飛行する航空機の空間的位置を決定するた
めには、前記の電波,騒音の発生時点を一致せしめた各
データを基礎として計算しなければならない。
The transponder response signal radio wave is a signal which continuously transmits a pulse signal including model identification of the aircraft and flight altitude data several tens of times per second.
This can be intercepted and decoded on the ground and automatically obtained as data for each time in seconds, and the azimuth data of the radio wave arrival can also be obtained as data for each similar time. On the other hand, the arrival azimuth angle and elevation data of aircraft noise can also be sampled in time synchronization with the radio wave data, but the data is based on the speed of sound with respect to the radio wave data depending on the distance between the measurement point and the aircraft. It causes a time delay. Therefore, in order to determine the spatial position of the flying aircraft, it has to be calculated based on the respective data in which the times of generation of the radio waves and noise are matched.

【0011】本発明においては、前記の電波と騒音の測
定データを同時継続してコンピュータ(C)に入力記憶
せしめ、電波と騒音の到来方位角がほぼ一致する時刻的
条件において、その騒音到来方位角と仰角データ及び電
波による高度データにより、各時刻毎の航空機の空間的
位置を算出して航空機の飛行コースを決定するものであ
り、これらの各測定データ並びに飛行コースの地図平面
上の投影軌跡等はブラウン管上又は記録紙上に数値,グ
ラフ図形として表示するものである。
According to the present invention, the measured data of the radio wave and the noise are continuously input and stored in the computer (C) at the same time. The flight position of the aircraft is determined by calculating the spatial position of the aircraft at each time based on the angle and elevation data and altitude data by radio waves.These measurement data and the projected trajectory of the flight course on the map plane Etc. are displayed as numerical values and graphs on a cathode ray tube or recording paper.

【0012】なお、本測定手段においては、航空機の騒
音レベルに対する受音装置の検出性能による測定限界が
あり、通常の商用航空機のジェットエンジン音の場合
は、約2km半径範囲の測定が可能であり、一方トラン
スポンダ応答信号電波の傍受可能範囲はこれより遥かに
広い範囲をカバーできるので、該電波の電界強度によっ
て受音解析装置を作動せしめて、電波,騒音の両データ
を自動的に効率的に採取することが好ましい。また、前
記受音装置に騒音レベル測定装置を併設して、るたのデ
ータと共に騒音レベルをコンピュータ(C)に入力し
て、飛行コースと共に出力表示すれば、騒音公害対策な
どの資料として有効に利用することができる。
In this measuring means, there is a measurement limit due to the detection performance of the sound receiving device with respect to the noise level of the aircraft, and in the case of the jet engine sound of a normal commercial aircraft, it is possible to measure within a radius range of about 2 km. On the other hand, since the transmissible range of the transponder response signal radio wave can cover a much wider range than this, the sound receiving analysis device is operated by the electric field strength of the radio wave to automatically and efficiently detect both radio wave and noise data. It is preferable to collect. In addition, if a noise level measuring device is installed side by side with the sound receiving device and the noise level is input to the computer (C) together with the data of the karuta and is output and displayed along with the flight course, it is effective as a material for noise pollution countermeasures. Can be used.

【0013】[0013]

【作用】本発明は前記の構成により、空港近傍を飛行す
る航空機の飛行高度を含む飛行コースを、一地点におけ
る測定によって容易に算出表示し得るので、従来の二地
点測定による三角測量方式の測定手段における方法及び
装置の繁雑さを解決して昼夜,天候の影響を受けること
なく、比較的精度の高い自動測定を行うことができるも
のである。
According to the present invention, since the flight course including the flight altitude of the aircraft flying near the airport can be easily calculated and displayed by the measurement at one point, the present invention makes it possible to perform the triangulation measurement by the conventional two-point measurement. By solving the complexity of the method and apparatus in the means, it is possible to perform relatively accurate automatic measurement without being affected by the weather day or night.

【0014】[0014]

【実施例】本発明の実施例を図面を参照して説明する。
図1は本発明装置の一例を示すブロック図、図2は本発
明の飛行コース測定手段の原理を説明する略示的斜視図
である。図1において、Aはトランスポンダ応答信号の
傍受アンテナ、A′は該電波の到来方向方位角を検出す
る回転指向性の5素子ポールアンテナ型の検出アンテ
ナ、Bは航空機騒音の到来方向の音ベクトル検出用の4
素子マイクロホン型の受音装置であり、これらは地上の
半径2m以内の円内に近接配置され、傍受アンテナAは
解読装置Dに、探知アンテナA′は方位角計算装置E
に、受音装置Bは音ベクトル計算装置Fに接続され、そ
れぞれから得られたデータは任意の場所に置かれたコン
ピュータCに入力記憶され、これらのデータを計算処理
して飛行コースデータをモニター,プリンターGに機種
識別No.Sにより対象航空機を特定して表示するもの
である。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an example of the device of the present invention, and FIG. 2 is a schematic perspective view for explaining the principle of the flight course measuring means of the present invention. In FIG. 1, A is a transponder response signal interception antenna, A'is a rotationally directional 5-element pole antenna type detection antenna for detecting the azimuth angle of the arrival direction of the radio wave, and B is a sound vector detection in the arrival direction of aircraft noise. For 4
Element-type microphone-type sound receiving devices, which are closely arranged in a circle within a radius of 2 m on the ground. The intercepting antenna A is a decoding device D, and the detecting antenna A'is an azimuth calculation device E.
In addition, the sound receiving device B is connected to the sound vector calculation device F, and the data obtained from each is input and stored in the computer C placed at an arbitrary place, and these data are calculated and processed to monitor the flight course data. , Printer G with model identification number. The target aircraft is specified and displayed by S.

【0015】図2は上記の装置によって飛行コースを測
定する原理を説明するものであって、前記の装置が測定
地点Oに配置され、航空機が空間位置Pに達した時点に
おいて、傍受アンテナAに受信したトランスポンダ応答
信号電波により機種識別No.S,飛行高度H、および
探知アンテナA′により地上平面に沿う直角座標のOY
軸に対する方位角θが得られるが仰角φは探知アンテナ
A′によっては得ることができなく、一方、受音装置
B′には航空機がPに達する以前のP′位置において発
した騒音が到達してP′位置における騒音の方位角
θ′,仰角φ′が検出される。そして、上記の測定を小
時間間隔で継続的に行うことにより、前記の電波による
方位角θと騒音による方位角θ′が略一致する時刻条件
下の仰角φ′と方位角θ′および電波による飛行高度H
により、小時間間隔毎の飛行位置Pを算出して飛行コー
スを得るものである。
FIG. 2 illustrates the principle of measuring the flight course by the above-mentioned device. When the device is placed at the measuring point O and the aircraft reaches the spatial position P, the intercept antenna A is used. The model identification number is determined by the received transponder response signal radio wave. OY of Cartesian coordinates along the ground plane by S, flight altitude H, and detection antenna A '
The azimuth angle θ with respect to the axis can be obtained, but the elevation angle φ cannot be obtained with the detection antenna A ′, while the sound receiving device B ′ is affected by the noise emitted at the position P ′ before the aircraft reaches P. Then, the azimuth angle θ'and the elevation angle φ'of the noise at the P'position are detected. Then, by continuously performing the above measurement at small time intervals, the elevation angle φ'and the azimuth θ'and the radio wave under the time condition where the azimuth θ by the radio wave and the azimuth θ'by the noise substantially match. Flight altitude H
The flight course is obtained by calculating the flight position P for each small time interval.

【0016】図3はトランスポンダ応答信号電波により
得られた飛行高度Hと該電波の到来方位角θとの1秒ご
とのデータを示すグラフであり、飛行高度Hは30m間
隔のデータが発信されている。図4は航空機騒音ベクト
ルを解析して得られた方位角θ′,仰角φ′および騒音
レベルNの1秒毎のデータを示すグラフであり、この騒
音測定はトランスポンダ応答信号の解読装置D中に設け
た電界強庶測定回路からの規定以上の電界強度を検出し
た時点に開始されるものであり、本実施例では電波測定
開始より8秒遅れて騒音測定が開始されている。
FIG. 3 is a graph showing the data every 1 second of the flight altitude H obtained by the transponder response signal radio wave and the arrival azimuth angle θ of the radio wave. The flight altitude H is the data transmitted at intervals of 30 m. There is. FIG. 4 is a graph showing the data of the azimuth θ ′, the elevation φ ′ and the noise level N obtained by analyzing the aircraft noise vector every one second. This noise measurement is performed in the transponder response signal decoding device D. It starts at the time when the electric field strength exceeding the specified value is detected from the electric field strength measuring circuit provided, and in this embodiment, the noise measurement is started 8 seconds after the start of the radio wave measurement.

【0017】図5は図3,図4のグラフに対応した数値
データの表である。図6は図5の数値データにおける電
波と騒音の方位角(θ,θ′)の近似値によって両デー
タの時間差を補正して対応する時刻の騒音の方位角
θ′,仰角φ′及び電波による飛行高度Hのデータによ
り算出した立体直角座標のX,Y軸による飛行コースの
平面的位置並びにこれに飛行高度H(Z)条件を加えて
計算した測定点Oから航空機位置Pまでの直距離を示し
たm単位の表であり、さらに図7は前記図6の表に基づ
いて地図平面上に投影した飛行コースのグラフである。
FIG. 5 is a table of numerical data corresponding to the graphs of FIGS. FIG. 6 shows the azimuth angle θ ′ of noise, the elevation angle φ ′, and the radio wave at the corresponding time after correcting the time difference between the radio data and the azimuth angle (θ, θ ′) of the noise in the numerical data of FIG. The plane position of the flight course by the X and Y axes of the three-dimensional rectangular coordinates calculated from the data of the flight altitude H and the direct distance from the measurement point O to the aircraft position P calculated by adding the flight altitude H (Z) condition to this FIG. 7 is a table of m units shown in FIG. 7, and FIG. 7 is a graph of flight courses projected on the map plane based on the table of FIG.

【0018】前記の測定と同時に、測定点Oを挾んで5
00mの間隔をおいて2測定点にそれぞれセオドライド
を設置して目視観測の三角測量方式による精密測定を行
い、本実施例との測定結果と比較したところ、航空機ま
での直距離が1300m以下の場合は略±20m以下、
2000mにおいて略±70m以内の誤差が認められ、
本発明方法は測定点から半径2km球面内空間を通過す
る航空機の飛行コースの実用的測定が可能であることが
確認できた。
At the same time as the above measurement, the measurement point O is sandwiched between
When theodolite is installed at each of the two measurement points at intervals of 00 m and the precision measurement is carried out by the triangulation method of visual observation, and it is compared with the measurement result of this example, the direct distance to the aircraft is 1300 m or less. Is approximately ± 20 m or less,
An error of about ± 70 m is recognized at 2000 m,
It was confirmed that the method of the present invention enables practical measurement of the flight course of an aircraft that passes through the spherical inner space with a radius of 2 km from the measurement point.

【0019】なお、トランスポンダ応答信号に含まれる
高度H信号は離着陸する空港滑走路面を0点として高度
計の30m毎の指示にしたがって発信されるのであり、
測定点と滑走路面の間に標高差がある場合には、測定高
度Hデータは補正しなければならない。また、本発明の
位置測定点による測定範囲は前記のような距離的制限が
あるので、より広い測定範囲を得るためには相互の測定
範囲の周縁が重複するような間隔をおいて同様の測定点
を順次配置して広範囲にわたるデータを採取して、これ
を適所に位置したコンピュータに入力処理することによ
り広範囲な飛行コース及びそのさいの航空溝騒音レベル
の経時的データを得ることができる。
The altitude H signal included in the transponder response signal is transmitted in accordance with the altimeter instruction every 30 m, with the airport runway surface for takeoff and landing as 0 point.
If there is a difference in elevation between the measurement point and the runway surface, the measured altitude H data must be corrected. Further, since the measurement range by the position measurement point of the present invention has the above-mentioned distance limitation, the same measurement is performed at intervals such that the peripheral edges of the measurement ranges overlap in order to obtain a wider measurement range. By arranging points one after another and collecting a wide range of data and inputting this to a computer located in place, it is possible to obtain time-course data of a wide range of flight courses and air groove noise levels at that time.

【0020】[0020]

【発明の効果】以上説明した通り、本発明方法によれ
ば、空港近傍の一地点に、航空機から発信されるトラン
スポンダ応答信号電波の傍受アンテナAと、該電波到来
方向の探知アンテナA′と、航空機騒音のに到来方向を
検知する受音装置Bを近接配置して、これらによって得
られるデータをコンピュータにより処理して、航空管
制,航空騒音対策などに有効な飛行コース,騒音レベル
資料を得ることができ、その装置は二測定点による従来
の三角測量方式の測定装置より簡便で、昼夜,天候に左
右されることなく、自動測定ができるなどの効果が得ら
れる。
As described above, according to the method of the present invention, at one point in the vicinity of the airport, the interception antenna A of the transponder response signal radio wave transmitted from the aircraft and the detection antenna A'of the radio wave arrival direction are provided. A sound receiving device B that detects the direction of arrival of aircraft noise is placed in close proximity, and the data obtained by these are processed by a computer to obtain flight courses and noise level data that are effective for air traffic control, air noise control, etc. This device is simpler than the conventional triangulation type measuring device with two measuring points, and it is possible to obtain the effect that automatic measurement can be performed regardless of day and night or weather.

【図面の簡単な説明】[Brief description of drawings]

【図1】測定測地の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of measurement geodesic.

【図2】測定方法の原理を説明する略示的斜視図であ
る。
FIG. 2 is a schematic perspective view illustrating the principle of the measuring method.

【図3】トランスポンダ応答信号電波により得られた飛
行高度と方位角データのグラフである。
FIG. 3 is a graph of flight altitude and azimuth data obtained by transponder response signal radio waves.

【図4】航空機騒音を解析して得られた方位角,仰角及
び騒音レベルデータのグラフである。
FIG. 4 is a graph of azimuth angle, elevation angle, and noise level data obtained by analyzing aircraft noise.

【図5】図3,図4のグラフに対応した数値データ表で
ある。
5 is a numerical data table corresponding to the graphs of FIGS. 3 and 4. FIG.

【図6】各測定データの時間差を補正した航空機の位置
計算値表である。
FIG. 6 is a position calculation value table of an aircraft in which the time difference of each measurement data is corrected.

【図7】計算値に基づいて得られた地図平面上の飛行コ
ースのグラフである。
FIG. 7 is a graph of flight courses on a map plane obtained based on calculated values.

【符号の説明】[Explanation of symbols]

A 傍受アンテナ A′ 探知アンテナ B 受音装置 C コンピュータ D 解読装置 E 方位角計算装置 F 音ベクトル計算装置 G モニター,プリンター P 航空機 O 測定点 θ 方位角 φ 仰角 H 飛行高度 A interception antenna A'detection antenna B sound receiving device C computer D decoding device E azimuth angle calculation device F sound vector calculation device G monitor, printer P aircraft O measurement point θ azimuth angle φ elevation angle H flight altitude

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 空港近傍の一地点に近接配置した航空機
が発信するトランスポンダ応答信号電波の傍受アンテナ
(A)と、該電波到来方向の探知アンテナ(A′)と、
航空機騒音の到来方向を検知する受音装置(B)によっ
て、トランスポンダ応答信号を解読して得られる機種識
別,飛行高度データ並びに該電波到来方向の方位角デー
タ及び騒音到来方向の方位角仰角データを、同時継続的
にコンピュータに入力して、前記電波と騒音の到来方位
角データが一致する時刻的条件下に飛行位置を計算して
経時的に出力表示することを特徴とする航空機飛行コー
ス測定方法。
1. An interception antenna (A) for a transponder response signal radio wave transmitted from an aircraft, which is placed near a point near an airport, and a detection antenna (A ') for the arrival direction of the radio wave.
Model identification, flight altitude data, azimuth angle data of the radio wave arrival direction and azimuth elevation angle data of the noise arrival direction obtained by decoding the transponder response signal by the sound receiving device (B) that detects the arrival direction of the aircraft noise. A method for measuring an aircraft flight course, characterized in that the flight position is calculated under a time condition in which the radio wave and the arrival azimuth data of noise coincide with each other by continuously inputting to a computer, and output is displayed over time. .
【請求項2】 航空機騒音の到来方向を検知する受音装
置(B)に騒音レベル測定装置を併設して、上記の他の
データとともに騒音レベルデータを同時継続的にコンピ
ュータに入力して飛行コースとともに出力表示する請求
項1記載の航空機飛行コース測定方法。
2. A flight course in which a noise level measuring device is provided along with a sound receiving device (B) for detecting the direction of arrival of aircraft noise, and the noise level data is simultaneously and continuously input to a computer together with the other data described above. The aircraft flight course measurement method according to claim 1, wherein the output is displayed together with the measurement result.
【請求項3】 航空機近傍の一地点に近接配置した航空
機が発信するトランスポンダ応答信号電波の傍受アンテ
ナ(A)、該トランスポンダ応答信号電波到来方向の探
知アンテナ(A′)、航空機騒音到来方向を検知する受
音装置(B)を有し、前記傍受アンテナ(A)はその傍
受信号から機種識別,飛行高度データを得る解読装置
(D)に、探知アンテナ(A′)はその電波到来方向の
方位角データを得る計算装置(E)に、受音装置(B)
は騒音到来方向の方位角仰角データを得る音ベクトル計
算装置(F)接続し、上記解読装置(D),計算装置
(E),音ベクトル計算装置(F)はそれぞれの出力デ
ータを入力して飛行位置を計算して経時的に出力して飛
行コースを表示するコンピュータ(C)に接続したこと
を特徴とする航空機飛行コース測定装置。
3. An interception antenna (A) for a transponder response signal radio wave transmitted from an aircraft, which is located near a point near the aircraft, a detection antenna (A ') for the arrival direction of the transponder response signal radio wave, and an aircraft noise arrival direction are detected. Which has a sound receiving device (B), the intercepting antenna (A) is a decoding device (D) that obtains model identification and flight altitude data from the intercepting signal, and the detecting antenna (A ') is in the direction of arrival of the radio wave. The sound receiving device (B) is provided to the calculation device (E) for obtaining the angle data.
Is connected to a sound vector calculation device (F) that obtains azimuth and elevation data of the noise arrival direction, and the decoding device (D), the calculation device (E), and the sound vector calculation device (F) input the respective output data. An aircraft flight course measuring device, which is connected to a computer (C) which calculates a flight position and outputs it over time to display a flight course.
【請求項4】 航空機騒音到来方向を検知する受音装置
(B)に騒音レベル測定装置を併設して、上記の他のデ
ータとともに騒音レベルデータを入力して飛行位置とと
もに経時的に出力して飛行コースとともに騒音レベルを
表示するコンピュータ(C)を有する請求項3記載の航
空機飛行コース測定装置。
4. A noise level measuring device is attached to a sound receiving device (B) for detecting the arrival direction of aircraft noise, and noise level data is input together with the other data described above and is output with time along with a flight position. 4. The aircraft flight course measuring device according to claim 3, further comprising a computer (C) for displaying the noise level together with the flight course.
JP5243491A 1993-08-24 1993-08-24 Aircraft flight course measuring method and device Expired - Fee Related JP2532344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5243491A JP2532344B2 (en) 1993-08-24 1993-08-24 Aircraft flight course measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5243491A JP2532344B2 (en) 1993-08-24 1993-08-24 Aircraft flight course measuring method and device

Publications (2)

Publication Number Publication Date
JPH0763559A true JPH0763559A (en) 1995-03-10
JP2532344B2 JP2532344B2 (en) 1996-09-11

Family

ID=17104686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5243491A Expired - Fee Related JP2532344B2 (en) 1993-08-24 1993-08-24 Aircraft flight course measuring method and device

Country Status (1)

Country Link
JP (1) JP2532344B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052526A1 (en) * 2000-12-25 2002-07-04 Nittobo Acoustic Engineering Co.,Ltd. A method of measuring point-blank passing time or the like of airplane
WO2002063589A1 (en) * 2001-02-02 2002-08-15 Hiroshi Ito Automatic detecting system for events such as aircraft takeoff/landing
JP2009180738A (en) * 2009-04-27 2009-08-13 Nittobo Acoustic Engineering Co Ltd Aircraft noise data analyzing and processing method
JP2013061155A (en) * 2011-09-12 2013-04-04 Rion Co Ltd Aircraft noise monitoring method and aircraft noise monitoring device
JP2017181098A (en) * 2016-03-28 2017-10-05 セコム株式会社 Object detection device
WO2019123526A1 (en) * 2017-12-19 2019-06-27 日本音響エンジニアリング株式会社 Device for collecting aircraft flight history information
CN111801718A (en) * 2018-03-07 2020-10-20 株式会社电装 Object detection device, object detection method, and recording medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440646A (en) * 1990-06-07 1992-02-12 Teijin Ltd Optical recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440646A (en) * 1990-06-07 1992-02-12 Teijin Ltd Optical recording medium

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052526A1 (en) * 2000-12-25 2002-07-04 Nittobo Acoustic Engineering Co.,Ltd. A method of measuring point-blank passing time or the like of airplane
EP1357530A4 (en) * 2000-12-25 2004-04-28 Nittobo Acoustic Engineering Co Ltd A method of measuring point-blank passing time or the like of airplane
US6892117B2 (en) 2000-12-25 2005-05-10 Nittobo Acoustic Engineering Co., Ltd. Method of measuring point-blank passing time or the like of airplane
WO2002063589A1 (en) * 2001-02-02 2002-08-15 Hiroshi Ito Automatic detecting system for events such as aircraft takeoff/landing
JP2009180738A (en) * 2009-04-27 2009-08-13 Nittobo Acoustic Engineering Co Ltd Aircraft noise data analyzing and processing method
JP2013061155A (en) * 2011-09-12 2013-04-04 Rion Co Ltd Aircraft noise monitoring method and aircraft noise monitoring device
JP2017181098A (en) * 2016-03-28 2017-10-05 セコム株式会社 Object detection device
WO2019123526A1 (en) * 2017-12-19 2019-06-27 日本音響エンジニアリング株式会社 Device for collecting aircraft flight history information
KR20200040817A (en) * 2017-12-19 2020-04-20 니혼온쿄엔지니어링 가부시키가이샤 Aircraft performance information collection device
JPWO2019123526A1 (en) * 2017-12-19 2020-12-03 日本音響エンジニアリング株式会社 Aircraft operation record information collection device
US11450217B2 (en) 2017-12-19 2022-09-20 Nihon Onkyo Engineering Co., Ltd. Device for collecting aircraft operation history information
CN111801718A (en) * 2018-03-07 2020-10-20 株式会社电装 Object detection device, object detection method, and recording medium
CN111801718B (en) * 2018-03-07 2022-08-02 株式会社电装 Object detection device, object detection method, and recording medium

Also Published As

Publication number Publication date
JP2532344B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
US7599252B2 (en) Acoustic location of gunshots using combined angle of arrival and time of arrival measurements
US4910526A (en) Airborne surveillance method and system
US5075694A (en) Airborne surveillance method and system
US20050024256A1 (en) Passive Airborne Collision Warning Device and Method
RU2303796C1 (en) Method for independent forming of landing information for flight vehicle and on-board radar for its realization (modifications)
JPH02140681A (en) Method of displaying position of aircraft detected with radar station
US2399671A (en) Tridimensional radio navigational system
US20210124375A1 (en) Method and apparatus for ensuring aviation safety in the presence of ownship aircrafts
CN101806882A (en) Locating method of emitting source
JP2532344B2 (en) Aircraft flight course measuring method and device
JP2007333427A (en) Airport surface surveillance system
JPH0264482A (en) Position sensing method of radio wave discharger
US4621267A (en) Bearing intersection deghosting by altitude comparison system and methods
RU2501031C2 (en) Method for flight inspection of ground-based radio flight support equipment and apparatus for realising said method
JPH0429080A (en) Bistatic radar equipment
EP3230761B1 (en) System and method to provide a dynamic situational awareness of attack radar threats
JP3699705B2 (en) How to measure the time of passing the closest point of an aircraft
JPH0737908B2 (en) Mobile noise monitoring system
JPH06229776A (en) Method and system for measuring flight course of aircraft
JP3638582B2 (en) Civil aircraft position recognition system
JPS5836752B2 (en) Sonic exploration method
US8436762B2 (en) Determining at least one coordinate of an object using intersecting surfaces
Rayapu et al. Multilateration with ads-b a boon in civil aviation application
CN106054120B (en) A method of amendment airborne platform interference direction-finding system phase table
JPH05302971A (en) Position orientation system of radio-wave source

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20080627

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090627

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20110627

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20110627

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 17

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 17

Free format text: PAYMENT UNTIL: 20130627

LAPS Cancellation because of no payment of annual fees