JPH076344A - Metallic thin film type magnetic recording medium - Google Patents
Metallic thin film type magnetic recording mediumInfo
- Publication number
- JPH076344A JPH076344A JP14946993A JP14946993A JPH076344A JP H076344 A JPH076344 A JP H076344A JP 14946993 A JP14946993 A JP 14946993A JP 14946993 A JP14946993 A JP 14946993A JP H076344 A JPH076344 A JP H076344A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- layer
- magnetic recording
- underlayer
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は磁気ディスク等の磁気記
録媒体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium such as a magnetic disk.
【0002】[0002]
【従来の技術】近年、磁気記録媒体の高密度記録化に伴
って、CoNiCr、CoCrTa等の一軸結晶磁気異
方性を有するCo合金からなる磁性層を非磁性基板上に
Cr下地層を介して成膜した金属薄膜型磁気記録媒体が
用いられている。従来、非磁性基板として、A1合金板
上に非晶質Ni−Pメッキ層が形成され、その表面にテ
キスチャーと呼ばれる微細凹凸が円周方向に沿って機械
的に加工されたものが使用されていた。機械的テキスチ
ャーは、ヘッド・媒体間の摩擦を軽減し、CSS(コン
スタント・スタート・ストップ)特性を向上させると共
に、その表面側に形成されるCo合金磁性層の周方向の
磁気的異方性を向上させ、保磁力を向上させる作用を有
する。一方、Cr下地層は、該下地層を構成するCrの
結晶構造が、その上に成膜されるCo合金磁性層の磁気
異方性を示す結晶軸(C軸)を面内配向させるように作
用し、保磁力を向上させる作用を有する。2. Description of the Related Art In recent years, with the increase in recording density of magnetic recording media, a magnetic layer made of a Co alloy having uniaxial crystal magnetic anisotropy such as CoNiCr and CoCrTa is formed on a non-magnetic substrate with a Cr underlayer interposed therebetween. A metal thin film type magnetic recording medium is used. Conventionally, as a non-magnetic substrate, an amorphous Ni-P plating layer is formed on an A1 alloy plate, and fine irregularities called texture are mechanically processed along the circumferential direction on the surface thereof. It was The mechanical texture reduces friction between the head and the medium, improves CSS (constant start / stop) characteristics, and improves the magnetic anisotropy in the circumferential direction of the Co alloy magnetic layer formed on the surface side thereof. It has the effect of improving the coercive force. On the other hand, in the Cr underlayer, the crystal structure of Cr forming the underlayer is such that the crystal axis (C axis) showing the magnetic anisotropy of the Co alloy magnetic layer formed thereon is in-plane oriented. It acts to improve the coercive force.
【0003】最近、ハードディスク装置の小型化と大容
量化に拍車がかかり、それに応じた磁気記録媒体の開発
が求められている。磁気記録媒体の高密度記録化が進む
と、記録ビットサイズが更に小さくなるために、磁気ヘ
ッドの浮上量をできるだけ下げて読み出し出力を上げな
ければならない。そのためには磁性層が成膜される非磁
性基板の平滑化を促進して、ヘッドの低浮上化を図る必
要がある。Recently, miniaturization and increase in capacity of hard disk devices have been spurred, and development of magnetic recording media in response to them has been required. As the recording density of the magnetic recording medium is increased, the recording bit size is further reduced. Therefore, the flying height of the magnetic head must be reduced as much as possible to increase the read output. For that purpose, it is necessary to promote the smoothing of the non-magnetic substrate on which the magnetic layer is formed to reduce the flying height of the head.
【0004】このため、非磁性基板として、前記Al合
金/Ni−Pメッキ基板に代わってガラス基板が採用さ
れ、機械的加工による方向性のあるテキスチャーから化
学的腐食による無方向(等方向)性のテキスチャーが形
成されるようになった。機械的加工により形成したテキ
スチャーには微小なバリ状突起が形成され易く、これが
ヘッドの低浮上化を困難にしていたからである。For this reason, a glass substrate is adopted as the non-magnetic substrate in place of the Al alloy / Ni-P plated substrate, and it has a directional texture due to mechanical processing and a non-directional (isotropic) property due to chemical corrosion. Textures are now formed. This is because minute burr-like protrusions are easily formed on the texture formed by mechanical processing, which makes it difficult to reduce the flying height of the head.
【0005】しかし、化学的腐食による無方向性のテキ
スチャーでは、形状効果による磁気的異方性の向上が期
待できないため、磁気記録媒体の高保磁力化に限界があ
った。この問題については、特開平3−23513号公
報に開示されているCoSm合金を用いて磁性層を形成
することにより、無方向性のテキスチャーであっても、
また低温スパッタリングによっても、従来のCo合金磁
性層と同程度以上の高保磁力が得られる。However, the non-directional texture due to chemical corrosion cannot be expected to improve the magnetic anisotropy due to the shape effect, so that there has been a limit to increase the coercive force of the magnetic recording medium. Regarding this problem, even if the texture is non-directional by forming the magnetic layer using the CoSm alloy disclosed in Japanese Patent Laid-Open No. Hei 3-23513,
Even by low temperature sputtering, a high coercive force equal to or higher than that of the conventional Co alloy magnetic layer can be obtained.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、Cr下
地層の上にCoSm合金を用いて磁性層を形成する場
合、Cr/CoSm合金界面で拡散層が生じ、磁性層の
飽和磁化Msが低下するという問題がある。本発明はか
かる問題に鑑みなされたもので、高Msおよび高保磁力
を兼備した、CoSm合金磁性層を備えた金属薄膜型磁
気記録媒体を提供することを目的とする。However, when forming a magnetic layer using a CoSm alloy on a Cr underlayer, a diffusion layer is formed at the Cr / CoSm alloy interface, and the saturation magnetization Ms of the magnetic layer decreases. There's a problem. The present invention has been made in view of the above problems, and an object thereof is to provide a metal thin film type magnetic recording medium having a CoSm alloy magnetic layer, which has both high Ms and high coercive force.
【0007】[0007]
【課題を解決するための手段】本発明の磁気記録媒体
は、非磁性基板の上に非磁性下地層、CoSm合金磁性
層を備えた磁気記録層が同順序で積層成膜された金属薄
膜型磁気記録媒体において、前記非磁性下地層をCu又
はCuを主成分としたCu合金で形成されている。The magnetic recording medium of the present invention is a metal thin film type in which a nonmagnetic underlayer and a magnetic recording layer having a CoSm alloy magnetic layer are laminated in the same order on a nonmagnetic substrate. In the magnetic recording medium, the non-magnetic underlayer is formed of Cu or a Cu alloy containing Cu as a main component.
【0008】[0008]
【作用】Cu下地層の上にCoSm合金層を成膜する
と、Cu/CoSm合金界面に拡散層がほとんど生じ
ず、CoSm合金の微細結晶(X線回折では結晶質を示
すピークは検出されないもの)が前記下地層の上にエピ
タキシャル成長し、面内磁気異方性を示し、面内方向に
保磁力を有する膜となる。[Function] When a CoSm alloy layer is formed on a Cu underlayer, a diffusion layer is hardly formed at the Cu / CoSm alloy interface, and CoSm alloy fine crystals (a peak showing crystallinity is not detected by X-ray diffraction). Grows epitaxially on the underlayer, exhibits in-plane magnetic anisotropy, and has a coercive force in the in-plane direction.
【0009】下地層の材質としては、純Cuのみなら
ず、CoSm合金との間に拡散層をほとんど生じない、
Cuを主成分としたCu合金でもよく、合金元素として
結晶の微細化作用等を奏する元素を含有することができ
る。例えば、Crを10原子%以下含有してもよく、こ
の場合でもCoSm合金磁性層のMsは減少しない。As the material of the underlayer, not only pure Cu but also almost no diffusion layer is formed between it and the CoSm alloy.
A Cu alloy containing Cu as a main component may be used, and as the alloying element, an element exhibiting a crystal refining effect or the like can be contained. For example, Cr may be contained at 10 atomic% or less, and even in this case, Ms of the CoSm alloy magnetic layer does not decrease.
【0010】[0010]
【実施例】図1は実施例に係る磁気記録媒体の要部断面
図を示しており、非磁性の基板1の上に、非磁性下地層
2が成膜されており、その上に成膜後面内に大きな結晶
磁気異方性を有するCoSm合金磁性層からなる磁気記
録層3が成膜され、更にその上に非磁性保護層4がスパ
ッタリングにより積層成膜されている。EXAMPLE FIG. 1 shows a cross-sectional view of a main part of a magnetic recording medium according to an example. A nonmagnetic underlayer 2 is formed on a nonmagnetic substrate 1, and a film is formed thereon. A magnetic recording layer 3 made of a CoSm alloy magnetic layer having a large crystal magnetic anisotropy is formed in the rear surface, and a nonmagnetic protective layer 4 is further laminated and formed thereon by sputtering.
【0011】前記基板1としては、Al合金/Ni−P
メッキ基板やチタン等の金属基板、ガラス,セラミック
ス,カーボン,ポリマーなどの非金属基板が使用され
る。基板1の表面には、微細な凹凸からなるテキスチャ
ーが形成されるが、該テキスチャーは円周方向に沿って
形成する必要はなく、無方向性のものでもよい。基板1
の上に形成される非磁性下地層2は、既述の通り、Cu
又はCuを主成分としたCu合金で形成され、該下地層
2の上に形成されるCoSm合金磁性層の面内方向の結
晶磁気異方性を向上させる。層厚は、通常、500〜2
000Å程度とされる。The substrate 1 is made of Al alloy / Ni-P.
Plated substrates, metal substrates such as titanium, and non-metal substrates such as glass, ceramics, carbon, and polymers are used. A texture having fine irregularities is formed on the surface of the substrate 1, but the texture need not be formed along the circumferential direction and may be non-directional. Board 1
As described above, the non-magnetic underlayer 2 formed on the Cu layer is made of Cu.
Alternatively, the crystal magnetic anisotropy in the in-plane direction of the CoSm alloy magnetic layer formed of a Cu alloy containing Cu as a main component and formed on the underlayer 2 is improved. The layer thickness is usually 500 to 2
It is said to be about 000Å
【0012】前記磁気記録層3は、既述の通り、高保磁
力が得られるCoSm合金により成膜される。Sm含有
量は、600emu/cc程度以上の高Msを確保する
には、20at%程度以下にすることが望ましい。尚、
磁気記録層は所定のCoSm合金磁性層を図例のように
単層として形成したものに限らず、CoSm合金磁性層
と、Crや下地層を形成する前記Cu又はCu合金から
なる非磁性中間層とを交互に積層形成したものでもよ
い。磁気記録層3の層厚(CoSm合金単層ならその層
厚、複層ならCoSm合金層の合計厚)は通常200〜
800Å程度とされる。As described above, the magnetic recording layer 3 is formed of a CoSm alloy that can obtain a high coercive force. The Sm content is preferably about 20 at% or less in order to secure a high Ms of about 600 emu / cc or more. still,
The magnetic recording layer is not limited to a predetermined CoSm alloy magnetic layer formed as a single layer as shown in the figure, but a CoSm alloy magnetic layer and a non-magnetic intermediate layer made of Cu or Cu alloy forming Cr or an underlayer. It may be formed by alternately stacking and. The layer thickness of the magnetic recording layer 3 (the layer thickness of a CoSm alloy single layer, the total thickness of a CoSm alloy layer if it is a multiple layer) is usually 200 to
It is about 800Å.
【0013】前記磁気記録層3の上にはカーボン、Si
O2 又はCr/SiO2 等からなる非磁性保護層4が2
00〜400Å程度形成されており、更にその上にフッ
素化ポリエーテル等の液体潤滑剤を20〜50Å程度
(単分子厚程度)塗布してもよい。尚、前記保護層4や
潤滑層は必要に応じて形成すればよい。非磁性下地層、
磁気記録層、非磁性保護層は、通常、スパッタリングに
より成膜される。スパッタリング条件は、通常、Arガ
ス分圧が10〜50mTorr、基板温度が室温〜10
0℃程度とされる。On the magnetic recording layer 3, carbon, Si
The nonmagnetic protective layer 4 made of O 2 or Cr / SiO 2 is 2
It is formed to have a thickness of about 00 to 400 Å, and a liquid lubricant such as fluorinated polyether may be further applied thereto on the order of about 20 to 50 Å (single molecular thickness). The protective layer 4 and the lubricating layer may be formed as needed. Non-magnetic underlayer,
The magnetic recording layer and the non-magnetic protective layer are usually formed by sputtering. The sputtering conditions are usually such that the Ar gas partial pressure is 10 to 50 mTorr and the substrate temperature is room temperature to 10
It is set to about 0 ° C.
【0014】次に具体的実施例を掲げる。RF3元スパ
ッタリング装置を用いて、化学的腐食により無方向性の
テキスチャーを施したガラス基板の上にCu又はCu−
5at%Cr下地層を種々の膜厚で形成し、該下地層の
上にCo−13at%Sm合金磁性層からなる磁気記録
層を500Å、さらにその上に100Åの膜厚のCr層
を介してSiO2 保護層を150Å積層成膜した。成膜
時の基板温度は室温のままとし、成膜時のArガス分圧
および高周波電力は、下地層成膜時15mTorrで2
00W、磁性層成膜時35mTorrで160W、Cr
層成膜時10mTorrで200W、保護層成膜時15
mTorrで200Wとした。Next, specific examples will be given. Using a RF ternary sputtering device, Cu or Cu-on a glass substrate that is non-directionally textured by chemical corrosion.
A 5 at% Cr underlayer is formed with various thicknesses, a magnetic recording layer made of a Co-13 at% Sm alloy magnetic layer is formed on the underlayer to 500 Å, and a Cr layer having a film thickness of 100 Å is further formed thereon. A SiO 2 protective layer was formed into a 150 Å laminated film. The substrate temperature during film formation was kept at room temperature, and the Ar gas partial pressure and high frequency power during film formation were 15 mTorr at the time of film formation of the underlayer.
00W, 160W at 35mTorr when forming magnetic layer, Cr
200 W at 10 mTorr when forming a layer, 15 when forming a protective layer
It was set to 200 W at mTorr.
【0015】得られた実施例の磁気記録媒体を用いて、
外部磁場10kOeの下で、媒体の磁気特性をVSMを
用いて測定した。その結果を図2に示す。図2より、下
地層が500Å程度以上あれば、2000Oe以上の高
保磁力を備えることが分かる。Using the magnetic recording medium of the obtained example,
The magnetic properties of the medium were measured using VSM under an external magnetic field of 10 kOe. The result is shown in FIG. From FIG. 2, it can be seen that a coercive force of 2000 Oe or more is provided when the underlayer is about 500 Å or more.
【0016】[0016]
【発明の効果】以上説明した通り、本発明の金属薄膜型
磁気記録媒体は、非磁性下地層をCu又はCuを主成分
としたCu合金で成膜するので、該下地層の上に拡散層
をほとんど生じさせることなく、CoSm合金膜を面内
に磁気異方性を発現させるようにエピタキシャル成長さ
せることができ、これにより磁気記録層のMsを減少さ
せることなく、高保磁力を得ることができる。As described above, in the metal thin film type magnetic recording medium of the present invention, since the non-magnetic underlayer is formed of Cu or a Cu alloy containing Cu as a main component, the diffusion layer is formed on the underlayer. The CoSm alloy film can be epitaxially grown so as to exhibit in-plane magnetic anisotropy with almost no occurrence of the above phenomenon, whereby a high coercive force can be obtained without reducing Ms of the magnetic recording layer.
【図1】実施例にかかる金属薄膜型磁気記録媒体の要部
断面図である。FIG. 1 is a cross-sectional view of essential parts of a metal thin film magnetic recording medium according to an example.
【図2】Cu又はCu−5at%Cr下地層を有するC
oSm磁性層を備えた実施例の磁気記録媒体における下
地層厚さと保磁力Hcとの関係を示すグラフ図である。FIG. 2 C with Cu or Cu-5 at% Cr underlayer
FIG. 6 is a graph showing the relationship between the underlayer thickness and the coercive force Hc in the magnetic recording medium of the example having the oSm magnetic layer.
1 基板 2 非磁性下地層 3 磁気記録層 4 保護層 1 substrate 2 non-magnetic underlayer 3 magnetic recording layer 4 protective layer
Claims (1)
m合金磁性層を備えた磁気記録層が同順序で積層成膜さ
れた金属薄膜型磁気記録媒体において、 前記非磁性下地層はCu又はCuを主成分としたCu合
金で形成されていることを特徴とする金属薄膜型磁気記
録媒体。1. A nonmagnetic underlayer and CoS on a nonmagnetic substrate.
In a metal thin film magnetic recording medium in which magnetic recording layers having an m-alloy magnetic layer are stacked in the same order, the nonmagnetic underlayer is formed of Cu or a Cu alloy containing Cu as a main component. A characteristic metal thin film magnetic recording medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14946993A JPH076344A (en) | 1993-06-21 | 1993-06-21 | Metallic thin film type magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14946993A JPH076344A (en) | 1993-06-21 | 1993-06-21 | Metallic thin film type magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH076344A true JPH076344A (en) | 1995-01-10 |
Family
ID=15475824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14946993A Pending JPH076344A (en) | 1993-06-21 | 1993-06-21 | Metallic thin film type magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH076344A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005109431A (en) * | 2003-09-12 | 2005-04-21 | Univ Waseda | Sm-co alloy based perpendicular magnetic anisotropy thin film and its forming method |
JP2014053065A (en) * | 2012-08-07 | 2014-03-20 | Hitachi Metals Ltd | Sputtering target material for heat sink layer formation of heat-assisted magnetic recording medium |
-
1993
- 1993-06-21 JP JP14946993A patent/JPH076344A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005109431A (en) * | 2003-09-12 | 2005-04-21 | Univ Waseda | Sm-co alloy based perpendicular magnetic anisotropy thin film and its forming method |
JP4614046B2 (en) * | 2003-09-12 | 2011-01-19 | 学校法人早稲田大学 | Sm-Co alloy-based perpendicular magnetic anisotropic thin film and method for forming the same |
JP2014053065A (en) * | 2012-08-07 | 2014-03-20 | Hitachi Metals Ltd | Sputtering target material for heat sink layer formation of heat-assisted magnetic recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3090128B2 (en) | Perpendicular magnetic recording media | |
US5851656A (en) | Magnetic recording medium | |
EP0531035B1 (en) | Magnetic recording medium | |
EP0620571A2 (en) | Soft magnetic multilayer films for magnetic head | |
US5851628A (en) | Magnetic recording medium and method for manufacturing the same | |
JPH076344A (en) | Metallic thin film type magnetic recording medium | |
JP2508489B2 (en) | Soft magnetic thin film | |
JP2001134927A (en) | Magnetic recording medium | |
US6090496A (en) | Magnetic recording medium and non-magnetic alloy film | |
JP3582435B2 (en) | Perpendicular magnetic recording medium | |
US20050042481A1 (en) | Information recording medium with improved perpendicular magnetic anisotropy | |
JP2802017B2 (en) | Metal thin-film magnetic recording media | |
JP2001101643A (en) | Magnetic recording medium | |
JPWO2004019322A1 (en) | Backed magnetic film | |
JP2725502B2 (en) | Magnetic recording media | |
JPH1041134A (en) | Magnetic recording medium and its manufacturing method | |
JPS63146219A (en) | Magnetic recording medium | |
JP2725506B2 (en) | Magnetic recording media | |
JPH06309644A (en) | Metal thin film type magnetic recording medium | |
JP2001250223A (en) | Magnetic recording medium and magnetic recorder | |
JP2732153B2 (en) | Metal thin-film magnetic recording media | |
JP2549769B2 (en) | Magnetic recording media | |
JP2802016B2 (en) | Metal thin-film magnetic recording media | |
JPH11110733A (en) | Magnetic recording medium and nonmagnetic alloy film | |
JPH0757234A (en) | Metallic thin film type magnetic recording medium |