JPH06309644A - Metal thin film type magnetic recording medium - Google Patents

Metal thin film type magnetic recording medium

Info

Publication number
JPH06309644A
JPH06309644A JP10156693A JP10156693A JPH06309644A JP H06309644 A JPH06309644 A JP H06309644A JP 10156693 A JP10156693 A JP 10156693A JP 10156693 A JP10156693 A JP 10156693A JP H06309644 A JPH06309644 A JP H06309644A
Authority
JP
Japan
Prior art keywords
layer
magnetic recording
magnetic
coercive force
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10156693A
Other languages
Japanese (ja)
Inventor
Yoshinobu Okumura
善信 奥村
Kouha You
興波 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP10156693A priority Critical patent/JPH06309644A/en
Publication of JPH06309644A publication Critical patent/JPH06309644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To largely increase the coercive force by forming a CrCu alloy of specified compsn. as a nonmagnetic base layer of a metal thin film type magnetic recording medium. CONSTITUTION:A CrCu alloy containing a specified amt. of Cu in Cr is formed as a nonmagnetic base layer 2 on a substrate 1. The Cu does not make solid solution with Cr but easily precipitate in interlayer spaces of columnar layers of Cr to promote production of fine grains and separation of grains. Thereby, even when the Sm amt. in a CoSm alloy which constitutes the magnetic recording layer 3 is decreased to about <=20% to obtain high Ms as about >=600emu/cc high coercive force can be obtd. and both of high Ms and high coercive force can be obtd. The nonmagnetic base layer 2 contains 0.5-15 atomic % Cu. If the amt. of Cu is smaller than this, the effect to increase the coercive force of the magnetic layer decreases. If the amt. exceeds 15%, the crystalline orientation of the Cr columnar structure decreases to deteriorate orientation effect of the magnetic layer in the plane direction. A nonmagnetic protective layer 4 is formed to have 200-400Angstrom thickness on the magnetic recording layer 3. Thus, the coercive force can be largely improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気ディスク等の磁気記
録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium such as a magnetic disk.

【0002】[0002]

【従来の技術】近年、磁気記録媒体の高密度記録化に伴
って、CoNiCr、CoCrTa等の一軸結晶磁気異
方性を有するCo合金からなる磁性層を非磁性基板上に
Cr下地層を介して成膜した金属薄膜型磁気記録媒体が
用いられている。従来、非磁性基板として、A1合金板
上に非晶質Ni−Pメッキ層が形成され、その表面にテ
キスチャーと呼ばれる微細凹凸が円周方向に沿って機械
的に加工されたものが使用されていた。機械的テキスチ
ャーは、ヘッド・媒体間の摩擦を軽減し、CSS(コン
スタント・スタート・ストップ)特性を向上させると共
に、その表面側に形成されるCo合金磁性層の周方向の
磁気的異方性を向上させ、保磁力を向上させる作用を有
する。一方、Cr下地層は、該下地層を構成するCrの
結晶構造が、その上に成膜されるCo合金磁性層の磁気
異方性を示す結晶軸を面内配向させるように作用し、保
磁力を向上させる作用を有する。
2. Description of the Related Art In recent years, with the increase in recording density of magnetic recording media, a magnetic layer made of a Co alloy having uniaxial crystal magnetic anisotropy such as CoNiCr and CoCrTa is formed on a non-magnetic substrate with a Cr underlayer interposed therebetween. A metal thin film type magnetic recording medium is used. Conventionally, as a non-magnetic substrate, an amorphous Ni-P plating layer is formed on an A1 alloy plate, and fine irregularities called texture are mechanically processed along the circumferential direction on the surface thereof. It was The mechanical texture reduces friction between the head and the medium, improves CSS (constant start / stop) characteristics, and improves the magnetic anisotropy in the circumferential direction of the Co alloy magnetic layer formed on the surface side thereof. It has the effect of improving the coercive force. On the other hand, in the Cr underlayer, the crystal structure of Cr forming the underlayer acts so as to in-plane align the crystal axis indicating the magnetic anisotropy of the Co alloy magnetic layer formed on the Cr underlayer. It has the effect of improving the magnetic force.

【0003】最近、ハードディスク装置の小型化と大容
量化に拍車がかかり、それに応じた磁気記録媒体の開発
が求められている。磁気記録媒体の高密度記録化が進む
と、記録ビットサイズが更に小さくなるために、磁気ヘ
ッドの浮上量をできるだけ下げて読み出し出力を上げな
ければならない。そのためには磁性層が成膜される非磁
性基板の平滑化を促進して、ヘッドの低浮上化を図る必
要がある。
Recently, miniaturization and increase in capacity of hard disk devices have been spurred, and development of magnetic recording media in response to them has been required. As the recording density of the magnetic recording medium is increased, the recording bit size is further reduced. Therefore, the flying height of the magnetic head must be reduced as much as possible to increase the read output. For that purpose, it is necessary to promote the smoothing of the non-magnetic substrate on which the magnetic layer is formed to reduce the flying height of the head.

【0004】このため、非磁性基板として、前記Al合
金/Ni−Pメッキ基板に代わってガラス基板が採用さ
れ、機械的加工による方向性のあるテキスチャーから化
学的腐食による無方向(等方向)性のテキスチャーが形
成されるようになった。機械的加工により形成したテキ
スチャーには微小なバリ状突起が形成され易く、これが
ヘッドの低浮上化を困難にしていたからである。
For this reason, a glass substrate is adopted as the non-magnetic substrate in place of the Al alloy / Ni-P plated substrate, and it has a directional texture due to mechanical processing and a non-directional (isotropic) property due to chemical corrosion. Textures are now formed. This is because minute burr-like protrusions are easily formed on the texture formed by mechanical processing, which makes it difficult to reduce the flying height of the head.

【0005】しかし、化学的腐食による無方向性のテキ
スチャーでは、形状効果による磁気的異方性の向上が期
待できないため、磁気記録媒体の高保磁力化に限界があ
った。この問題については、特開平3−23513号公
報に開示されているCoSm合金を用いて磁性層を形成
することにより、無方向性のテキスチャーであっても、
また低温スパッタリングによっても、従来のCo合金磁
性層と同程度以上の保磁力が得られる。
However, the non-directional texture due to chemical corrosion cannot be expected to improve the magnetic anisotropy due to the shape effect, so that there has been a limit to increase the coercive force of the magnetic recording medium. Regarding this problem, even if the texture is non-directional by forming the magnetic layer using the CoSm alloy disclosed in Japanese Patent Laid-Open No. Hei 3-23513,
Also, coercive force equal to or higher than that of the conventional Co alloy magnetic layer can be obtained by low temperature sputtering.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、CoS
m合金を用いて磁性層を形成した場合、高保磁力を発現
させるには、Smをある程度以上含有させなければなら
ない。ところが、飽和磁化MsはSmの含有量が多くな
るほど低下し、20原子%(以下、単に%とする。)以
上含有すると、Msは600emu/cc以下に低下す
るという問題がある。
[Problems to be Solved by the Invention] However, CoS
When the magnetic layer is formed by using the m alloy, Sm must be contained to some extent or more in order to exhibit a high coercive force. However, the saturation magnetization Ms decreases as the content of Sm increases, and when the content is 20 atomic% (hereinafter, simply referred to as%) or more, there is a problem that Ms decreases to 600 emu / cc or less.

【0007】本発明はかかる問題に鑑みなされたもの
で、高Msおよび高保磁力を兼備した、CoSm合金磁
性層を備えた金属薄膜型磁気記録媒体を提供することを
目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a metal thin film type magnetic recording medium having a CoSm alloy magnetic layer, which has both high Ms and high coercive force.

【0008】[0008]

【課題を解決するための手段】本発明の磁気記録媒体
は、非磁性基板の上に非磁性下地層、CoSm合金磁性
層を備えた磁気記録層が同順序で積層成膜された金属薄
膜型磁気記録媒体において、前記非磁性下地層は、原子
%で、Cu:0.5〜15%を本質的に含有し、残部が
CrからなるCrCu合金で形成されている。
The magnetic recording medium of the present invention is a metal thin film type in which a nonmagnetic underlayer and a magnetic recording layer having a CoSm alloy magnetic layer are laminated in the same order on a nonmagnetic substrate. In the magnetic recording medium, the non-magnetic underlayer is formed of a CrCu alloy containing atomic percentage of Cu: 0.5 to 15% and the balance of Cr.

【0009】[0009]

【作用】本発明に係る非磁性下地層はCrに所定量のC
uを含有するCrCu合金により形成されている。Cu
はCrに固溶せず、Cr柱状晶の間に容易に偏析し、結
晶粒の微細化と分離を促進する。従って、600emu
/cc程度以上の高Msを確保するために、磁性層を形
成するCoSm合金のSm含有量を20%程度以下に低
くしても高保磁力を帶有するようになり、高Msと高保
磁力とを兼備させることができる。この場合、Cu含有
量が0.5原子%(以下、単に%とする。)未満では磁
性層の保磁力向上作用が過少になり、一方15%を越え
るとCr柱状晶の結晶配向性が崩れて磁性層の面内配向
作用が劣化するようになるので、Cu含有量を0.5〜
15%とする。
The nonmagnetic underlayer according to the present invention has a predetermined amount of C added to Cr.
It is formed of a CrCu alloy containing u. Cu
Does not form a solid solution in Cr, and easily segregates between Cr columnar crystals, which promotes grain refinement and separation. Therefore, 600 emu
In order to secure a high Ms of about / cc or more, even if the Sm content of the CoSm alloy forming the magnetic layer is lowered to about 20% or less, it has a high coercive force, and has a high Ms and a high coercive force. Can be combined. In this case, if the Cu content is less than 0.5 atom% (hereinafter, simply referred to as%), the coercive force improving effect of the magnetic layer becomes too small, while if it exceeds 15%, the crystal orientation of the Cr columnar crystal is destroyed. As a result, the in-plane orientation effect of the magnetic layer is deteriorated, so that the Cu content is 0.5 to
15%.

【0010】[0010]

【実施例】図1は実施例に係る磁気記録媒体の要部断面
図を示しており、非磁性の基板1の上に、非磁性下地層
2が成膜されており、その上に成膜後面内に大きな結晶
磁気異方性を有するCoSm合金磁性層からなる磁気記
録層3が成膜され、更にその上に非磁性保護層4がスパ
ッタリングにより積層成膜されている。
EXAMPLE FIG. 1 shows a cross-sectional view of a main part of a magnetic recording medium according to an example. A nonmagnetic underlayer 2 is formed on a nonmagnetic substrate 1, and a film is formed thereon. A magnetic recording layer 3 made of a CoSm alloy magnetic layer having a large crystal magnetic anisotropy is formed in the rear surface, and a nonmagnetic protective layer 4 is further laminated and formed thereon by sputtering.

【0011】前記基板1としては、Al合金/Ni−P
メッキ基板やチタン等の金属基板、ガラス,セラミック
ス,カーボン,ポリマーなどの非金属基板が使用され
る。基板1の上に形成される非磁性下地層2は、既述の
通り、CrCu合金で形成され、該下地層2の上に形成
されるCoSm合金磁性層の面内方向の結晶磁気異方性
を向上させる。層厚は、通常、500〜2000Å程度
とされる。
The substrate 1 is made of Al alloy / Ni-P.
Plated substrates, metal substrates such as titanium, and non-metal substrates such as glass, ceramics, carbon, and polymers are used. The non-magnetic underlayer 2 formed on the substrate 1 is formed of a CrCu alloy as described above, and the in-plane crystal magnetic anisotropy of the CoSm alloy magnetic layer formed on the underlayer 2 is as described above. Improve. The layer thickness is usually about 500 to 2000Å.

【0012】前記磁気記録層3は、既述の通り、高保磁
力が得られるCoSm合金により成膜される。Sm含有
量は、600emu/cc程度以上の高Msを確保する
には、20%程度以下にすることが望ましい。尚、磁気
記録層は所定のCoSm合金磁性層を図例のように単層
として形成したものに限らず、CoSm合金磁性層と、
Crや下地層を形成する前記Cr合金からなる非磁性中
間層とを交互に積層形成したものでもよい。磁気記録層
3の層厚(CoSm合金単層ならその層厚、複層ならC
oSm合金層の合計厚)は通常200〜800Å程度と
される。
As described above, the magnetic recording layer 3 is formed of a CoSm alloy that can obtain a high coercive force. The Sm content is preferably about 20% or less in order to secure a high Ms of about 600 emu / cc or more. Note that the magnetic recording layer is not limited to a predetermined CoSm alloy magnetic layer formed as a single layer as shown in the figure, but a CoSm alloy magnetic layer
Alternatively, a non-magnetic intermediate layer made of Cr or the Cr alloy forming the underlayer may be alternately laminated. The layer thickness of the magnetic recording layer 3 (the layer thickness is a single layer of CoSm alloy, C is a layer of multiple layers).
The total thickness of the oSm alloy layer) is usually about 200 to 800Å.

【0013】前記磁気記録層3の上にはカーボン、Si
2 又はCr/SiO2 等からなる非磁性保護層4が2
00〜400Å程度形成されており、更にその上にフッ
素化ポリエーテル等の液体潤滑剤を20〜50Å程度
(単分子厚程度)塗布してもよい。尚、前記保護層4や
潤滑層は必要に応じて形成すればよい。非磁性下地層、
磁気記録層、非磁性保護層は、通常、スパッタリングに
より成膜される。スパッタリング条件は、通常、Arガ
ス分圧が10〜50mTorr、基板温度が室温〜10
0℃程度とされる。
On the magnetic recording layer 3, carbon, Si
The non-magnetic protective layer 4 made of O 2 or Cr / SiO 2 is 2
It is formed to have a thickness of about 00 to 400 Å, and a liquid lubricant such as fluorinated polyether may be further applied thereto on the order of about 20 to 50 Å (single molecular thickness). The protective layer 4 and the lubricating layer may be formed as needed. Non-magnetic underlayer,
The magnetic recording layer and the non-magnetic protective layer are usually formed by sputtering. The sputtering conditions are usually such that the Ar gas partial pressure is 10 to 50 mTorr and the substrate temperature is room temperature to 10
It is set to about 0 ° C.

【0014】次に具体的実施例を掲げる。 (1) RF3元スパッタリング装置を用いて、化学的腐食
により無方向性のテキスチャーを施したガラス基板の上
にCr−3%Cu合金下地層を1000Å、種々のSm
含有量のCoSm合金磁性層からなる磁気記録層を60
0Å、さらにその上にSiO2 保護層を200Å積層成
膜した。成膜時の基板温度は室温のままとし、成膜時の
Arガス分圧および高周波電力は、下地層成膜時15m
Torrで200W、磁性層成膜時35mTorrで1
60W、保護層成膜時15mTorrで200Wとし
た。また、比較のため、下地層をCrCu合金の代わり
にCrを用いて成膜したほかは実施例と同条件で従来例
の磁気記録媒体を成膜した。 (2) 得られた実施例、従来例の磁気記録媒体を用いて、
外部磁場10kOeの下で、媒体の磁気特性をVSMを
用いて測定した。その結果を図2に示す。図2より、S
m含有量が10%まで低下すると、従来例では保磁力
(Hc)が1500Oe程度まで低下したが、実施例で
は保磁力が2000Oe以上有している。また、Smの
含有量にかかわらず、CrCu合金下地層を有する実施
例は従来例に対し、保磁力が500〜600Oe向上し
ていることが分かる。 (3) 次に、種々のCu含有量のCrCu下地層を有する
実施例の磁気記録媒体を成膜して、Cu含有量が保磁力
に与える影響を調べた。但し、CoSm合金磁性層のS
m含有量は12%とした。その他の成膜条件、保磁力測
定条件は(1) 、(2) と同様である。その結果を図3に示
す。図3より、Crに0.5%以上のCuを含有させる
ことにより、2000Oe程度以上の高保磁力が発現す
ることが分かる。
Next, specific examples will be given. (1) Using an RF ternary sputtering device, a Cr-3% Cu alloy underlayer of 1000 Å and various Sm on a glass substrate that was non-directionally textured by chemical corrosion.
The magnetic recording layer comprising a CoSm alloy magnetic layer with a content of 60
0Å, and a SiO 2 protective layer was further laminated thereon to form 200Å. The substrate temperature during film formation was kept at room temperature, and the Ar gas partial pressure and high-frequency power during film formation were 15 m when the underlayer was formed.
200 W at Torr, 1 at 35 mTorr when forming magnetic layer
60 W, and 200 W at 15 mTorr when forming the protective layer. For comparison, a magnetic recording medium of a conventional example was formed under the same conditions as those of the example, except that the underlayer was formed by using Cr instead of the CrCu alloy. (2) Using the magnetic recording media of the obtained examples and conventional examples,
The magnetic properties of the medium were measured using VSM under an external magnetic field of 10 kOe. The result is shown in FIG. From FIG. 2, S
When the m content was reduced to 10%, the coercive force (Hc) was reduced to about 1500 Oe in the conventional example, but the coercive force is 2000 Oe or more in the examples. Further, it can be seen that the coercive force of the example having the CrCu alloy underlayer is improved by 500 to 600 Oe as compared with the conventional example regardless of the content of Sm. (3) Next, magnetic recording media of Examples having CrCu underlayers having various Cu contents were formed, and the influence of the Cu content on the coercive force was investigated. However, S of the CoSm alloy magnetic layer
The m content was 12%. Other film forming conditions and coercive force measuring conditions are the same as in (1) and (2). The result is shown in FIG. It can be seen from FIG. 3 that a high coercive force of about 2000 Oe or more is exhibited by including 0.5% or more of Cu in Cr.

【0015】[0015]

【発明の効果】以上説明した通り、本発明の金属薄膜型
磁気記録媒体は、非磁性下地層を特定組成のCrCu合
金で成膜するので、Cr結晶粒の微細化、分離化が促進
され、CoSm合金磁性層を備えた磁気記録層の保磁力
を著しく向上させることができ、このため、基板に無方
向性のテキスチャーを施し、高Msの確保のためにSm
の含有量を低く抑えても、従来に対し、大幅な保磁力の
向上が期待できる。
As described above, in the metal thin film type magnetic recording medium of the present invention, since the nonmagnetic underlayer is formed of the CrCu alloy having the specific composition, the miniaturization and separation of Cr crystal grains are promoted, The coercive force of the magnetic recording layer provided with the CoSm alloy magnetic layer can be remarkably improved. Therefore, the substrate is given a non-directional texture, and Sm is secured to secure high Ms.
Even if the content of is suppressed to a low level, a significant improvement in coercive force can be expected over the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の金属薄膜型磁気記録媒体の要部断面図
である。
FIG. 1 is a sectional view of essential parts of a metal thin film magnetic recording medium of the present invention.

【図2】CoSm磁性層を備えた実施例および従来例の
磁気記録媒体におけるSm含有量と保磁力Hcとの関係
を示すグラフ図である。
FIG. 2 is a graph showing the relationship between the Sm content and the coercive force Hc in magnetic recording media of Examples and Conventional Examples having a CoSm magnetic layer.

【図3】CrCu下地層を備えた実施例の磁気記録媒体
におけるCu含有量と保磁力Hcとの関係を示すグラフ
図である。
FIG. 3 is a graph showing a relationship between a Cu content and a coercive force Hc in a magnetic recording medium of an example including a CrCu underlayer.

【符号の説明】[Explanation of symbols]

1 基板 2 非磁性下地層 3 磁気記録層 4 保護層 1 substrate 2 non-magnetic underlayer 3 magnetic recording layer 4 protective layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板の上に非磁性下地層、CoS
m合金磁性層を備えた磁気記録層が同順序で積層成膜さ
れた金属薄膜型磁気記録媒体において、 前記非磁性下地層は、原子%で、Cu:0.5〜15%
を本質的に含有し、残部がCrからなるCrCu合金で
形成されていることを特徴とする金属薄膜型磁気記録媒
体。
1. A nonmagnetic underlayer and CoS on a nonmagnetic substrate.
In a metal thin film magnetic recording medium in which magnetic recording layers having an m-alloy magnetic layer are stacked in the same order, the nonmagnetic underlayer is atomic% and Cu: 0.5 to 15%.
A metal thin film magnetic recording medium, which essentially contains Cr and the balance is formed of a CrCu alloy composed of Cr.
JP10156693A 1993-04-27 1993-04-27 Metal thin film type magnetic recording medium Pending JPH06309644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10156693A JPH06309644A (en) 1993-04-27 1993-04-27 Metal thin film type magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10156693A JPH06309644A (en) 1993-04-27 1993-04-27 Metal thin film type magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH06309644A true JPH06309644A (en) 1994-11-04

Family

ID=14303966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10156693A Pending JPH06309644A (en) 1993-04-27 1993-04-27 Metal thin film type magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH06309644A (en)

Similar Documents

Publication Publication Date Title
JP2834392B2 (en) Metal thin film type magnetic recording medium and method of manufacturing the same
JP3090128B2 (en) Perpendicular magnetic recording media
JPH087859B2 (en) Magnetic recording medium and manufacturing method thereof
JP2002216331A (en) Perpendicular magnetic recording layer for extra-high density recording
JPH06349047A (en) Magnetic recording medium and magnetic storage device
JPH0750008A (en) Magnetic recording medium
JPH06309644A (en) Metal thin film type magnetic recording medium
JP2802017B2 (en) Metal thin-film magnetic recording media
US6090496A (en) Magnetic recording medium and non-magnetic alloy film
JP2005302109A (en) Manufacturing method of multilayer film vertical magnetic recording medium
JP3582435B2 (en) Perpendicular magnetic recording medium
JP2001101643A (en) Magnetic recording medium
JP2001189006A (en) Magnetic recording medium, method of producing the same and magnetic recording reproducing device
JP2001093139A (en) Magnetic recording medium and magnetic recording and reproducing device
JPH076344A (en) Metallic thin film type magnetic recording medium
JPH0831638A (en) Metal thin film magnetic recording medium
JP2802016B2 (en) Metal thin-film magnetic recording media
JP2732153B2 (en) Metal thin-film magnetic recording media
JP2725502B2 (en) Magnetic recording media
JP2001250223A (en) Magnetic recording medium and magnetic recorder
JP2834391B2 (en) Method of manufacturing magnetic recording medium substrate and method of manufacturing magnetic recording medium using the substrate
JP3280463B2 (en) Manufacturing method of metal thin film type magnetic recording medium
JP2559984B2 (en) Magnetic recording media
JP2749046B2 (en) Magnetic recording medium for longitudinal recording and magnetic recording apparatus for longitudinal recording using the same
JPH1041134A (en) Magnetic recording medium and its manufacturing method