JPH0763029B2 - Actual input power control method for local heating - Google Patents

Actual input power control method for local heating

Info

Publication number
JPH0763029B2
JPH0763029B2 JP24760286A JP24760286A JPH0763029B2 JP H0763029 B2 JPH0763029 B2 JP H0763029B2 JP 24760286 A JP24760286 A JP 24760286A JP 24760286 A JP24760286 A JP 24760286A JP H0763029 B2 JPH0763029 B2 JP H0763029B2
Authority
JP
Japan
Prior art keywords
power
heating
loss
load
effective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24760286A
Other languages
Japanese (ja)
Other versions
JPS63102194A (en
Inventor
雄二 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP24760286A priority Critical patent/JPH0763029B2/en
Priority to US07/069,400 priority patent/US4798925A/en
Priority to ES198787109617T priority patent/ES2037030T3/en
Priority to EP87109617A priority patent/EP0251333B1/en
Priority to DE8787109617T priority patent/DE3783085T2/en
Priority to KR1019870007076A priority patent/KR970004828B1/en
Priority to CA000541379A priority patent/CA1270302A/en
Publication of JPS63102194A publication Critical patent/JPS63102194A/en
Publication of JPH0763029B2 publication Critical patent/JPH0763029B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 A. 産業上の利用分野 本発明は、局部加熱に用いられる加熱装置につき、有効
加熱に係る実投入電力を制御する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a heating device used for local heating, and a method for controlling actual input power for effective heating.

B. 発明の概要 本発明は、局部加熱用実投入電力制御方法において、電
源からの出力電力と電気回路損失、負荷内の損失とから
導出した有効加熱電力を設定加熱電力に一致させるよう
電源を制御することにより、高精度な加熱電力制御を行
なうものである。
B. SUMMARY OF THE INVENTION The present invention relates to a method for controlling actual heating power for local heating, in which a power source is set so that the effective heating power derived from the output power from the power source, the electric circuit loss, and the loss in the load matches the set heating power. By controlling the heating power, highly accurate heating power control is performed.

C. 従来の技術問題点 局部加熱において電子管式の発振装置を例にとり説明す
る。電子管発振装置では、従来20kHz以上のものにあっ
ては、周波数が高いため生産現場で高周波電力値を簡単
に計測できる手段がない。
C. Conventional technical problems In the local heating, an electron tube type oscillating device will be described as an example. With electron tube oscillators, there is no means for easily measuring the high frequency power value at the production site because the frequency is high in the case of 20 kHz or higher.

したがって、電子管(以下発振管という)の高周波出力
電力を直接計測できないことから、これに代えて、発振
管の入力側で直流入力値を計測し、この値によって、間
接的に高周波出力側の制御を行なったり、高周波出力値
におきかえて必要な装置の定格の推定やラインでの電力
制御を行なっている。したがって、間接的な制御となる
ので、精度が悪い欠点がある。
Therefore, since the high frequency output power of the electron tube (hereinafter referred to as the oscillation tube) cannot be measured directly, instead of this, the DC input value is measured at the input side of the oscillation tube, and this value indirectly controls the high frequency output side. Is performed, and the required equipment rating is estimated and the power is controlled in the line instead of the high frequency output value. Therefore, since the control is indirect, there is a drawback that the accuracy is low.

また、自動化に際して、直流入力値を使用する場合、例
えば同一の溶接ライン(装置)や熱処理ライン内等で
は、例えば、発振管の発振効率(直流入力値と高周波出
力値との比)や、伝送損失を固定して考えることができ
るので、負荷である被処理物が変った場合でも、実績値
を統計的に処理することが何とか対応できるが、ライン
や装置が異なる場合には、上述の発振効率や伝送損失な
ども異なり、別のラインの直流入力値と高周波出力値の
関係は適用できないので、ラインごとに改めて実績値を
積重ねざるを得ない。
Further, when using a DC input value for automation, for example, in the same welding line (apparatus) or heat treatment line, for example, the oscillation efficiency of the oscillation tube (ratio between DC input value and high frequency output value) or transmission Since it is possible to consider the loss fixed, it is possible to manage statistically the actual value even if the load object changes, but if the line and equipment are different, the above-mentioned oscillation The efficiency and transmission loss are also different, and the relationship between the DC input value and the high-frequency output value of another line cannot be applied, so the actual value must be accumulated again for each line.

いずれにしても、高周波電力を直接計測できず間接的な
直流入力を利用したり実績値を積重ねることにより制御
を行なっており、第8図に示す入力や中間損失が正確に
得られないことから負荷への加熱実入力が推定でしか得
られず、電力の高精度な制御はできなかった。
In any case, the high-frequency power cannot be directly measured and the control is performed by using the indirect DC input or by stacking the actual values, and the input and intermediate loss shown in Fig. 8 cannot be obtained accurately. The actual heating input to the load was only obtained by estimation, and the power could not be controlled with high precision.

本発明は、上述の問題に鑑み、加熱実入力を高精度に制
御する局部加熱用実投入電力制御方法の提供を目的とす
る。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a local heating actual input power control method for controlling an actual heating input with high accuracy.

D. 問題点を解決するための手段 上述の目的を達成する本発明は、加熱子に加熱材料が無
い無負荷計測にて電源からの出力電力演算により電気回
路損失WEを求め、上記加熱子に有効加熱部を皆無とする
か又は極力発熱を抑えたダミー負荷の計測にて電源から
の出力電力演算により負荷内の損失WLを求め、更に上記
加熱子に加熱材料が存在する実負荷計測にて電源からの
出力電力から上記損失WE,WLの引算により有効加熱電力
を求め、この有効加熱電力と設定加熱電力とを比較して
これらを一致させるよう電源の出力電力を制御すること
を特徴とする。
D. Means for Solving Problems The present invention that achieves the above-mentioned object is to obtain the electric circuit loss W E by calculating the output power from the power source in the no-load measurement in which there is no heating material in the heating element. In addition, there is no effective heating part, or the dummy load with minimal heat generation is measured to calculate the loss W L in the load by calculating the output power from the power source, and the actual load with heating material present on the heating element is measured. At, the effective heating power is obtained by subtracting the above-mentioned losses W E and W L from the output power from the power supply, and comparing this effective heating power with the set heating power, the output power of the power supply is controlled so as to match them. It is characterized by

最近においては、高周波に対応して高速の瞬時波形をス
トレージできる高速デジタルストレージ可能な計器が出
現しているので高周波での実効値演算ができる。
Recently, instruments capable of high-speed digital storage capable of storing high-speed instantaneous waveforms corresponding to high frequencies have appeared, so that effective value calculation at high frequencies can be performed.

E. 実 施 例 ここで、第1図ないし第7図を参照して本発明の実施例
を説明する。第1図は本発明方法に当って計測のための
電子管発振回路図である。まず、この回路から説明する
に、1は電圧調整用の電力制御器、2は変圧器、3は逆
変換器、4は発振用電子管(発振管)、5はリアクトル
5aとコンデンサ5bとからなり整流リップルを平滑する低
周波フィルタ、6aは高周波電流用チョークコイル、6bは
直流カットコンデンサ、7,8はタンク回路を形成するコ
ンデンサ、9はタンク回路を形成して出力トランスとな
るマッチングトランス、10は2個のグリッド帰還コンデ
ンサ、11はグリッドチョークコイル、抵抗器、コンデン
サの組である。
E. Practical Example An example of the present invention will now be described with reference to FIGS. FIG. 1 is an electron tube oscillator circuit diagram for measurement in the method of the present invention. First of all, from this circuit, 1 is a power controller for voltage adjustment, 2 is a transformer, 3 is an inverse converter, 4 is an oscillation electron tube (oscillation tube), and 5 is a reactor.
A low frequency filter composed of 5a and a capacitor 5b for smoothing rectification ripple, 6a a high frequency current choke coil, 6b a DC cut capacitor, 7 and 8 capacitors for forming a tank circuit, 9 a tank circuit for output A matching transformer serving as a transformer, 10 are two grid feedback capacitors, and 11 is a set of a grid choke coil, a resistor, and a capacitor.

かかる発振回路において、発振管4のプレートとカソー
ドとの間には、抵抗分圧器12が接続され、この抵抗分圧
器12により瞬時のプレート電圧波形eHFが検出できる。
In such an oscillation circuit, a resistance voltage divider 12 is connected between the plate of the oscillation tube 4 and the cathode, and the resistance voltage divider 12 can detect an instantaneous plate voltage waveform e HF .

発振器4のプレート側には、高周波変流器13が備えら
れ、この変流器13によって瞬時のプレート出力電流波形
iHFが検出できる。
A high-frequency current transformer 13 is provided on the plate side of the oscillator 4, and the current transformer 13 causes an instantaneous plate output current waveform.
i HF can be detected.

更に、コンデンサ7,8とマッチングトランス9とにより
形成されるタンク回路には、大電流高周波変流器14が備
えられ、共振回路電流波形itが検出できる。
Further, the tank circuit formed by the capacitors 7 and 8 and the matching transformer 9 is provided with a large current high frequency current transformer 14, and the resonance circuit current waveform i t can be detected.

抵抗分圧器12、高周波変流器13、大電流高周波変流器14
からの電圧波形や電流波形eHF,iHF,itは、高周波である
ため数Hzのデータ・ストレージの計測が行なわれ、マル
チプレクサ15を介してデジタルメモリ16に波形データが
記憶される。そして、その後演算処理部17にて波形デー
タの転送・演算が行なわれ、高周波電力PHFや電流It
の実効値が得られる。
Resistance voltage divider 12, high frequency current transformer 13, high current high frequency current transformer 14
Voltage waveforms and current waveforms e HF from, i HF, i t is the data storage of the measurement of a few Hz since a high frequency is performed, the waveform data is stored in the digital memory 16 via multiplexer 15. Thereafter processing section 17 transfers and calculation of the waveform data is performed in the effective value of such high-frequency power P HF and current I t is obtained.

なお、第1図においてマッチングトランス9の2次側
は、加熱用コイルHにつながっている。このコイルHに
対しPは被加熱物であって第1図の実施例ではパイプで
ある。
In FIG. 1, the secondary side of the matching transformer 9 is connected to the heating coil H. In contrast to this coil H, P is an object to be heated, which is a pipe in the embodiment shown in FIG.

かかる第1図の回路図により計測方法を説明する。発振
装置を駆動して抵抗分圧器12による電圧eHF,高周波電流
iHFを検出してデジタルメモリ16に波形データを記憶後
演算により各実効値 及び を求める。ここで、Tは周期であり、電力PHFは負荷イ
ンピーダンスの状態により変化する。
The measuring method will be described with reference to the circuit diagram of FIG. Driving the oscillator, the voltage e HF and high frequency current by the resistance voltage divider 12
i HF is detected, waveform data is stored in the digital memory 16, and each effective value is calculated by calculation. as well as Ask for. Here, T is the period, and the power P HF changes depending on the state of the load impedance.

一方、無負荷時にて得られる高周波電力PHF1は、伝送損
失及びコイル損失からなる伝送回路(電気回路)の損失
WEと等しく、しかも大電流高周波変流器14により高周波
電流波形itにより演算で求めた実効値ItのA乗に比例す
る。ここで、Aは例えば1.8から2.2などの数値があげら
れる。こうして、比例定数をKEとするとPHF1=WE=KE
A t▼の式が成立する。ここで、PHF1はEHFとIHFとの実
測と演算により求まり、Itも実測と演算とにより求ま
る。
On the other hand, the high-frequency power P HF1 obtained with no load is the loss of the transmission circuit (electrical circuit) that consists of transmission loss and coil loss.
It is equal to W E and is proportional to the effective power I t calculated by the high-current high-frequency current transformer 14 from the high-frequency current waveform i t to the A-th power. Here, A is a numerical value such as 1.8 to 2.2. Thus, if the proportional constant is K E , P HF1 = W E = K E
I A t ▼ formula is satisfied of. Here, P HF1 is obtained by actual measurement and calculation of E HF and I HF, and I t is also obtained by actual measurement and calculation.

つぎに、第2図(b)に示すように加熱コイルHを有す
る誘導式の装置にあって、加熱部を形成しないようすな
わち通電回路を形成しないよう切れている被加熱物Pで
あるダミー負荷(パイプ)PaにてIHF・EHFから高周波電
力PHF2を求める。この場合、高周波電力PHF2から前述の
伝送回路の損失WEを差引いた電力は、外周パイプ損失と
内周パイプ損失との和の負荷内における損失分WLなり、
しかも大電流高周波変流器14による高周波電流itにより
演算で求めた実効値ItのA乗をPHF2から引いた値とな
り、WL=KL・▲IB t▼の形に求められる。すなわち、パ
イプPa内の損失分WLを求めると、WL=PHF2−WE=PHF2
KL・▲IA t▼=KL・I▲B c▼となる。
Next, in an induction type device having a heating coil H as shown in FIG. 2 (b), a dummy load which is an object to be heated P cut so as not to form a heating part, that is, not to form an energizing circuit. (Pipe) Find the high frequency power P HF2 from I HF / E HF at P a . In this case, the power obtained by subtracting the above-mentioned transmission circuit loss W E from the high-frequency power P HF2 becomes the loss component W L in the load of the sum of the outer peripheral pipe loss and the inner peripheral pipe loss,
Moreover it becomes a value A th power minus the P HF2 of the effective value I t obtained by the calculation by the high frequency current i t by a large current high frequency current transformer 14 is obtained in the form of W L = K L · ▲ I B t ▼ . That is, when determining the loss W L of the pipe P a, W L = P HF2 -W E = P HF2 -
K L · ▲ I A t ▼ = a K L · I ▲ B c ▼ .

つぎに加熱コイルH内に第2図(a)の如く被加熱物で
あるパイプPaが挿入されて実負荷時の計測を行ない、V
字状のエッジ部を加熱して溶融接合する。この場合の実
負荷時の発振管14の高周波電力PHF3は、有効加熱電力を
Pwとすると、次式となる。
Then the pipe P a which is an object to be heated as of FIG. 2 (a) is inserted into the heating coil H and performs measurement of the time of actual load, V
The character-shaped edge portion is heated and melt-bonded. In this case, the high frequency power P HF3 of the oscillator tube 14 at the actual load is the effective heating power.
Let P w be the following equation.

PHF3=Pw+WE+WL Pw+KE▲IA t▼+KL▲IB t▼ この結果、PHF3は実負荷時のIHF・EHFにて求まり、WE
WLも求まるので、有効加熱電力Pwを得ることができる。
P HF3 = P w + W E + W L P w + K E ▲ I A t ▼ + K L ▲ I B t ▼ As a result, P HF3 is Motomari with the actual load at the time of the I HF · E HF, W E ,
Since W L is also obtained, the effective heating power P w can be obtained.

かかる有効加熱電力の計測を行なった後、第3図に示す
ように有効加熱電力Pwと設定加熱電力PHとを比較器18に
て比較し、この有効加熱電力Pwが設定加熱電力PHになる
ようにコントロールユニット19にて演算され、電源(本
実施例では第1図に示す電力制御器1や発振管4など)
を制御し出力電力PHを得るものである。本来加熱有効電
力Pwは被加熱部位の理論的発生熱量を直接表現できるは
ずであるが、実際はこの発生熱量の正味加熱電力に比例
する値であるので、この値により比較演算を行なって電
源を制御しているものである。第3図は第1図の回路に
比較器8やコントロールボックス19が取付けてある図
で、演算機能を表示するため第1図より簡略化してあ
る。
After measuring the effective heating power, the comparator 18 compares the effective heating power P w with the set heating power P H as shown in FIG. 3, and the effective heating power P w is the set heating power P w. It is calculated by the control unit 19 so that it becomes H , and the power source (in this embodiment, the power controller 1 and the oscillation tube 4 shown in FIG. 1)
To obtain the output power P H. Originally, the effective heating power P w should be able to directly represent the theoretical amount of heat generated in the heated area, but in reality it is a value proportional to the net heating power of this amount of heat generated, so a comparison operation is performed using this value to calculate the power supply. It is in control. FIG. 3 is a diagram in which the comparator 8 and the control box 19 are attached to the circuit of FIG. 1, and is simplified from FIG. 1 in order to display the arithmetic function.

第1図ないし第3図の説明は、誘導式の発振管に基づく
ものであるが、本発明では接触子を加熱部位に当てて計
測する接触式の通電加熱にも適用でき、また、発振管の
電源部を有するもののみならず後述の中周波インバー
タ、サイリスタスイッチ、商用周波数の各加熱にも適用
することができる。この結果、電力計測手段は第4図に
示すように簡単なブロックとすることができ、電源から
の出力電力PHFに対しPTとCT等による損失測定により有
効加熱電力を得ることができる。
Although the description of FIGS. 1 to 3 is based on the induction type oscillation tube, the present invention is also applicable to contact type electrification heating in which a contact is applied to a heating portion, and the oscillation tube is also used. The present invention can be applied not only to those having a power supply section, but also to the heating of medium frequency inverters, thyristor switches, and commercial frequencies described later. As a result, the power measuring means can be a simple block as shown in FIG. 4, and the effective heating power can be obtained by the loss measurement by PT and CT for the output power P HF from the power source.

前述の実施例ではダミー負荷による電力測定を通電部を
形成しない第2図(b)に示すパイプPaにて行ない電力
PHF2と損失WLを求めたのであるが、被加熱物が第5図
(a)のような通電回路を形成させたり第6図(a)に
示す板状のものにおける通電回路を形成する場合には、
熱の発生を極力少なくして加熱電力を少なくするよう
に、第5図の例では銅管Cuをはさみ込んで水を通したり
(第5図(b))、第6図の例では板の両側に銅管Cuを
密着させて水を通すことにより(第6図(b))、有効
加熱電力を抑制して負荷損失分を得るようにしている。
In the above-described embodiment, the electric power is measured by the dummy load by using the pipe P a shown in FIG.
The P HF2 and the loss W L were obtained. The object to be heated forms a conducting circuit as shown in Fig. 5 (a), or forms a conducting circuit in the plate-like one shown in Fig. 6 (a). in case of,
In order to reduce the heat generation as much as possible to reduce the heating power, the copper pipe Cu is inserted to pass water (Fig. 5 (b)) in the example of Fig. 5, and the plate of the plate is used in the example of Fig. 6. The copper pipe Cu is closely attached to both sides and water is allowed to pass therethrough (Fig. 6 (b)) to suppress the effective heating power and obtain the load loss.

また、第7図は電源部の3つの例を示しており、これら
電源部を用いた局部加熱装置でも加熱電力制御が行なえ
る。ここで、第7図(a)は商用周波数加熱電源、
(b)はサイリスタスイッチ加熱電源、(c)は中周波
インバータ加熱電源を示している。
Further, FIG. 7 shows three examples of the power supply unit, and heating power control can be performed even in a local heating device using these power supply units. Here, FIG. 7 (a) is a commercial frequency heating power source,
(B) shows a thyristor switch heating power supply, and (c) shows a medium frequency inverter heating power supply.

F. 発明の効果 以上説明したように本考案によれば、実投入有効電力制
御が精密に行なうことができ、外乱による変化に対応で
き非定常使用条件下での制御が可能となり、無駄のない
最適で正確な加熱ができて製品の品質を維持できるなど
の効果がある。
F. Effects of the Invention As described above, according to the present invention, the actual input active power control can be precisely performed, the change due to the disturbance can be coped with, and the control can be performed under the unsteady use condition without waste. Optimal and accurate heating can be performed, and the product quality can be maintained.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第7図は本発明の実施例で、第1図は計測
のための回路図、第2図(a)は実負荷加熱状態図、第
2図(b)はダミー負荷加熱状態図、第3図,第4図は
制御ブロック図、第5図(a)(b),第6図(a)
(b)は実負荷とダミー負荷との加熱状態図、第7図
(a)(b)(c)は電源部の回路図、第8図は局部加
熱の損失を現わすブロック図である。 図中、 18は比較器、 19はコントロールユニットである。
1 to 7 show an embodiment of the present invention. FIG. 1 is a circuit diagram for measurement, FIG. 2 (a) is an actual load heating state diagram, and FIG. 2 (b) is a dummy load heating state. Fig. 3, Fig. 3 and Fig. 4 are control block diagrams, Fig. 5 (a) (b) and Fig. 6 (a).
(B) is a heating state diagram of an actual load and a dummy load, FIGS. 7 (a), (b), and (c) are circuit diagrams of a power supply unit, and FIG. 8 is a block diagram showing a loss of local heating. In the figure, 18 is a comparator and 19 is a control unit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】加熱子に加熱材料が無い無負荷計測にて電
源からの出力電力演算により電気回路損失WEを求め、上
記加熱子に有効加熱部を皆無とするか又は極力発熱を抑
えたダミー負荷の計測にて電源からの出力電力演算によ
り負荷内の損失WLを求め、更に上記加熱子に加熱材料が
存在する実負荷計測にて電源からの出力電力から上記損
失WE,WLの引算により有効加熱電力を求め、この有効加
熱電力と設定加熱電力とを比較してこれらを一致させる
よう電源の出力電力を制御する局部加熱用実投入電力制
御方法。
1. An electric circuit loss W E is obtained by calculating the output power from a power source in a no-load measurement in which there is no heating material in the heating element, and there is no effective heating part in the heating element, or heat generation is suppressed as much as possible. The loss W L in the load is calculated by calculating the output power from the power source by measuring the dummy load, and further the loss W E , W L from the output power from the power source by measuring the actual load when the heating material is present in the heating element. The effective heating power for local heating is controlled by calculating the effective heating power by subtracting, and comparing the effective heating power with the set heating power and controlling the output power of the power supply so as to match them.
JP24760286A 1986-07-04 1986-10-20 Actual input power control method for local heating Expired - Lifetime JPH0763029B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP24760286A JPH0763029B2 (en) 1986-10-20 1986-10-20 Actual input power control method for local heating
US07/069,400 US4798925A (en) 1986-07-04 1987-07-02 Method for measuring effective heating power for high frequency heating
ES198787109617T ES2037030T3 (en) 1986-07-04 1987-07-03 METHOD OF MEASURING THE THERMAL PERFORMANCE OF A HIGH FREQUENCY HEATING APPARATUS.
EP87109617A EP0251333B1 (en) 1986-07-04 1987-07-03 Heating power measuring method
DE8787109617T DE3783085T2 (en) 1986-07-04 1987-07-03 METHOD FOR MEASURING A HEATING OUTPUT.
KR1019870007076A KR970004828B1 (en) 1986-07-04 1987-07-03 Heating power measuring method
CA000541379A CA1270302A (en) 1986-07-04 1987-07-06 Heating power measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24760286A JPH0763029B2 (en) 1986-10-20 1986-10-20 Actual input power control method for local heating

Publications (2)

Publication Number Publication Date
JPS63102194A JPS63102194A (en) 1988-05-07
JPH0763029B2 true JPH0763029B2 (en) 1995-07-05

Family

ID=17165949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24760286A Expired - Lifetime JPH0763029B2 (en) 1986-07-04 1986-10-20 Actual input power control method for local heating

Country Status (1)

Country Link
JP (1) JPH0763029B2 (en)

Also Published As

Publication number Publication date
JPS63102194A (en) 1988-05-07

Similar Documents

Publication Publication Date Title
US11349307B2 (en) Active filter for resonance reduction
EP0138486A2 (en) High voltage pulsed power supply for an x-ray tube
EP0490670B1 (en) Induction motor control apparatus
EP0175811A1 (en) Full load to no-load control for a voltage fed resonant inverter
EP0902529A1 (en) Method and apparatus for energy conversion
US6711533B1 (en) Method for controlling a double-resonance generator
CN105717831A (en) Impedance matching system and method and control system of supersonic power supply
EP0215362B2 (en) AC power supply device
US6215675B1 (en) Method apparatus for energy conversion
Fukuda et al. State-vector feedback control-based 100 kHz carrier PWM power conditioning amplifier and its high-precision current-tracking scheme
JPH0763029B2 (en) Actual input power control method for local heating
JPH0363464B2 (en)
JP2002207055A (en) Method of determining output capacitance of voltage feeder
KR100735332B1 (en) Capacitance measuring meter electrostatic Precipitator Using Current Pulse Width
JPH08130870A (en) Charged capacitor power supply
JP2535936B2 (en) Harmonic suppressor
EP3405004A1 (en) Induction hob and method for operating an induction hob
JP2572433B2 (en) Power supply for arc welding and cutting
JPH0763028B2 (en) Heating power measurement method
JP2826566B2 (en) Inverter type X-ray equipment
JP2537516B2 (en) Control method and apparatus for arc welding power source
JPH0756831B2 (en) High frequency heating power control method
JPH0329989Y2 (en)
SE8002567L (en) DEVICE FOR DC AND / OR AC POWER WELDING WITH AN AC POWER OR DC POWER CONNECTABLE CONVERTER
JP3661388B2 (en) Inverter device