JPH0762991B2 - Liquid supply device - Google Patents
Liquid supply deviceInfo
- Publication number
- JPH0762991B2 JPH0762991B2 JP61083605A JP8360586A JPH0762991B2 JP H0762991 B2 JPH0762991 B2 JP H0762991B2 JP 61083605 A JP61083605 A JP 61083605A JP 8360586 A JP8360586 A JP 8360586A JP H0762991 B2 JPH0762991 B2 JP H0762991B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- splitter
- flow rate
- pressure
- flow path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、液体を圧力の高い領域から低い領域へ運ぶ流
路にスプリッタを設け、このスプリッタによって液体の
一部を分岐排出することにより所望流量の液体を被供給
先へ供給するようにした液体供給装置に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is desirable in that a splitter is provided in a flow path for transporting a liquid from a high pressure region to a low pressure region, and a part of the liquid is branched and discharged by the splitter. The present invention relates to a liquid supply device that supplies a liquid at a flow rate to a supply destination.
[従来技術] 液体試料を分析装置などへ供給して分析する場合、分析
装置側の導入能力に限界があると、供給流路の途中にス
プリッタを設け、余剰の液体を分岐排出し、分析装置側
の導入能力に合わせた所望流量の液体を分析装置へ供給
することが一般的である。[Prior Art] When a liquid sample is supplied to an analysis device or the like for analysis, if the analysis device has a limited introduction capacity, a splitter is provided in the middle of the supply passage to branch and discharge the excess liquid, It is common to supply a desired flow rate of liquid to the analyzer according to the side introduction capacity.
ところで、試料液を質量分析装置のイオン源に供給して
イオン化する方式として、実開昭61−116065号及び特開
昭62−163250号に記載されているように、イオン化室内
へ試料液を導入する導入管の先端に多孔性部材を取付
け、試料液を該多孔性部材を通してイオン化室内へ滲み
出させるようにして導入しイオン化するものがある。By the way, as a method for supplying a sample solution to an ion source of a mass spectrometer for ionization, as described in JP-A-61-116065 and JP-A-62-163250, the sample solution is introduced into an ionization chamber. There is a method in which a porous member is attached to the tip of the introducing tube, and the sample solution is ionized by being exuded into the ionization chamber through the porous member.
第5図はそのような方式のイオン源の試料導入部の構造
を示す概略図である。図において1は液体クロマトグラ
フ、2はイオン化室、3は液体クロマトグラフからの試
料液をイオン化室へ運ぶ導入管、4はその先端に取付け
られる多孔性部材、5はその取付け部分で余剰試料液を
スプリットする排出管、6は排出管に接続された流量調
整弁である。FIG. 5 is a schematic diagram showing the structure of the sample introduction part of such an ion source. In the figure, 1 is a liquid chromatograph, 2 is an ionization chamber, 3 is an introduction pipe for carrying the sample liquid from the liquid chromatograph to the ionization chamber, 4 is a porous member attached to the tip thereof, and 5 is an excess sample liquid at the attachment portion. Is a discharge pipe for splitting, and 6 is a flow rate adjusting valve connected to the discharge pipe.
このような導入方式では、液体クロマトグラフからの送
液量は10〜100μ/分程度で、一方多孔性部材を介し
てイオン化室内へ供給される試料液の流量は1μ/分
程度であるため、スプリット比は1:10〜1:100程度とな
る。In such an introduction method, the amount of liquid sent from the liquid chromatograph is about 10 to 100 μ / min, while the flow rate of the sample liquid supplied into the ionization chamber through the porous member is about 1 μ / min. The split ratio is about 1:10 to 1: 100.
[発明が解決しようとする問題点] このように大きなスプリット比で微量送液する場合は、
流量調整弁6における流量変動あるいは液体クロマトグ
ラフからの送液量の変動が、イオン化室内へ導入される
試料液の流量に大きな影響を及ぼす。[Problems to be Solved by the Invention] When sending a small amount of liquid with such a large split ratio,
Fluctuations in the flow rate of the flow rate adjusting valve 6 or fluctuations in the amount of liquid sent from the liquid chromatograph have a great influence on the flow rate of the sample liquid introduced into the ionization chamber.
例えば、液体クロマトグラフ1から101μ/分の流量
で送られた試料液が、多孔性部材4へ1μ/分、排出
管5へ100μ/分の割合でスプリットされるとした
時、調整弁6における流量が温度変化等の条件変動によ
り±0.5%(0.5μ/分)程度変動した場合、調整弁に
関しては変動が0.5%に過ぎなくても、多孔性部材4を
通過する試料液の流量は1±0.5μ/分と実に50%も
変動してしまう。これは液体クロマトグラフからの試料
液の送液量が変動した場合でも同様であり、そのため安
定したイオン化は困難となる。For example, when the sample liquid sent from the liquid chromatograph 1 at a flow rate of 101 μ / min is split into the porous member 4 at a rate of 1 μ / min and into the discharge pipe 5 at a rate of 100 μ / min, the adjustment valve 6 When the flow rate fluctuates by about ± 0.5% (0.5 μ / min) due to a change in conditions such as a temperature change, the flow rate of the sample liquid passing through the porous member 4 is 1 even if the fluctuation is only 0.5% for the adjusting valve. It changes by ± 0.5μ / min, which is actually 50%. This is the same even when the amount of the sample liquid sent from the liquid chromatograph changes, and thus stable ionization becomes difficult.
本発明は上述した点に鑑みてなされたものであり、大き
なスプリット比で微量送液する場合であっても、流量変
動が極めて少なく安定した供給を行うことのできる液体
供給装置を提供することを目的としている。The present invention has been made in view of the above points, and provides a liquid supply device capable of performing stable supply with extremely small flow rate variation even when a small amount of liquid is sent at a large split ratio. Has an aim.
[問題点を解決するための手段] この目的を達成するため、本発明は、液体を圧力の高い
領域から低い領域へ運ぶ流路にスプリッタを設け、該ス
プリッタを介して取り出された液体を流路抵抗を有する
流路を介して前記圧力の低い領域へ供給するようにした
液体供給装置において、該スプリッタの余剰液排出流路
に一定圧力のガスを供給して該余剰液排出流路に一定圧
力を印加するように構成したことを特徴としている。[Means for Solving the Problems] In order to achieve this object, the present invention provides a splitter in a flow path for carrying a liquid from a region having a high pressure to a region having a low pressure, and allows the liquid taken out through the splitter to flow. In a liquid supply device adapted to supply to the low pressure region via a flow path having a channel resistance, a gas of a constant pressure is supplied to the excess liquid discharge flow path of the splitter to make the excess liquid discharge flow path constant. It is characterized in that it is configured to apply pressure.
[作用] 本発明においては、スプリッタから余剰試料液を排出す
る流路に一定圧力が与えられたガスを供給するため、流
量が変動してもスプリッタと被供給部を結ぶ流路の圧力
は一定に保たれる。従って、スプリッタから被供給部へ
送られる液体の流量を一定に保つことができる。[Operation] In the present invention, since the gas to which the constant pressure is applied is supplied from the splitter to the flow path for discharging the excess sample liquid, the pressure in the flow path connecting the splitter and the supply target is constant even if the flow rate changes. Kept in. Therefore, the flow rate of the liquid sent from the splitter to the supply target portion can be kept constant.
以下、図面を用いて本発明の一実施例を詳説する。An embodiment of the present invention will be described in detail below with reference to the drawings.
[実施例] 第1図は本発明を電子衝撃型イオン化(EI)イオン源に
適用した実施例の一例を示す概略図であり、第5図と同
一の構成要素には同一番号が付されている。第1図にお
いてフィラメント7から発生した電子は、入射口8から
イオン化室2内に入り、出射口9を介して捕集電極10へ
到達する。この電子による衝撃で生成された試料イオン
は出口11を介して取出され、スリット電極12によって加
速及び集束を受ける。13は導入管3,排出管5及び多孔性
部材4を一体的に保持する絶縁パイプ、14は絶縁パイプ
の尾部を封止するシール部材である。[Embodiment] FIG. 1 is a schematic view showing an example of an embodiment in which the present invention is applied to an electron impact ionization (EI) ion source, and the same components as those in FIG. There is. In FIG. 1, electrons generated from the filament 7 enter the ionization chamber 2 through the entrance port 8 and reach the collection electrode 10 through the exit port 9. The sample ions generated by the impact of the electrons are extracted through the outlet 11 and are accelerated and focused by the slit electrode 12. Reference numeral 13 is an insulating pipe that integrally holds the introduction pipe 3, the discharge pipe 5, and the porous member 4, and 14 is a sealing member that seals the tail portion of the insulating pipe.
15は前記排出管5に接続された送気管で、ガスボンベ16
から発生したガスを定圧バルブ17を介して排出管5内に
送っている。Reference numeral 15 is an air supply pipe connected to the discharge pipe 5, and a gas cylinder 16
The gas generated from the gas is sent into the discharge pipe 5 via the constant pressure valve 17.
上記構成において、先の説明と同様に、導入管3を介し
て101μ/分の流量で試料液が送られ、その内の1μ
/分が多孔性部材4へ、100μ/分が排出管5へと
スプリットされるものとする。一方、排出管5には送気
管16を介して例えば100cc/分程度の流量で一定圧力の空
気(窒素ガスなどでも良い)が混入され、この空気は余
剰試料液と共に弁6を介して排出される。In the above configuration, as in the above description, the sample solution is sent through the introduction tube 3 at a flow rate of 101 μ / min, and 1 μm
/ Min is split into the porous member 4, and 100 μ / min is split into the discharge pipe 5. On the other hand, the exhaust pipe 5 is mixed with air (which may be nitrogen gas or the like) having a constant pressure at a flow rate of, for example, about 100 cc / min through the air supply pipe 16, and the air is discharged together with the excess sample solution through the valve 6. It
このように排出流路に定圧のガスを存在させると、例え
ば、液体クロマトグラフの送出流量が変動した場合であ
っても、多孔性部材4の位置における管内圧力は一定に
保たれる。When a gas having a constant pressure is present in the discharge flow path as described above, for example, even when the delivery flow rate of the liquid chromatograph changes, the pipe pressure at the position of the porous member 4 is kept constant.
即ち、導入管3から排出管5及び弁6までの流路に試料
液が満たされている第5図の例では、流路内に存在させ
ることのできる試料液の容積が決まっており、このよう
な流量変動がわずかでもあると、その変動はすぐに管内
圧力の大幅な変動に結びつき、それにより多孔性部材4
を通る試料液の流量も大幅に変化してしまう。That is, in the example of FIG. 5 in which the flow path from the introduction pipe 3 to the discharge pipe 5 and the valve 6 is filled with the sample liquid, the volume of the sample liquid that can exist in the flow passage is determined. If there is such a slight flow rate fluctuation, the fluctuation immediately leads to a large fluctuation in the pipe pressure, whereby the porous member 4
The flow rate of the sample liquid that passes through will also change significantly.
ところが、排出流路に定圧のガスが試料液と共存する本
発明では、ガスの容積が容易に変化するため、流路内に
存在させることのできる試料液の容積(量)が一定では
なく幅がある。しかも、そのガスが定圧で供給されるた
め、上述のような流量変動があっても、多孔性部材4の
位置における試料液の圧力は上記ガスの圧力に関連した
一定圧力に常に保たれることになる。従って、多孔性部
材4を通過する試料液の流量を一定に保つことができ
る。However, in the present invention in which a constant-pressure gas coexists with the sample solution in the discharge channel, the volume of the gas easily changes, so that the volume (quantity) of the sample solution that can be present in the channel is not constant but varies in width. There is. Moreover, since the gas is supplied at a constant pressure, the pressure of the sample solution at the position of the porous member 4 is always maintained at a constant pressure related to the pressure of the gas even if the flow rate changes as described above. become. Therefore, the flow rate of the sample liquid passing through the porous member 4 can be kept constant.
多孔性部材4を通過する試料液の流量を調節するには、
ガスの圧力を適宜調節することにより、多孔性部材の位
置における試料液の圧力を調節すれば良いことは言うま
でもない。To adjust the flow rate of the sample liquid passing through the porous member 4,
It goes without saying that the pressure of the sample liquid at the position of the porous member may be adjusted by appropriately adjusting the pressure of the gas.
尚、イオン化室内に導入した試料液のイオン化は、化学
イオン化,一次粒子ビーム衝撃イオン化,レーザ照射イ
オン化など電子衝撃イオン化に限らず各種イオン化方法
が適用できる。The ionization of the sample liquid introduced into the ionization chamber is not limited to electron impact ionization such as chemical ionization, primary particle beam impact ionization, and laser irradiation ionization, and various ionization methods can be applied.
又、上記実施例では、スプリッタを導入管3の端部即ち
多孔性部材4の部分に設けたが、第2図に示すように排
出管5を導入管3の途中に接続してその部分をスプリッ
タとしても良い。Further, in the above-mentioned embodiment, the splitter is provided at the end of the introduction pipe 3, that is, the porous member 4, but as shown in FIG. It may be a splitter.
更に、定圧バルブ17による圧力設定範囲には大気圧以下
も含まれる。大気圧以下に設定する場合には、第3図に
示すように弁6以降の排出管を廃液溜18に導き、この廃
液溜内部を真空ポンプ19で上記定圧バルブによる設定圧
力以下に減圧するようにし、試料液及びガスの排出がス
ムーズに行われるようにする必要がある。Further, the pressure setting range of the constant pressure valve 17 includes the atmospheric pressure and below. When setting the pressure below atmospheric pressure, as shown in FIG. 3, the discharge pipe after the valve 6 is guided to the waste liquid reservoir 18, and the inside of this waste liquid reservoir is reduced by the vacuum pump 19 to the pressure equal to or lower than the pressure set by the constant pressure valve. Therefore, it is necessary to smoothly discharge the sample liquid and the gas.
更に、上記実施例ではスプリッタと流量調整弁の間の流
路に定圧のガスを混入するようにしたが、本質的にはス
プリッタからの試料液排出流路に定圧のガスを供給して
(作用させて)該流路に一定圧力を印加できれば良い。
例えば第4図に示すように、排出管16の直接排液溜18に
導き、この排液溜18の内部に送気管15を介して定圧ガス
を導入するようにしても良い。この排液溜として、例え
ばガスタンクのように蓋の上下によって内部圧力を一定
に保持する構造を採用すれば、必ずしもガスボンベ16及
び定圧バルブ17を設ける必要は無い。Further, in the above embodiment, the constant pressure gas was mixed in the flow path between the splitter and the flow rate adjusting valve, but essentially, the constant pressure gas was supplied to the sample liquid discharge flow path from the splitter (action). It is sufficient if a constant pressure can be applied to the flow path.
For example, as shown in FIG. 4, the constant pressure gas may be introduced directly into the drainage reservoir 18 of the drainage pipe 16 and introduced into the drainage reservoir 18 via the air supply pipe 15. If a structure in which the internal pressure is kept constant by the upper and lower sides of a lid, such as a gas tank, is adopted as this drainage reservoir, the gas cylinder 16 and the constant pressure valve 17 are not necessarily provided.
更に、上述した実施例では比較的大きな流路抵抗を持つ
多孔性部材を介して被供給部であるイオン源内へ試料液
を導入するようにしたが、同様に流路抵抗を持つ流路を
介して被供給部へ液体を導入する各種装置に適用できる
ことはいうまでもない。Furthermore, in the above-described embodiment, the sample solution is introduced into the ion source, which is the supply target, through the porous member having a relatively large flow resistance, but similarly, the sample liquid is introduced through the flow path having the flow resistance. It is needless to say that the present invention can be applied to various devices that introduce liquid into the supply target portion.
[効果] 以上詳述した如く、本発明によれば、スプリッタから余
剰試料液を排出する流路に一定圧力を印加するようにし
たため、大きなスプリット比で微量送液する場合であっ
ても、スプリッタから被供給部へ送られる液体の流量を
一定に保つことができる液体供給装置が実現される。[Effect] As described above in detail, according to the present invention, a constant pressure is applied to the flow path for discharging the excess sample solution from the splitter, so that even when a small amount of solution is sent at a large split ratio, the splitter is used. A liquid supply device that can maintain a constant flow rate of the liquid sent from the supply unit to the supply target unit is realized.
第1図は本発明を電子衝撃型イオン化(EI)イオン源に
適用した実施例の一例を示す概略図、第2図乃至第4図
は夫々本発明の他の実施例を説明するための概略図、第
5図は試料液を多孔性部材を通してイオン化室内へ滲み
出させるようにして導入しイオン化する方式のイオン源
の試料導入部の構造を示す概略図である。 1:液体クロマトグラフ 2:イオン化室、3:導入管 4:多孔性部材、5:排出管 6:流量調整弁、15:送気管 16:ガスボンベ、17:定圧バルブFIG. 1 is a schematic diagram showing an example of an embodiment in which the present invention is applied to an electron impact ionization (EI) ion source, and FIGS. 2 to 4 are schematic diagrams for explaining other embodiments of the present invention. FIGS. 5A and 5B are schematic diagrams showing the structure of the sample introduction part of the ion source of the type in which the sample solution is introduced into the ionization chamber through the porous member so as to be exuded and ionized. 1: Liquid chromatograph 2: Ionization chamber, 3: Introducing pipe 4: Porous member, 5: Exhaust pipe 6: Flow rate adjusting valve, 15: Air supply pipe 16: Gas cylinder, 17: Constant pressure valve
Claims (2)
流路にスプリッタを設け、該スプリッタを介して取り出
された液体を流路抵抗を有する流路を介して前記圧力の
低い領域へ供給するようにした液体供給装置において、
該スプリッタの余剰液排出流路に一定圧力のガスを供給
して該余剰液排出流路に一定圧力を印加するように構成
したことを特徴とする液体供給装置。1. A splitter is provided in a flow path for transporting a liquid from a high pressure region to a low pressure region, and liquid taken out through the splitter is supplied to the low pressure region via a flow channel having flow channel resistance. In the liquid supply device configured to
A liquid supply device, characterized in that a gas having a constant pressure is supplied to the excess liquid discharge flow path of the splitter to apply a constant pressure to the excess liquid discharge flow path.
ン源である特許請求の範囲第1項記載の液体供給装置。2. The liquid supply apparatus according to claim 1, wherein the low pressure region is an ion source of a mass spectrometer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61083605A JPH0762991B2 (en) | 1986-04-11 | 1986-04-11 | Liquid supply device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61083605A JPH0762991B2 (en) | 1986-04-11 | 1986-04-11 | Liquid supply device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62241250A JPS62241250A (en) | 1987-10-21 |
JPH0762991B2 true JPH0762991B2 (en) | 1995-07-05 |
Family
ID=13807113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61083605A Expired - Lifetime JPH0762991B2 (en) | 1986-04-11 | 1986-04-11 | Liquid supply device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0762991B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5995259U (en) * | 1982-12-17 | 1984-06-28 | 日本電子株式会社 | Liquid sample introduction device |
-
1986
- 1986-04-11 JP JP61083605A patent/JPH0762991B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62241250A (en) | 1987-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4861988A (en) | Ion spray apparatus and method | |
US4935624A (en) | Thermal-assisted electrospray interface (TAESI) for LC/MS | |
US6068749A (en) | Subatmospheric, variable pressure sample delivery chamber for electrospray ionization/mass spectrometry and other applications | |
JP3353561B2 (en) | Method and apparatus for solution mass spectrometry | |
JPS583592B2 (en) | Method and device for introducing sample into mass spectrometer | |
US5406079A (en) | Ionization device for ionizing liquid sample | |
JPH0762991B2 (en) | Liquid supply device | |
JP2001083121A (en) | Atmospheric pressure ionization mass spectrometer | |
US4794253A (en) | Ion source for mass spectrometer | |
GB2358955A (en) | Charged particle beam exposure apparatus and Method | |
JPS63266756A (en) | Ion source for mass spectrometer | |
JP6753533B2 (en) | Liquid sample introduction method and liquid sample introduction device | |
JPS6285851A (en) | Mass spectrometer and method of chemical sample | |
JP2001043826A (en) | Atmospheric chemical ionization method in mass spectrograph | |
WO2019053850A1 (en) | Liquid chromatograph | |
WO2022131061A1 (en) | Ion source and mass spectrometer equipped therewith | |
JP3353752B2 (en) | Ion source | |
JP2925395B2 (en) | Electrophoresis-mass spectrometer | |
JP2839687B2 (en) | Electrophoresis-mass spectrometer | |
JP2779051B2 (en) | Electric swimming path-mass spectrometer | |
JPS6257068B2 (en) | ||
GB2146170A (en) | Ion source for mass spectrometer | |
US20150136973A1 (en) | Pulsed ion beam source for electrospray mass spectrometry | |
JPH05299053A (en) | Liquid chromatographic mass spectrometer | |
JPH046117Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |