JPH0762407A - Production of metal powder sintered compact and its ornament - Google Patents

Production of metal powder sintered compact and its ornament

Info

Publication number
JPH0762407A
JPH0762407A JP20973193A JP20973193A JPH0762407A JP H0762407 A JPH0762407 A JP H0762407A JP 20973193 A JP20973193 A JP 20973193A JP 20973193 A JP20973193 A JP 20973193A JP H0762407 A JPH0762407 A JP H0762407A
Authority
JP
Japan
Prior art keywords
sintered
metal powder
sintering
forging
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20973193A
Other languages
Japanese (ja)
Inventor
Yutaka Wakabayashi
豊 若林
Teruya Shishido
晃哉 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP20973193A priority Critical patent/JPH0762407A/en
Publication of JPH0762407A publication Critical patent/JPH0762407A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a specular property by increasing the density of a metal powder sintered compact. CONSTITUTION:The compact body is obtained by executing injection molding or compacting to the mixture of metal powder and org. material, and then the compact body is degreased and sintered to obtain a metallic sintered compact. Then, the sintered compact is subjected to a hot forging or a cold forging to reduce pores and to increase density. When the density of the sintered compact is increased, the specular property is improved and the worth as an arnament is elevated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、金属粉末の焼結品を
得た後に熱間鍛造あるいは恒温鍛造することにより品質
の向上を図る金属粉末の焼結品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered product of metal powder whose quality is improved by hot forging or isothermal forging after obtaining a sintered product of metal powder.

【0002】[0002]

【従来の技術】従来、金属粉末の焼結品は、金属粉末と
有機物を混合した材料を射出成形して得られた成形体を
脱脂、焼結して焼結品を得る射出成形法を用いたり、金
属粉末と有機物を混合した材料を圧粉成形して得られた
成形体を焼結して焼結品を得る粉末冶金法を用いたりし
ていた。また、金属粉末をHIP処理し、その後に超塑性
鍛造により成形品を得ている例もある。
2. Description of the Related Art Conventionally, as a sintered product of metal powder, an injection molding method has been used in which a molded product obtained by injection molding a material obtained by mixing a metal powder and an organic substance is degreased and sintered to obtain a sintered product. Alternatively, a powder metallurgy method has been used in which a compact obtained by compacting a material obtained by mixing a metal powder and an organic material is sintered to obtain a sintered product. There is also an example in which a metal powder is HIP-treated and then a molded product is obtained by superplastic forging.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のような
射出成形法では金属粉末に有機物を通常40%以上混合す
るので脱脂工程でコンパウンドの軟化による形状変化
や、焼結工程における収縮によって体積で40%以上も収
縮することによる形状変化のため寸法精度が悪いものと
なってしまう。また相対密度を上げるためには焼結工程
において高温度に保持する必要があり、結晶粒径が粗大
化し強度が低くなる。また焼結品をそのまま研磨すると
空孔の存在によりきれいな鏡面が得られず、腕時計外装
品の様な装飾性を必要とするものに対しては、著しく外
観を損なってしまう。
However, in the conventional injection molding method, since 40% or more of the organic substance is usually mixed with the metal powder, the volume change due to the shape change due to the softening of the compound in the degreasing process and the shrinkage in the sintering process. The dimensional accuracy becomes poor due to the shape change caused by shrinkage of 40% or more. Further, in order to increase the relative density, it is necessary to maintain the temperature at a high temperature in the sintering process, and the crystal grain size becomes coarse and the strength becomes low. Further, if the sintered product is ground as it is, a beautiful mirror surface cannot be obtained due to the existence of pores, and the external appearance is remarkably impaired for a product such as a wristwatch exterior product which requires decorativeness.

【0004】粉末冶金法では射出成形法よりは変形の度
合が小さいがやはり焼結工程において変形したり、結晶
粒径が粗大化してしまう。また焼結品を研磨してもきれ
いな鏡面が得られない。金属粉末をHIP処理により焼
結するには、高価な設備が必要となりコストが高くなっ
てしまう。
The powder metallurgy method has a smaller degree of deformation than the injection molding method, but it also deforms in the sintering process and the crystal grain size becomes coarse. Even if the sintered product is polished, a clean mirror surface cannot be obtained. In order to sinter the metal powder by HIP treatment, expensive equipment is required and the cost becomes high.

【0005】以上のように金属粉末の焼結品には、強度
や鏡面性の面やコストの面に課題が存在する。また、チ
タンやチタン合金は高価なため、圧延材からプリフォー
ム材を抜きだして鍛造したり、圧延材から切削したりし
て製品を成形した場合には、材料歩留まりが非常に悪
く、材料費が高くなってしまうという課題が存在する。
As described above, the sintered product of metal powder has problems in terms of strength, specularity and cost. In addition, since titanium and titanium alloys are expensive, when the preform material is extracted from the rolled material and forged, or when the product is formed by cutting from the rolled material, the material yield is extremely low and the material cost is low. There is a problem that the cost becomes higher.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、この発明は金属粉末と有機物を混合した材料を射出
成形あるいは加圧成形して得られた成形体を脱脂,焼結
して焼結体を得た後に、あるいは金属粉末と有機物を混
合した材料を圧粉成形して得られた成形体を焼結して焼
結体を得た後に、熱間鍛造や恒温鍛造によりさらに相対
密度を向上し空孔を減少させることにより、強度や鏡面
性の向上を図ると共に、熱間鍛造や恒温鍛造中に寸法精
度の向上を図るようにした。
In order to solve the above-mentioned problems, the present invention is to degrease, sinter and fire a molded body obtained by injection molding or pressure molding of a material in which a metal powder and an organic material are mixed. After obtaining a bonded body, or after compacting a material obtained by compacting a material in which a metal powder and an organic material are mixed to obtain a sintered body, the relative density is further increased by hot forging or isothermal forging. To improve strength and specularity, and to improve dimensional accuracy during hot forging and isothermal forging.

【0007】焼結温度を低くすれば、焼結密度が低い状
態でも次の鍛造工程により空孔が減少し相対密度が上昇
し、また結晶粒径の粗大化が防止できるので、強度が高
く鏡面性が良い焼結品を得ることができる。特に材料が
高価なチタンやチタン合金においては、粉末の焼結によ
り材料歩留まり良く、ニア・ネット・シェープに成形で
きるので大幅な材料費のコスト低減になる。
If the sintering temperature is lowered, the voids are reduced and the relative density is increased by the next forging step even when the sintering density is low, and the coarsening of the crystal grain size can be prevented, so that the strength is high and the mirror surface is high. A sintered product with good properties can be obtained. Particularly in the case of titanium or titanium alloy, which is expensive as a material, the material yield can be improved by sintering the powder, and the material can be molded into a near net shape, so that the material cost can be significantly reduced.

【0008】[0008]

【作用】上記のような金属粉末の焼結品の製造方法にお
いては、金属粉末と有機物を混合した材料を射出成形や
圧粉成形により成形体を得、この成形体を脱脂,焼結中
に有機物の除去と金属粉末同志の拡散により焼結を得
る。さらに、この焼結体に熱間鍛造や恒温鍛造を行うこ
とにより空孔が減少し相対密度が上昇する。
[Operation] In the method for producing a sintered product of metal powder as described above, a material obtained by mixing metal powder and an organic material is injection-molded or powder-molded to obtain a molded body, which is degreased and sintered during sintering. Sintering is obtained by removing organic substances and diffusing metal powders. Further, by performing hot forging or isothermal forging on this sintered body, the number of voids is reduced and the relative density is increased.

【0009】[0009]

【実施例】以下に、この発明の実施例について説明す
る。 [実施例1]図1は本発明の射出成形による実施の工程
図である。325メッシュ以下の純チタン粉末と有機物
(ワックス,ポリスチレン系,アクリル系樹脂を混合)を重
量比で84:16の割合で混合し、160℃で射出成形
し成形体を得た。この成形体を加熱することにより有機
物の95%を除去し、10−4torr〜10−5to
rrの真空中で1000,1100,1200,130
0℃で2h保持した。さらに、各焼結温度での焼結品を
700℃に加熱し同温度の700℃に加熱された金型内
で10%,20%の圧縮率を0.1/s以下の歪速度で
与え恒温鍛造を行った。また、各焼結温度での焼結品を
900℃に加熱し400℃に加熱した金型内で10%,
20%の圧縮率を1/s以上の歪速度で与え熱間鍛造を
行った。表1に焼結のままの焼結品と焼結後に恒温鍛
造,熱間鍛造した焼結品を研磨した後の鏡面性の結果を
示す。
Embodiments of the present invention will be described below. [Embodiment 1] FIG. 1 is a process drawing of an embodiment of the present invention by injection molding. Pure titanium powder of 325 mesh or less and organic matter
(Wax, polystyrene resin, acrylic resin were mixed) in a weight ratio of 84:16, and injection molding was performed at 160 ° C. to obtain a molded product. By heating this molded body, 95% of organic substances are removed, and 10-4 torr to 10-5 to
1000, 1100, 1200, 130 in rr vacuum
Hold at 0 ° C. for 2 h. Further, the sintered product at each sintering temperature is heated to 700 ° C., and a compressibility of 10% and 20% is applied at a strain rate of 0.1 / s or less in a mold heated to 700 ° C. of the same temperature. Constant temperature forging was performed. In addition, the sintered product at each sintering temperature was heated to 900 ° C. and heated to 400 ° C. in the mold to obtain 10%,
Hot forging was performed by applying a compressibility of 20% at a strain rate of 1 / s or more. Table 1 shows the results of specularity after polishing the as-sintered sintered product and the isothermally forged and hot forged sintered product after sintering.

【0010】[0010]

【表1】 [Table 1]

【0011】焼結上がりの焼結品は、1000,110
0,1200℃での焼結では空孔が多く鏡面が得られな
かったが、1300℃での焼結では空孔量が少なく比較
的良好な鏡面が得られた。焼結後に恒温鍛造や熱間鍛造
を行った焼結品は1000℃での焼結を除いて空孔が減
少し、比較的良好な鏡面が得られた。ただ、焼結後に熱
間鍛造により20%の圧縮率を加えた場合は、割れが発
生してしまった。しかし、比較的鏡面性が良い物におい
ても、純チタンの場合は硬さがビッカース硬度でHv1
50〜200と低いために、研磨により表面にうねりが
生じ完全な鏡面を得ることができなかった。
The sintered products after sintering are 1000 and 110.
Sintering at 0,1200 ° C. had many pores and no mirror surface was obtained, but sintering at 1300 ° C. gave a relatively good mirror surface with few voids. The sintered product which was subjected to isothermal forging or hot forging after sintering had a reduced number of pores except for the sintering at 1000 ° C., and a relatively good mirror surface was obtained. However, when a compressibility of 20% was applied by hot forging after sintering, cracking occurred. However, even if the material has a relatively good mirror surface, the hardness is Vvs hardness Hv1 in the case of pure titanium.
Since it was as low as 50 to 200, undulation occurred on the surface due to polishing and a perfect mirror surface could not be obtained.

【0012】[実施例2]図2は本発明の圧粉成形によ
る実施の工程図である。100メッシュ以下の純チタン
粉末とステアリン酸を重量比で99:1の割合で混合
し、プレス機により30kgf/mm2の圧力で圧粉し
成形体を得た。この成形体を10−4torr〜10−
5torrの真空中で1000,1100,1200,
1300℃で2h保持した。さらに、各焼結温度での焼
結品を700℃に加熱し同温度の700℃に加熱された
金型内で10%,20%の圧縮率を0.1/s以下の歪
速度で与え恒温鍛造を行った。また、各焼結温度での焼
結品を900℃に加熱し400℃に加熱した金型内で1
0%,20%の圧縮率を1/s以上の歪速度で与え熱間
鍛造を行った。表2に焼結のままの焼結品と焼結後に恒
温鍛造,熱間鍛造した焼結品を研磨した後の鏡面性の結
果を示す。
[Embodiment 2] FIG. 2 is a process drawing of the powder compacting of the present invention. Pure titanium powder of 100 mesh or less and stearic acid were mixed at a weight ratio of 99: 1, and pressed by a press at a pressure of 30 kgf / mm2 to obtain a molded body. This molded body is 10-4 torr to 10-
1000, 1100, 1200 in a vacuum of 5 torr,
It was held at 1300 ° C for 2 hours. Further, the sintered product at each sintering temperature is heated to 700 ° C., and a compressibility of 10% and 20% is applied at a strain rate of 0.1 / s or less in a mold heated to 700 ° C. of the same temperature. Constant temperature forging was performed. In addition, the sintered product at each sintering temperature was heated to 900 ° C and then heated to 400 ° C in the mold.
Hot forging was performed by applying a compressibility of 0% and 20% at a strain rate of 1 / s or more. Table 2 shows the results of specularity after polishing the as-sintered sintered product and the isothermally forged and hot forged sintered products after sintering.

【0013】[0013]

【表2】 [Table 2]

【0014】焼結上がりの焼結品は、1000,110
0,1200℃での焼結では空孔が多く鏡面が得られな
かったが、1300℃の焼結品は空孔が少なく比較的良
好な鏡面が得られた。焼結後に恒温鍛造や熱間鍛造を行
った焼結品は焼結温度が1000℃のものにおいても、
比較的良好な鏡面が得られた。射出成形の場合は100
0℃の焼結においてはかなりの空孔が存在し、その後の
鍛造においても空孔が多く残り鏡面が得られなかった
が、圧粉成形したものにおいては1000℃の焼結でも
比較的空孔が少なく次の鍛造で空孔が減少し、鏡面が得
られた。ただ、射出成形と同様に、焼結後に熱間鍛造に
より20%の圧縮率を加えた場合は、割れが発生してし
まった。しかし、比較的鏡面性が良い物においても、純
チタンの場合は硬さがビッカース硬度でHv150〜2
00と低いために、研磨により表面にうねりが生じ完全
な鏡面を得ることができなかった。
The sintered products after sintering are 1000 and 110.
The sintering at 0,1200 ° C had many pores and no mirror surface was obtained, but the sintered product at 1300 ° C had few pores and a relatively good mirror surface was obtained. Sintered products that have undergone isothermal forging or hot forging after sintering, even if the sintering temperature is 1000 ° C,
A relatively good mirror surface was obtained. 100 for injection molding
There were considerable holes in 0 ° C sintering, and many holes remained in the subsequent forging, and no mirror surface was obtained. However, in the compacted product, there were relatively holes even at 1000 ° C sintering. In the next forging, the number of voids was reduced and a mirror surface was obtained. However, similarly to the injection molding, when a compressibility of 20% was applied by hot forging after sintering, cracking occurred. However, even in the case of a material having a relatively good mirror surface, in the case of pure titanium, the hardness is Hv150-2 in Vickers hardness.
Since it was as low as 00, undulation occurred on the surface due to polishing, and a perfect mirror surface could not be obtained.

【0015】[実施例3]次に、325メッシュ以下の
純チタン粉末と325メッシュ以下の60%Al−40
%V合金粉末を9:1の割合で混合した混合粉末と有機
物(ワックス,ポリスチレン系,アクリル系樹脂を混
合)を重量比で84:16の割合で混合し、160℃で
射出成形し成形体を得、実施例1と同様の条件で脱脂,
焼結を行った。さらに、各焼結温度での焼結品を850
℃に加熱し、同温度の850℃に加熱された金型内で1
0%,20%の圧縮率を0.1/s以下の歪速度で与え
恒温鍛造を行った。また、各焼結温度での焼結品を90
0℃に加熱し400℃に加熱した金型内で10%,20
%の圧縮率を1/s以上の歪速度で与え熱間鍛造を行っ
た。表3に焼結のままの焼結品と焼結後に恒温鍛造,熱
間鍛造した焼結品を研磨した後の鏡面性の結果を示す。
[Embodiment 3] Next, pure titanium powder of 325 mesh or less and 60% Al-40 of 325 mesh or less.
% V alloy powder mixed at a ratio of 9: 1 and an organic substance (mixed with wax, polystyrene, acrylic resin) at a weight ratio of 84:16 and injection molded at 160 ° C. And degreasing under the same conditions as in Example 1,
Sintering was performed. Furthermore, the sintered product at each sintering temperature is 850
1 ℃ in the mold heated to 850 ℃ of the same temperature
Isothermal forging was performed by applying a compressibility of 0% and 20% at a strain rate of 0.1 / s or less. In addition, the sintered product at each sintering temperature is 90
10% in a mold heated to 0 ℃ and heated to 400 ℃, 20
% For the strain rate of 1 / s or more, and hot forging was performed. Table 3 shows the results of specularity after polishing the as-sintered sintered product and the isothermally forged and hot forged sintered product after sintering.

【0016】[0016]

【表3】 [Table 3]

【0017】焼結上がりの焼結品は、1000,110
0,1200℃での焼結では空孔が多く鏡面が得られな
かったが、1300℃での焼結では空孔量が少なく良好
な鏡面が得られた。焼結後に恒温鍛造や熱間鍛造を行っ
た焼結品は1000℃での焼結を除いて空孔が減少し、
良好な鏡面が得られた。ただ、焼結後に熱間鍛造により
20%の圧縮率を加えた場合は、割れが発生してしまっ
た。純チタンの場合と違い、本実施例では焼結後はTi
−6%Al−4%V合金となるので、硬さがHv350
と硬く研磨により良好な鏡面が得られた。
The sintered products after sintering are 1000 and 110.
Sintering at 0,1200 ° C. resulted in many pores and no mirror surface was obtained, but sintering at 1300 ° C. gave a good mirror surface with few voids. Sintered products that have undergone isothermal forging or hot forging after sintering have reduced pores except for sintering at 1000 ° C.
A good mirror surface was obtained. However, when a compressibility of 20% was applied by hot forging after sintering, cracking occurred. Unlike the case of pure titanium, Ti
-6% Al-4% V alloy, so the hardness is Hv350
And it was hard and a good mirror surface was obtained by polishing.

【0018】[実施例4]100メッシュ以下の純チタ
ン粉末に60%Al−40%V合金粉末を混合した粉末
とステアリン酸を重量比で99:1の割合で混合し、プ
レス機により30kgf/mm2の圧力で圧粉し成形体
を得た。この成形体を10−4torr〜10−5to
rrの真空中で1000,1100,1200,130
0℃で2h保持した。さらに、各焼結温度での焼結品を
850℃に加熱し,同温度の850℃に加熱された金型
内で10%,20%の圧縮率を0.1/s以下の歪速度
で与え恒温鍛造を行った。また、各焼結温度での焼結品
を900℃に加熱し400℃に加熱した金型内で10
%,20%の圧縮率を1/s以上の歪速度で与え熱間鍛
造を行った。表2に焼結のままの焼結品と焼結後に恒温
鍛造,熱間鍛造した焼結品を研磨した後の鏡面性の結果
を示す。
[Example 4] Pure titanium powder of 100 mesh or less and 60% Al-40% V alloy powder were mixed with stearic acid at a weight ratio of 99: 1, and 30 kgf / It was pressed at a pressure of mm2 to obtain a molded body. This molded body is 10-4 torr to 10-5 to
1000, 1100, 1200, 130 in rr vacuum
Hold at 0 ° C. for 2 h. Furthermore, the sintered product at each sintering temperature is heated to 850 ° C., and the compressibility of 10% and 20% is set at a strain rate of 0.1 / s or less in the mold heated to the same temperature of 850 ° C. The constant temperature forging was performed. In addition, the sintered product at each sintering temperature was heated to 900 ° C and then heated to 400 ° C in a mold 10
% And 20% compressibility was applied at a strain rate of 1 / s or more, and hot forging was performed. Table 2 shows the results of specularity after polishing the as-sintered sintered product and the isothermally forged and hot forged sintered products after sintering.

【0019】[0019]

【表4】 [Table 4]

【0020】焼結上がりの焼結品は、1000,110
0,1200℃での焼結では空孔が多く鏡面が得られな
かったが、1300℃の焼結品は空孔が少なく良好な鏡
面が得られた。焼結後に恒温鍛造や熱間鍛造を行った焼
結品は焼結温度が1000℃のものにおいても、良好な
鏡面が得られた。射出成形の場合は1000℃の焼結に
おいてはかなりの空孔が存在し、その後の鍛造において
も空孔が多く残り鏡面が得られなかったが、圧粉成形し
たものにおいては1000℃の焼結でも空孔が少なく次
の鍛造で空孔が減少し、良好な鏡面が得られた。ただ、
射出成形と同様に、焼結後に熱間鍛造により20%の圧
縮率を加えた場合は、割れが発生してしまった。純チタ
ンの場合と違い、本実施例では焼結後はTi−6%Al
−4%V合金となるので、空孔が少ないものは硬さがH
v350と硬く研磨により良好な鏡面が得られた。
The sintered products after sintering are 1000 and 110.
Sintering at 0,1200 ° C had many pores and no mirror surface was obtained, but the sintered product at 1300 ° C had few pores and a good mirror surface was obtained. Sintered products that were subjected to isothermal forging or hot forging after sintering had good mirror surfaces even when the sintering temperature was 1000 ° C. In the case of injection molding, there were considerable holes in the sintering at 1000 ° C, and in the subsequent forging there were many holes and no mirror surface was obtained, but in the case of compacting, sintering at 1000 ° C However, there were few holes and the number of holes decreased in the next forging, and a good mirror surface was obtained. However,
Similar to injection molding, when a compression ratio of 20% was applied by hot forging after sintering, cracking occurred. Unlike the case of pure titanium, Ti-6% Al after sintering in this example.
Since it is a -4% V alloy, hardness is H for those with few holes.
V350 was hard and a good mirror surface was obtained by polishing.

【0021】[実施例5]100メッシュ以下の純チタ
ン粉末に重量で0.5,1.8,4%の10μm以下の
鉄粉末を混合し3種類の混合粉を作製し、各々プレス機
により30kgf/mm2の圧力で圧粉し成形体を得
た。この成形体を10−4torr〜10−5torr
の真空中で1300℃で2h保持した。さらに、焼結品
を650〜750℃に加熱し,同温度の650〜750
℃に加熱された金型内で20%の加工率を0.1/s以
下の歪速度で与え恒温鍛造を行い腕時計を作製した。図
3に本発明により作製された腕時計を示す。
[Embodiment 5] Pure titanium powder of 100 mesh or less was mixed with 0.5, 1.8, and 4% by weight of iron powder of 10 μm or less to prepare three kinds of mixed powders. It was pressed at a pressure of 30 kgf / mm2 to obtain a molded body. This molded body is 10-4 torr to 10-5 torr
In vacuum at 1300 ° C. for 2 h. Furthermore, the sintered product is heated to 650 to 750 ° C., and 650 to 750 at the same temperature.
A wristwatch was produced by performing constant temperature forging by giving a working rate of 20% at a strain rate of 0.1 / s or less in a mold heated to ℃. FIG. 3 shows a wristwatch made according to the present invention.

【0022】以上説明したように、金属粉末と有機物を
混合し、射出成形あるいは圧粉成形した成形物を、脱
脂,焼結後に恒温鍛造あるいは熱間鍛造することにより
表面層の空孔が減少し、鏡面性を向上させることが可能
となる。また、焼結後に鍛造を行うので寸法精度は焼結
品よりも向上する。このことは、実施例以外のチタン合
金,ステンレス鋼等の金属粉末においても同様のことが
言える。
As described above, the voids in the surface layer are reduced by performing constant temperature forging or hot forging after degreasing and sintering a molded product obtained by mixing metal powder and an organic substance and injection molding or compacting. Therefore, it becomes possible to improve specularity. Further, since the forging is performed after the sintering, the dimensional accuracy is improved as compared with the sintered product. The same can be said for metal powders such as titanium alloys and stainless steels other than the examples.

【0023】[0023]

【発明の効果】本発明は以上説明したように、金属の粉
末冶金後に恒温鍛造あるいは熱間鍛造を行うので、焼結
体の表面層がち密になり、良好な鏡面状態を得ることが
できる。また、鍛造することにより寸法精度を焼結体よ
りも向上する。
As described above, according to the present invention, since isothermal forging or hot forging is performed after powder metallurgy of metal, the surface layer of the sintered body becomes dense and a good mirror surface state can be obtained. Further, the forging improves the dimensional accuracy as compared with the sintered body.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の射出成形と鍛造を組み合わせた工程を
示した説明図である。
FIG. 1 is an explanatory view showing a process of combining injection molding and forging according to the present invention.

【図2】本発明の圧粉成形と鍛造を組み合わせた工程を
示した説明図である。
FIG. 2 is an explanatory view showing a process of combining the powder compacting and forging of the present invention.

【図3】本発明により作製された時計用外装部品を備え
た腕時計を示す図である。
FIG. 3 is a view showing a wristwatch provided with a timepiece exterior component made according to the present invention.

【符号の説明】[Explanation of symbols]

1 胴 2 バンド 3 ベゼル 4リューズ 1 Body 2 Band 3 Bezel 4 Crown

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属粉末と有機物を混合した材料を射出
成形あるいは加圧成形して得られた成形体を、脱脂,焼
結して焼結体を得た後に、あるいは金属粉末と有機物を
混合した材料を圧粉成形て得られた成形体を、焼結して
焼結体を得た後に、該焼結体を熱間鍛造あるいは恒温鍛
造することを特徴とする金属粉末焼結品の製造方法。
1. A molded body obtained by injection molding or pressure molding of a material in which a metal powder and an organic material are mixed is degreased and sintered to obtain a sintered body, or the metal powder and the organic material are mixed. Manufacture of a metal powder sintered product, characterized in that a green body obtained by compacting the formed material is sintered to obtain a sintered body, and then the sintered body is subjected to hot forging or isothermal forging. Method.
【請求項2】 前記金属粉末としてチタン粉末あるいは
チタン粉末に他金属粉を混合した混合粉を用いることを
特徴とした請求項1に記載の金属粉末焼結品の製造方
法。
2. The method for producing a metal powder sintered product according to claim 1, wherein titanium powder or a mixed powder obtained by mixing titanium powder with another metal powder is used as the metal powder.
【請求項3】 請求項1あるいは請求項2により製造さ
れた金属粉末焼結品からなる外装品等の装飾品。
3. A decorative article such as an exterior article made of the metal powder sintered product produced according to claim 1 or 2.
JP20973193A 1993-08-24 1993-08-24 Production of metal powder sintered compact and its ornament Pending JPH0762407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20973193A JPH0762407A (en) 1993-08-24 1993-08-24 Production of metal powder sintered compact and its ornament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20973193A JPH0762407A (en) 1993-08-24 1993-08-24 Production of metal powder sintered compact and its ornament

Publications (1)

Publication Number Publication Date
JPH0762407A true JPH0762407A (en) 1995-03-07

Family

ID=16577708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20973193A Pending JPH0762407A (en) 1993-08-24 1993-08-24 Production of metal powder sintered compact and its ornament

Country Status (1)

Country Link
JP (1) JPH0762407A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000135543A (en) * 1998-10-29 2000-05-16 Toyota Motor Corp Titanium system metal forging method, engine valve manufacturing method and engine valve
KR100399497B1 (en) * 1999-10-20 2003-09-26 세이코 엡슨 가부시키가이샤 Method of producing watchband parts
CN109093118A (en) * 2018-07-11 2018-12-28 林耀军 The equipment of injection forming quickly manufacturing mould and the method for manufacturing mold

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000135543A (en) * 1998-10-29 2000-05-16 Toyota Motor Corp Titanium system metal forging method, engine valve manufacturing method and engine valve
US6599467B1 (en) 1998-10-29 2003-07-29 Toyota Jidosha Kabushiki Kaisha Process for forging titanium-based material, process for producing engine valve, and engine valve
KR100399497B1 (en) * 1999-10-20 2003-09-26 세이코 엡슨 가부시키가이샤 Method of producing watchband parts
CN109093118A (en) * 2018-07-11 2018-12-28 林耀军 The equipment of injection forming quickly manufacturing mould and the method for manufacturing mold

Similar Documents

Publication Publication Date Title
US4591482A (en) Pressure assisted sinter process
JPH0762407A (en) Production of metal powder sintered compact and its ornament
US4534808A (en) Method for refining microstructures of prealloyed powder metallurgy titanium articles
US6306196B1 (en) Sintered Ti-system material product derived from injection molding of powder material and producing method thereof
CN114702315A (en) Hot-bending ceramic and preparation method thereof
KR101874608B1 (en) A method of producing a connecting rod
JPS624804A (en) Production of titanium alloy by element powder mixing method
DE2356921A1 (en) METHOD FOR MANUFACTURING SILICON NITRIDE CERAMICS
JPH032335A (en) Manufacture of titanium powder or titanium alloy powder sintered product
JPH0692605B2 (en) Method for producing powder sintered product of titanium alloy
US4781886A (en) Method for producing refractory metal parts of high hardness
CN115074600A (en) Method for improving sintering compactness of powder metallurgy iron-based alloy by utilizing phase change volume effect
JP2716886B2 (en) Method for producing Ti-Al intermetallic compound
JP2549019B2 (en) Manufacturing method of molded body
JPH11315306A (en) Manufacture of sintered body
JPH03240940A (en) Screw for plastic molding machine and its manufacture
JP3007198B2 (en) Method for producing composite powder comprising titanium powder and mother alloy powder
JPS6223909A (en) Production of deformed powder
JP2928821B2 (en) Method for producing high-density chromium-based cermet sintered body
CN110834093A (en) Energy-saving powder metallurgy process
JP2819844B2 (en) Manufacturing method of aluminum alloy member
RU2118584C1 (en) Method for making powder articles
JPH0257620A (en) Method for sintering metal powder
JPH02311376A (en) Production of sintered material by hot isotropic pressurizing treatment
JPS5916907A (en) Manufacture of ornamental alloy