JPH0761842B2 - Fuel reformer for fuel cell power generation system - Google Patents

Fuel reformer for fuel cell power generation system

Info

Publication number
JPH0761842B2
JPH0761842B2 JP63281577A JP28157788A JPH0761842B2 JP H0761842 B2 JPH0761842 B2 JP H0761842B2 JP 63281577 A JP63281577 A JP 63281577A JP 28157788 A JP28157788 A JP 28157788A JP H0761842 B2 JPH0761842 B2 JP H0761842B2
Authority
JP
Japan
Prior art keywords
fuel
reforming
fuel cell
gas
furnace chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63281577A
Other languages
Japanese (ja)
Other versions
JPH02129002A (en
Inventor
真鶴 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63281577A priority Critical patent/JPH0761842B2/en
Publication of JPH02129002A publication Critical patent/JPH02129002A/en
Publication of JPH0761842B2 publication Critical patent/JPH0761842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料電池発電システムに組み込まれ、燃料電
池に供給する水素に富む改質ガスを生成する際、改質原
料を加熱する熱媒体を燃焼により供給するバーナを備え
る燃料改質装置に関する。
The present invention relates to a heating medium that is incorporated in a fuel cell power generation system and heats a reforming raw material when generating a hydrogen-rich reformed gas to be supplied to a fuel cell. The present invention relates to a fuel reformer equipped with a burner for supplying fuel by combustion.

〔従来の技術〕[Conventional technology]

燃料電池発電システムは燃料電池と燃料改質装置とが組
み込まれて構成され、燃料改質装置は改質原料を水素に
富むガスを改質してなる改質ガスを生成し、この改質ガ
スを燃料として燃料電池に供給している。燃料電池は供
給される改質ガスと酸化剤ガスとしての空気とによる電
池反応により発電する。この際電池反応に寄与しない水
素を含む燃料ガスは燃料電池から排出される。この排燃
料ガスは燃料改質装置に導かれ、供給される燃焼空気に
より燃焼し、燃焼により生じる火炎や燃焼ガスにより改
質触媒が充填された改質管を加熱し、改質管を通流する
改質原料を水素に富むガスに改質する。なお生成される
改質ガス量と排出される排燃料ガス量は燃料電池の負荷
量に対応して増減する。
A fuel cell power generation system is configured by incorporating a fuel cell and a fuel reformer, and the fuel reformer produces a reformed gas by reforming a hydrogen-rich gas from a reforming raw material, and the reformed gas is generated. Is supplied to the fuel cell as fuel. The fuel cell generates electricity by a cell reaction between the supplied reformed gas and air as an oxidant gas. At this time, the fuel gas containing hydrogen that does not contribute to the cell reaction is discharged from the fuel cell. This exhaust fuel gas is guided to the fuel reformer and burned by the supplied combustion air, and the flame and combustion gas generated by combustion heat the reforming tube filled with the reforming catalyst and flow through the reforming tube. The reforming raw material is reformed into a hydrogen-rich gas. The amount of reformed gas generated and the amount of exhausted fuel gas discharged increase or decrease according to the load amount of the fuel cell.

このような燃料改質装置として従来第3図に示すものが
知られている。図において改質管2は二重管構造であ
り、仕切円筒3の内外に設けられた内管4と外管5とが
下端部で半アニユラス状の底板6で接続されて構成され
ている。なお仕切円筒3は底板6から離して設けられて
いる。改質管2は上半部と下半部に分けられ、下半部に
は改質触媒7が充填され、内管4と仕切円筒3との間お
よび仕切円筒3と外管5との間はそれぞれ内触媒層8と
外触媒層9とを形成し、内触媒層8と外触媒層9とは下
端で接続されて触媒層11を形成している。また改質管2
の上半部の外管5と仕切円筒3との間は改質原料が触媒
層11に流入する入口室12を、仕切円筒3と内管4との間
は触媒層11から流出する改質ガスの出口室13を形成して
いる。
As such a fuel reformer, the one shown in FIG. 3 is conventionally known. In the figure, the reforming pipe 2 has a double pipe structure, and is constituted by connecting an inner pipe 4 and an outer pipe 5 provided inside and outside the partition cylinder 3 at a lower end portion thereof with a semi-annular bottom plate 6. The partition cylinder 3 is provided apart from the bottom plate 6. The reforming pipe 2 is divided into an upper half portion and a lower half portion, and the lower half portion is filled with the reforming catalyst 7, and is provided between the inner pipe 4 and the partition cylinder 3 and between the partition cylinder 3 and the outer pipe 5. Form an inner catalyst layer 8 and an outer catalyst layer 9, respectively, and the inner catalyst layer 8 and the outer catalyst layer 9 are connected at their lower ends to form a catalyst layer 11. Reforming tube 2
Between the outer tube 5 and the partition cylinder 3 in the upper half part of the reforming material, an inlet chamber 12 through which the reforming raw material flows into the catalyst layer 11 and between the partition cylinder 3 and the inner tube 4 flows out from the catalyst layer 11 A gas outlet chamber 13 is formed.

炉容器15は改質管2の下半部を囲んで設けられている。
バーナ16は炉容器15の上部中央に設けられ、排燃料ガス
を噴出するノズル17を備えた排燃料ガス供給路18と、燃
焼空気を噴出するノズル19を備えた燃焼空気供給路20と
を備えている。
The furnace container 15 is provided so as to surround the lower half of the reforming tube 2.
The burner 16 is provided at the center of the upper portion of the furnace vessel 15, and is provided with an exhaust fuel gas supply passage 18 having a nozzle 17 for ejecting exhaust fuel gas, and a combustion air supply passage 20 having a nozzle 19 for ejecting combustion air. ing.

改質管2の内管4の内側部は燃焼室22を、また改質管2
と炉容器15との間は加熱室23を形成し、加熱室23の上部
に燃焼排ガスの出口が設けられている。
The inner portion of the inner pipe 4 of the reforming pipe 2 is the combustion chamber 22, and the reforming pipe 2
A heating chamber 23 is formed between the heating chamber 23 and the furnace container 15, and a combustion exhaust gas outlet is provided at an upper portion of the heating chamber 23.

このような構成により燃料電池から排出される燃料電池
の負荷量に対応する量の残存水素を含む排燃料ガスは燃
料供給路18を経てノズル17から、一方燃焼空気は燃焼空
気供給路20を経てノズル19から噴出し、排燃料ガスは燃
焼空気と混合して燃焼し、燃焼室22で火炎と燃焼ガスが
形成され、燃焼ガスは燃焼室22から加熱室23に流れ、上
部の燃焼排ガス出口から外部に排出される。
With such a configuration, the exhaust fuel gas containing the amount of residual hydrogen corresponding to the load amount of the fuel cell discharged from the fuel cell is passed through the fuel supply passage 18 and the nozzle 17, while the combustion air is passed through the combustion air supply passage 20. Ejected from the nozzle 19, the exhausted fuel gas is mixed with combustion air and burned, a flame and combustion gas are formed in the combustion chamber 22, the combustion gas flows from the combustion chamber 22 to the heating chamber 23, and from the upper combustion exhaust gas outlet. It is discharged to the outside.

一方、燃料電池の負荷量に対応する量の改質原料、例え
ば天然ガスやナフサ等は水蒸気とともに入口室12に流入
した後触媒層11に流入し、外触媒層9と内触媒層8を通
流する。そしてこの間バーナ16での燃焼による火炎や燃
焼ガスにより加熱されて触媒層11を通流する改質原料は
水素に富むガスに改質され、この改質ガスは触媒層11か
ら出口室13に流入した後燃料電池に供給される。
On the other hand, an amount of reforming raw material corresponding to the load of the fuel cell, such as natural gas or naphtha, flows into the inlet chamber 12 together with the steam and then into the catalyst layer 11, and passes through the outer catalyst layer 9 and the inner catalyst layer 8. Shed. During this time, the reforming raw material that is heated by the flame or combustion gas due to combustion in the burner 16 and flows through the catalyst layer 11 is reformed into a hydrogen-rich gas, and this reformed gas flows from the catalyst layer 11 into the outlet chamber 13. After that, it is supplied to the fuel cell.

ところで、バーナ16で排燃料ガスを燃焼するための燃焼
空気量は排燃料ガス量から定め、かつ触媒層11の代表温
度または改質管表面温度が適切な温度になるように空燃
比1.05〜2.5の範囲で調整して触媒層の温度を制御して
いる。
By the way, the combustion air amount for burning the exhaust fuel gas in the burner 16 is determined from the exhaust fuel gas amount, and the air-fuel ratio 1.05 to 2.5 so that the representative temperature of the catalyst layer 11 or the reforming pipe surface temperature becomes an appropriate temperature. To control the temperature of the catalyst layer.

上記のような空燃比でバーナ16で排燃料ガスを燃焼して
改質管2を加熱した時の改質管表面温度は第4図に示す
温度分布を有している。第4図において横軸は改質原料
の流れ方向の触媒層位置を、縦軸は改質管表面温度をと
って示してあり、25は燃料改質装置に多量の改質原料が
流れる高負荷時、26は小量の改質原料が流れる低負荷時
の排燃料ガスの燃焼による改質原料の流れ方向の触媒層
位置の改質管表面温度の温度分布である。図から低負荷
時の温度分布26は高負荷時の温度分布25に比べて燃焼室
側にある触媒層出口側の温度が高いことが理解される。
これは負荷が低い時には、触媒層における吸熱反応の吸
熱量が小さい、したがって伝熱量に比べて伝熱面積が大
きく、このため触媒層出口部付近の改質管表面温度が上
昇するためである。
The reforming tube surface temperature when the exhaust fuel gas is burned by the burner 16 to heat the reforming tube 2 with the air-fuel ratio as described above has the temperature distribution shown in FIG. In Fig. 4, the horizontal axis represents the catalyst layer position in the flow direction of the reforming raw material, and the vertical axis represents the reforming pipe surface temperature. 25 is a high load in which a large amount of reforming raw material flows into the fuel reformer. At this time, 26 is the temperature distribution of the reforming tube surface temperature at the catalyst layer position in the flow direction of the reforming raw material due to the combustion of the exhaust fuel gas under a low load in which a small amount of the reforming raw material flows. From the figure, it is understood that the temperature distribution 26 at low load has a higher temperature on the catalyst layer outlet side on the combustion chamber side than the temperature distribution 25 at high load.
This is because when the load is low, the endothermic amount of the endothermic reaction in the catalyst layer is small, and therefore the heat transfer area is larger than the heat transfer amount, and therefore the reforming tube surface temperature near the catalyst layer outlet portion rises.

ところで、改質管2はHK−40やインコネル800等の超耐
熱鋼で製造されているが、これらの材料でも900℃以上
の温度では寿命の低下が著しい。このため空燃比を大き
くとって燃焼温度を下げることにより改質管表面温度を
下げるように制御されている。
By the way, the reforming tube 2 is made of super heat resistant steel such as HK-40 and Inconel 800, but even with these materials, the service life is remarkably reduced at a temperature of 900 ° C. or higher. Therefore, the reforming pipe surface temperature is controlled to be lowered by lowering the combustion temperature by increasing the air-fuel ratio.

一方、負荷が大きい時には、触媒層における吸熱反応の
吸熱量も大きくなる。したがって伝熱面積も大きくとる
必要がある。しかし設計時には特にオンサイト用という
ことを考慮して燃料改質装置をコンパクトにするため伝
熱面積は極力小さく設計される。このため伝熱量を確保
するためには燃焼温度を高くする必要があり、したがっ
て空燃比を小さくとって燃焼温度が高くなるようにして
いる。
On the other hand, when the load is large, the endothermic amount of the endothermic reaction in the catalyst layer also becomes large. Therefore, it is necessary to increase the heat transfer area. However, the heat transfer area is designed to be as small as possible in order to make the fuel reformer compact in consideration of the fact that it is for on-site use. For this reason, it is necessary to raise the combustion temperature in order to secure the amount of heat transfer. Therefore, the air-fuel ratio is made small so that the combustion temperature becomes high.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記のように燃料電池,燃料改質装置の負荷の大きさに
応じて燃料改質装置の改質管表面温度や燃焼温度を制御
するために空燃比を変更するのは、バーナにおける燃焼
性に悪影響を与えるという問題がある。また、負荷変動
時,特に高負荷から低負荷に変化する時燃料電池からの
排燃料ガスの増加により一時的に触媒層出口付近の改質
管が過熱され改質管表面温度が一時的に上昇して高温に
なり、改質管材料の寿命が低下するという問題もある。
As described above, it is important to change the air-fuel ratio in order to control the reforming surface temperature and combustion temperature of the fuel reformer according to the load of the fuel cell and the fuel reformer. There is a problem that it has an adverse effect. When the load changes, especially when the load changes from high to low, the exhaust gas from the fuel cell increases and the reforming pipe near the catalyst layer outlet is temporarily overheated, causing the reforming pipe surface temperature to rise temporarily. There is also a problem that the temperature becomes high and the life of the modified pipe material is shortened.

本発明の目的は、燃料電池,燃料改質装置の低負荷から
高負荷にわたって空燃比を一定にすることによりバーナ
での燃焼性を安定にし、さらに負荷変動時にも改質管表
面温度の一時的な上昇を防ぐことのできる燃料電池発電
システムの燃料改質装置を提供することである。
The object of the present invention is to stabilize the combustibility in the burner by keeping the air-fuel ratio constant from a low load to a high load of the fuel cell and the fuel reformer, and also to temporarily improve the surface temperature of the reforming pipe even when the load changes. It is to provide a fuel reformer for a fuel cell power generation system that can prevent a significant increase.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記課題を解決するために、本発明によれば、炉室内に
環状に配され、改質触媒が充填された改質管と、炉室の
上部中央に配され、燃料電池から排出される排燃料ガス
を燃焼するバーナとを備え、バーナからの熱媒体により
改質管を加熱して改質管を通流する改質原料を水素に富
むガスに改質して燃料電池に供給する燃料電池発電シス
テムの燃料改質装置において、前記バーナを、中央部に
設けられ炉室に開口する燃料噴出口を有する排燃料ガス
供給路と、燃料噴出口の周囲域で炉室に開口する一次空
気噴出口を有する一次空気供給路と、一次空気噴出口の
周囲域で炉室に開口する二次空気噴出口を有する二次空
気供給路と、二次空気噴出口の周囲域で炉室に開口し、
改質管を冷却する冷却空気を噴出する噴出口を有する冷
却空気供給路とで構成するものとする。
According to the present invention, in order to solve the above-mentioned problems, according to the present invention, a reforming pipe annularly arranged in a furnace chamber and filled with a reforming catalyst, and a discharge pipe disposed in the upper center of the furnace chamber and discharged from a fuel cell are provided. A fuel cell that includes a burner that burns fuel gas, heats the reforming tube with a heat medium from the burner, reforms the reforming raw material that flows through the reforming tube into a gas rich in hydrogen, and supplies the gas to the fuel cell. In a fuel reformer of a power generation system, the burner is provided with an exhausted fuel gas supply passage having a fuel injection port that is provided in a central portion and opens into a furnace chamber, and a primary air jet that is opened in the furnace chamber in a region around the fuel injection port. A primary air supply passage having an outlet, a secondary air supply passage having a secondary air jet opening to the furnace chamber in the peripheral area of the primary air jet outlet, and a secondary air supply passage having an opening to the furnace chamber in the peripheral area of the secondary air jet outlet. ,
The cooling air supply passage has an ejection port for ejecting cooling air for cooling the reforming pipe.

〔作用〕[Action]

ガスバーナにおいては一般に燃料と燃焼空気との混合状
態は燃焼状態を支配する燃焼速度を決定する最大要因で
ある。したがって燃料電池の負荷に伴って変動する排燃
料ガス量に対して一次空気量と二次空気量を変化するこ
とにより、排燃料ガスの燃焼時生じる火炎の形状を変化
させてその温度分布を制御して改質管の受熱量を制御
し、改質管表面温度を適切に制御するので空燃比を一定
にすることができる。また燃料電池の負荷変動時、特に
低負荷から高負荷変動する時には増加する排燃料ガス量
により改質管を一時的に過熱するので、この場合冷却空
気により改質管を冷却して一時的な温度上昇を抑える。
In a gas burner, the mixed state of fuel and combustion air is generally the largest factor that determines the combustion speed that governs the combustion state. Therefore, by changing the primary air amount and the secondary air amount with respect to the exhaust fuel gas amount that changes with the load of the fuel cell, the shape of the flame generated during combustion of the exhaust fuel gas is changed and its temperature distribution is controlled. Then, the amount of heat received by the reforming tube is controlled and the surface temperature of the reforming tube is appropriately controlled, so that the air-fuel ratio can be kept constant. Further, when the load of the fuel cell fluctuates, particularly when the load fluctuates from low load to high load, the reforming pipe is temporarily overheated due to the increased amount of exhausted fuel gas. Controls temperature rise.

〔実施例〕〔Example〕

以下図面に基づいて本発明の実施例について説明する。
第1図は本発明の実施例による燃料改質装置の断面図で
ある。なお、第1図において第3図の従来例と同一部品
には同じ符号を付し、その説明を省略する。第1図にお
いて従来例と異なるのは中央部に配された排燃料ガス供
給路18のノズル17の周囲域に燃焼室22に開口する一次空
気ノズル30を有する一次空気供給路31と、一次空気ノズ
ル30の下方周囲域に燃焼室22に開口する二次空気ノズル
32を有する二次空気供給路33と、二次空気ノズル32の周
囲域に燃焼室22に開口し、改質管2を冷却する冷却空気
が噴出する冷却空気ノズル34を有する冷却空気供給路35
とを備えていることである。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a sectional view of a fuel reformer according to an embodiment of the present invention. In FIG. 1, the same parts as those of the conventional example of FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted. 1 is different from the conventional example in that a primary air supply passage 31 having a primary air nozzle 30 opening to a combustion chamber 22 around a nozzle 17 of an exhaust fuel gas supply passage 18 arranged in a central portion and a primary air supply passage A secondary air nozzle that opens into the combustion chamber 22 in the lower peripheral area of the nozzle 30.
A secondary air supply passage 33 having 32, and a cooling air supply passage 35 having a cooling air nozzle 34 opening to the combustion chamber 22 in the peripheral area of the secondary air nozzle 32 and ejecting cooling air for cooling the reforming pipe 2.
And is equipped with.

このような構成により燃料電池の負荷量に応じて排燃料
ガス量は増減するが、一次空気と二次空気とからなる燃
焼空気量は負荷量に対応する量の排燃料ガスが安定して
燃焼する一定の空燃比でバーナ16に供給され、一次空気
は一次空気供給路31を経て一次空気ノズル30から噴出さ
れ、また二次空気は二次空気供給路33を経て二次空気ノ
ズル32から噴出し、燃料供給路18を経てノズル17から噴
出する排燃料ガスと混合して燃焼する。
With such a configuration, the amount of exhausted fuel gas increases or decreases according to the load amount of the fuel cell, but the amount of combustion air composed of primary air and secondary air stably burns the amount of exhausted fuel gas corresponding to the load amount. Is supplied to the burner 16 with a constant air-fuel ratio, primary air is ejected from the primary air nozzle 30 via the primary air supply passage 31, and secondary air is ejected from the secondary air nozzle 32 via the secondary air supply passage 33. Then, it is mixed with the exhaust fuel gas ejected from the nozzle 17 through the fuel supply passage 18 and burned.

上記の燃焼において燃料電池,燃料改質装置の負荷が小
さい時には二次空気量を多くし、一次空気量を少なくす
る。これにより、一次空気量が少ないために燃焼できな
かった燃料が二次空気と接触して燃焼するため、火炎の
長さが比較的長くなる。その結果、触媒層出口部分付近
での燃焼熱が比較的少なくなる。これにより触媒層出口
部分付近の改質管の過熱を防ぎ、その表面温度の上昇が
抑えられる。従来は、負荷小の際には、空燃比を大きく
して改質管の過熱防止を図っていたが、この発明では、
空燃比を変えずに(即ち従来よりは空燃比が小さくと
も)、改質管の触媒層出口部分付近の過熱を抑えること
ができる。また負荷が大きいときには、二次空気量を少
なくし、一次空気量を多くして火炎の長さを短くし、触
媒層出口部分付近の温度、すなわち触媒層出口部付近の
改質管表面温度を改質反応に適切な温度に保つ。
In the above combustion, when the load on the fuel cell and the fuel reformer is small, the amount of secondary air is increased and the amount of primary air is decreased. As a result, the fuel that could not be burned due to the small amount of primary air comes into contact with the secondary air and burns, so that the length of the flame becomes relatively long. As a result, the heat of combustion in the vicinity of the catalyst layer outlet is relatively small. As a result, overheating of the reforming pipe near the catalyst layer outlet portion is prevented, and an increase in the surface temperature of the reforming pipe is suppressed. Conventionally, when the load is small, the air-fuel ratio was increased to prevent overheating of the reforming pipe, but in the present invention,
It is possible to suppress overheating near the catalyst layer outlet portion of the reforming pipe without changing the air-fuel ratio (that is, even if the air-fuel ratio is smaller than in the past). When the load is large, the amount of secondary air is reduced, the amount of primary air is increased to shorten the flame length, and the temperature near the outlet of the catalyst layer, that is, the surface temperature of the reforming pipe near the outlet of the catalyst layer is reduced. Keep the temperature appropriate for the reforming reaction.

第2図は上記のようなバーナ16において燃料改質装置の
低負荷と高負荷について前述のような一次空気量と二次
空気量とを混合調整して排燃料ガスを燃焼した時の改質
原料の流れ方向の触媒層位置の改質管表面温度の温度分
布を第4図と同じ要領で示したグラフであり、27は高負
荷時、28は低負荷時の温度分布を示している。第4図の
25と第2図の27は、ほぼ同じ温度分布曲線であり、低負
荷時の温度分布曲線である26と28は大きな差異がある。
図から燃料改質装置の低負荷においても触媒層出口部分
付近の改質管表面温度は従来のように高温にならないよ
うにかつ、低負荷時の温度分布が高負荷時の温度分布と
ほぼ同等となるように制御されていることが理解され
る。
FIG. 2 shows reforming when the exhaust fuel gas is burned by mixing and adjusting the primary air amount and the secondary air amount as described above for the low load and the high load of the fuel reformer in the burner 16 as described above. 4 is a graph showing the temperature distribution of the reforming tube surface temperature at the position of the catalyst layer in the flow direction of the raw material in the same manner as in FIG. 4, where 27 shows the temperature distribution when the load is high, and 28 shows the temperature distribution when the load is low. Of FIG.
25 and 27 in FIG. 2 have almost the same temperature distribution curve, and there is a big difference between the temperature distribution curves 26 and 28 when the load is low.
From the figure, the temperature of the reforming tube near the outlet of the catalyst layer does not rise to a high temperature as in the past even when the fuel reformer has a low load, and the temperature distribution at low load is almost the same as that at high load. It is understood that it is controlled so that

なお、燃料電池の負荷が低負荷から高負荷に変動する時
には、排燃料ガス量が増加して一時的に改質管を過熱す
るが、一時的に冷却空気を冷却空気供給路35を経て冷却
空気噴出口34から噴出することにより改質管2を直接冷
却し、改質管表面温度の上昇を防ぐ。
When the load of the fuel cell changes from a low load to a high load, the amount of exhaust fuel gas increases and the reforming pipe is temporarily overheated, but the cooling air is temporarily cooled through the cooling air supply passage 35. The reforming pipe 2 is directly cooled by jetting from the air jet port 34, and the rise of the reforming pipe surface temperature is prevented.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように、本発明によれば燃料改
質装置のバーナに一次空気供給路,二次空気供給路およ
び冷却空気供給路を設けたことにより、燃料電池,燃料
改質装置の低負荷から高負荷にわたって一次空気量と二
次空気量の調節により火炎の温度分布を制御して触媒層
出口部分付近の改質管表面温度の上昇を防ぎ、かつ触媒
層に必要な熱量を与えて燃焼できるので、空燃比を一定
にすることができ、その燃焼性を安定することができ
る。また燃料電池の低負荷から高負荷への変動時排燃料
ガス量の増加により一時的に改質管を過熱する場合、冷
却空気により改質管を冷却できるので、改質管の表面温
度が上昇するのを防ぐことができる。
As is clear from the above description, according to the present invention, the burner of the fuel reformer is provided with the primary air supply passage, the secondary air supply passage, and the cooling air supply passage. Controlling the temperature distribution of the flame from low load to high load by controlling the amount of primary air and secondary air to prevent the surface temperature of the reforming tube near the catalyst layer outlet from rising and to give the catalyst layer the necessary amount of heat. Since the air-fuel ratio can be made constant, the combustibility can be stabilized. Also, when the reforming pipe is temporarily overheated due to an increase in the amount of exhausted fuel gas when the fuel cell changes from low load to high load, the reforming pipe can be cooled by the cooling air, so the surface temperature of the reforming pipe rises. Can be prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例による燃料改質装置の断面図、
第2図は第1図のバーナで燃料電池からの排燃料ガスを
燃焼した時の改質原料の流れ方向の触媒層位置に対する
改質管表面温度の温度分布を示す図、第3図は従来の燃
料改質装置の断面図、第4図は第3図のバーナで燃料電
池の排燃料ガスを燃焼した時の改質原料の流れ方向の触
媒層位置に対する改質管表面温度の温度分布を示す図で
ある。 2:改質管、7:改質触媒、11:触媒層、18:排燃料ガス供給
路、22:燃焼室、23:加熱室、31:一次空気供給路、33:二
次空気供給路、35:冷却空気供給路。
FIG. 1 is a sectional view of a fuel reformer according to an embodiment of the present invention,
FIG. 2 is a diagram showing the temperature distribution of the reforming tube surface temperature with respect to the position of the catalyst layer in the flow direction of the reforming raw material when the exhaust fuel gas from the fuel cell is burned by the burner of FIG. 1, and FIG. FIG. 4 is a sectional view of the fuel reformer of FIG. 4, and FIG. 4 shows the temperature distribution of the reforming tube surface temperature with respect to the catalyst layer position in the flow direction of the reforming raw material when the exhaust fuel gas of the fuel cell is burned by the burner of FIG. FIG. 2: reforming pipe, 7: reforming catalyst, 11: catalyst layer, 18: exhaust fuel gas supply passage, 22: combustion chamber, 23: heating chamber, 31: primary air supply passage, 33: secondary air supply passage, 35: Cooling air supply path.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炉室内に環状に配され、改質触媒が充填さ
れた改質管と、炉室の上部中央に設けられ、燃料電池か
ら排出される排燃料ガスを燃焼するバーナとを備え、バ
ーナからの熱媒体により改質管を加熱して改質管を通流
する改質原料を水素に富むガスに改質して燃料電池に供
給する燃料電池発電システムの燃料改質装置において、
前記バーナを、中央部に設けられ炉室に開口する燃料噴
出口を有する排燃料ガス供給路と、燃料噴出口の周囲域
で炉室に開口する一次空気噴出口を有する一次空気供給
路と、一次空気噴出口の周囲域で炉室に開口する二次空
気噴出口を有する二次空気供給路と、二次空気噴出口の
周囲域で炉室に開口し、改質管を冷却する冷却空気を噴
出する噴出口を有する冷却空気供給路とから構成したこ
とを特徴とする燃料電池発電システムの燃料改質装置。
1. A reforming tube which is annularly arranged in a furnace chamber and is filled with a reforming catalyst, and a burner which is provided at the center of an upper portion of the furnace chamber and burns exhaust fuel gas discharged from a fuel cell. In a fuel reformer of a fuel cell power generation system, which heats a reforming tube with a heat medium from a burner, reforms a reforming raw material flowing through the reforming tube into a gas rich in hydrogen, and supplies the reformed gas to a fuel cell,
The burner, an exhaust fuel gas supply path having a fuel injection port that is provided in the central portion and opens into the furnace chamber, and a primary air supply path that has a primary air ejection port that opens into the furnace chamber in the peripheral region of the fuel injection port, A secondary air supply passage having a secondary air jet opening to the furnace chamber in the area around the primary air jet, and cooling air opening to the furnace chamber in the area around the secondary air jet to cool the reforming pipe. A fuel reformer for a fuel cell power generation system, comprising: a cooling air supply passage having an ejection port for ejecting the fuel.
JP63281577A 1988-11-08 1988-11-08 Fuel reformer for fuel cell power generation system Expired - Lifetime JPH0761842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63281577A JPH0761842B2 (en) 1988-11-08 1988-11-08 Fuel reformer for fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63281577A JPH0761842B2 (en) 1988-11-08 1988-11-08 Fuel reformer for fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPH02129002A JPH02129002A (en) 1990-05-17
JPH0761842B2 true JPH0761842B2 (en) 1995-07-05

Family

ID=17641109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63281577A Expired - Lifetime JPH0761842B2 (en) 1988-11-08 1988-11-08 Fuel reformer for fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH0761842B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179313B2 (en) * 2002-08-02 2007-02-20 Catacel Corp. Regenerative autothermal catalytic steam reformer
JP6135265B2 (en) * 2013-04-10 2017-05-31 株式会社Ihi Reformer
DE102019204814A1 (en) * 2019-04-04 2020-10-08 Thyssenkrupp Ag Reformer double floor

Also Published As

Publication number Publication date
JPH02129002A (en) 1990-05-17

Similar Documents

Publication Publication Date Title
US6481207B2 (en) Single-pipe cylinder type reformer and method of operating the same
JP2009099264A (en) Solid oxide fuel cell power generation system and its starting method
KR100623572B1 (en) Fuel reforming system and warmup method thereof
JP3437684B2 (en) Fuel reformer for fuel cell power plant and operation method thereof
JP3921477B2 (en) Single tube cylindrical reformer and its operating method
JP4614515B2 (en) Fuel cell reformer
JPH0761842B2 (en) Fuel reformer for fuel cell power generation system
JP2000026101A (en) Apparatus for reforming fuel
JPS6344931A (en) Fuel reforming apparatus
JP4617079B2 (en) Reformer burner and fuel cell system
JPH06349510A (en) Temperature control device for fuel reformer for fuel cell
JP2874923B2 (en) Control device for fuel cell device and fuel cell device
JPS63248702A (en) Fuel reformer
JP2998217B2 (en) Fuel reformer
JPH05147901A (en) Fuel reformer
JP2700248B2 (en) Heating device for fuel reformer
JP3436809B2 (en) Raw material gas reformer
JPH02101314A (en) Modifying apparatus
JPH01320201A (en) Fuel reformer
JP4114980B2 (en) Partial oxidation gasifier
JP2884102B2 (en) Methanol reforming system for molten carbonate fuel cells
JPH0324583Y2 (en)
JPS62108704A (en) Fuel reforming device for fuel cell
JPH0649870B2 (en) Fuel reformer
JP2005180812A (en) Burner and reformer