JPH0760659B2 - Deflection device for electron microscope - Google Patents

Deflection device for electron microscope

Info

Publication number
JPH0760659B2
JPH0760659B2 JP1215386A JP21538689A JPH0760659B2 JP H0760659 B2 JPH0760659 B2 JP H0760659B2 JP 1215386 A JP1215386 A JP 1215386A JP 21538689 A JP21538689 A JP 21538689A JP H0760659 B2 JPH0760659 B2 JP H0760659B2
Authority
JP
Japan
Prior art keywords
deflection
stage
deflector
mode
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1215386A
Other languages
Japanese (ja)
Other versions
JPH0378950A (en
Inventor
行人 近藤
久幸 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP1215386A priority Critical patent/JPH0760659B2/en
Publication of JPH0378950A publication Critical patent/JPH0378950A/en
Publication of JPH0760659B2 publication Critical patent/JPH0760659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子顕微鏡に組み込まれる電子線偏向装置の
改良に関する。
TECHNICAL FIELD The present invention relates to an improvement in an electron beam deflector incorporated in an electron microscope.

[発明が解決しようとする問題点] 透過型電子顕微鏡においては、電子銃から発散する電子
線を平行な電子線束として電子光学系の光軸に沿って試
料面に垂直に照射させる通常の試料照射モードの他に、
幾つかの試料照射モードがある。
[Problems to be Solved by the Invention] In a transmission electron microscope, normal sample irradiation is performed in which an electron beam diverging from an electron gun is irradiated as a parallel electron beam bundle along the optical axis of the electron optical system perpendicularly to the sample surface. Besides the mode,
There are several sample irradiation modes.

第4図は、傾斜モードにおける電子線束の中心経路を表
した略図で、傾斜モードにおいては、光軸1と角度α傾
けた方向から電子線2を試料3に照射するため、第1段
目の偏向子Aと第2段目の偏向子Bによって電子線を夫
々逆方向に偏向する。第5図は、(視野)移動モードに
おける電子線束の中心経路を表した略図で、移動モード
においては、電子線を光軸1と平行を保ったまま移動さ
せて試料3の所望領域を照射するため、第1段目の偏向
子Aと第2段目の偏向子Bによって電子線2を夫々逆方
向に偏向する。
FIG. 4 is a schematic diagram showing the central path of the electron beam flux in the tilt mode. In the tilt mode, the electron beam 2 is applied to the sample 3 from the direction inclined by the angle α with respect to the optical axis 1. The electron beam is deflected in the opposite direction by the deflector A and the deflector B of the second stage. FIG. 5 is a schematic diagram showing the central path of the electron beam flux in the (field of view) movement mode. In the movement mode, the electron beam is moved while keeping parallel to the optical axis 1 to irradiate a desired region of the sample 3. Therefore, the electron beam 2 is deflected in the opposite direction by the first-stage deflector A and the second-stage deflector B, respectively.

第4図及び第5図に示す電子線経路は、試料3と偏向子
Aとの間に電子レンズ場がない場合のものであるが、実
際の装置においては第6図に示すように、試料3の近傍
に対物レンズ場の前磁場4やミニ対物レンズ磁場5の形
成されることが多い。このような光学系において、移動
モードの電子線照射を行うためには、光軸1上の定点P
を偏向支点として電子線を偏向する必要があり、傾斜モ
ードの電子線照射を行うためには、光軸1上の定点Qを
偏向支点として電子線を偏向する必要がある。これらの
偏向支点PおよびQの位置は、対物レンズやミニ対物レ
ンズの励磁変化に応じて移動する。
The electron beam paths shown in FIGS. 4 and 5 are obtained when there is no electron lens field between the sample 3 and the deflector A. However, in an actual device, as shown in FIG. A pre-magnetic field 4 of the objective lens field and a mini-objective magnetic field 5 are often formed in the vicinity of 3. In such an optical system, in order to perform electron beam irradiation in the moving mode, a fixed point P on the optical axis 1 is used.
It is necessary to deflect the electron beam with the deflection fulcrum as the deflection fulcrum, and in order to perform the electron beam irradiation in the tilt mode, it is necessary to deflect the electron beam with the fixed point Q on the optical axis 1 as the deflection fulcrum. The positions of these deflection fulcrums P and Q move according to the excitation change of the objective lens or the mini objective lens.

所で、二段の偏向子A,Bを用いることにより、光軸に沿
って入射する電子線を光軸上の任意の点を偏向支点とし
て偏向することが可能である。第7図は、偏向子Bの下
方の位置6を偏向支点とする場合の光学図で、第1段目
の偏向子Aによる偏向角βに対して、偏向子Bに対して
K1を定数としてKa・βの偏向角を与えるようにすれば
(偏向角βが小さい場合には)偏向支点を一定に保つこ
とができる。この場合、各偏向子によって偏向される電
子線の偏向角は、偏向子に供給される励磁電流または励
磁電圧等の信号強度に比例するので、第1段目の偏向子
Aに供給する励磁信号強度Iに対して、定数Ka倍の励磁
信号を偏向子Bに供給すれば、目的とする偏向を行うこ
とができる。このような偏向を行うための偏向電源は、
二つの定電流電源を連動させ、一方の定電流電源の出力
を調整する制御手段と、二つの電源の出力比を調整する
制御手段を設けるのが普通である。
By using the two-stage deflectors A and B, it is possible to deflect the electron beam incident along the optical axis with an arbitrary point on the optical axis as a deflection fulcrum. FIG. 7 is an optical diagram when the position 6 below the deflector B is used as a deflection fulcrum, with respect to the deflection angle β by the deflector A in the first stage and with respect to the deflector B.
If K1 is used as a constant and the deflection angle of Ka · β is given (when the deflection angle β is small), the deflection fulcrum can be kept constant. In this case, since the deflection angle of the electron beam deflected by each deflector is proportional to the signal intensity of the exciting current or the exciting voltage supplied to the deflector, the exciting signal supplied to the first-stage deflector A. By supplying an excitation signal, which is a constant Ka times the intensity I, to the deflector B, the target deflection can be performed. The deflection power supply for performing such deflection is
It is usual to provide control means for interlocking two constant current power supplies to adjust the output of one constant current power supply and control means for adjusting the output ratio of the two power supplies.

第8図は、偏向子Aの上方の定点7を偏向支点とする場
合の光学図で、第1段目の偏向子Aによる偏向角γに対
して、偏向子Bに対してKbを定数としてKb・γの偏向角
を与えるようにすればよく、第1段目の偏向子Aに供給
する励磁信号強度Iに対して、定数Kb倍の励磁信号を偏
向子Bに供給すれば、目的とする偏向を行うことができ
る。
FIG. 8 is an optical diagram when the fixed point 7 above the deflector A is used as the deflection fulcrum, and Kb for the deflector B is a constant for the deflection angle γ by the deflector A in the first stage. It suffices to provide a deflection angle of Kb · γ, and if an excitation signal of a constant Kb times the excitation signal intensity I supplied to the first-stage deflector A is supplied to the deflector B, Deflection can be performed.

第9図は、偏向支点の位置(座標)と二段の偏向子に供
給する偏向信号強度比の関係を表す略図であり、横軸は
偏向支点の座標を、縦軸は偏向信号強度の比(係数)を
表している。曲線aは、第1段目の偏向子Aに供給する
偏向信号Iaに対して一定の定数Kaを乗じた励磁信号Ibを
第2段目の偏向子Bに供給する第1段主導モードに使用
される定数Ka(=Ib/Ia)の変化を表しており、曲線b
は、第2段目の偏向子Bに供給する偏向信号Ibに対して
一定の定数Kbを乗じた励磁信号Iaを第1段目の偏向子A
に供給する第2段主導モードに使用される定数Kb(=Ia
/Ib)の変化を表している。
FIG. 9 is a schematic diagram showing the relationship between the position (coordinates) of the deflection fulcrum and the deflection signal intensity ratio supplied to the two-stage deflector, where the horizontal axis represents the coordinates of the deflection fulcrum and the vertical axis represents the deflection signal intensity ratio. (Coefficient). The curve a is used in the first-stage initiative mode in which the excitation signal Ib obtained by multiplying the deflection signal Ia supplied to the first-stage deflector A by a constant constant Ka is supplied to the second-stage deflector B. The change in the constant Ka (= Ib / Ia) is represented by the curve b
Is the excitation signal Ia obtained by multiplying the deflection signal Ib supplied to the deflector B of the second stage by a constant Kb.
Kb (= Ia) used in the second-stage initiative mode
/ Ib).

第9図から明らかなように、偏向支点が偏向子Aの近傍
にくるとKbの値が著しく大きな値となり、その様な係数
を演算することが困難となる。同様に、偏向支点が偏向
子Bの近傍に達するとKaの値が著しく大きな値となり、
その様な係数を演算することが困難となる。従って、第
1段主導モードのみ又は第2段主導モードのみでしか作
動しない偏向電源では、任意の点を偏向支点とする電子
線偏向が困難となるので、第1段主導モードと第2段主
導モードのいずれでも作動できるように構成する必要が
ある。しかしながら、最適偏向支点の座標は、前述した
ように電子レンズの使用条件によって変化するため、定
数KaやKbが余り大きな値を取らないようにするために
は、第1段主導モードと第2段主導モードのいずれを使
用すべきかの判断が困難で、オペレーターの試行錯誤に
よって選択されるため、電子顕微鏡の操作性を難しくす
る一因となっていた。
As is clear from FIG. 9, when the deflection fulcrum comes close to the deflector A, the value of Kb becomes extremely large, and it becomes difficult to calculate such a coefficient. Similarly, when the deflection fulcrum reaches the vicinity of the deflector B, the value of Ka becomes extremely large,
It becomes difficult to calculate such a coefficient. Therefore, in a deflection power source that operates only in the first-stage initiative mode or only in the second-stage initiative mode, it is difficult to deflect the electron beam with an arbitrary point as a deflection fulcrum. Must be configured to operate in either mode. However, the coordinates of the optimum deflection fulcrum change depending on the usage conditions of the electron lens as described above. Therefore, in order to prevent the constants Ka and Kb from taking too large values, the first-stage initiative mode and the second-stage mode are used. Since it is difficult to determine which of the lead modes should be used, and the operator selects the lead mode by trial and error, this has been a cause of making the operability of the electron microscope difficult.

[発明が解決しようとする課題] 本発明は、透過型電子顕微鏡における試料照射系の電子
線偏向操作をより簡便に行うことを目的とする。
[Problems to be Solved by the Invention] An object of the present invention is to more easily perform an electron beam deflection operation of a sample irradiation system in a transmission electron microscope.

[課題を解決するための手段] 本発明の透過型電子顕微鏡においては、電子銃と観察試
料位置との間に設けられた2段の偏向子と、試料位置と
偏向子との間に設けられた電子レンズと、第1段目の偏
向子に供給する励起信号に可変定数を乗じた励起信号を
第2段目の偏向子に供給する第1段主導モードと、第2
段目の偏向子に供給する励起信号に可変定数を乗じた励
起信号を第1段目の偏向子に供給する第2段主導モード
とを切り替える機能を有する偏向電源を具備した装置に
加えて、試料に入射する電子線を傾斜させる傾斜モード
又は試料に入射する電子線の照射位置を移動させる移動
モードを行うに必要な電子線偏向支点の位置を前記電子
レンズの強度から求める手段と、該手段の出力に基づい
て前記第1段主導モードと第2段主導モードのいずれを
選択すべきかを表示する手段を設ける事により、前述し
た課題を解決する。
[Means for Solving the Problem] In the transmission electron microscope of the present invention, a two-stage deflector provided between the electron gun and the observation sample position, and provided between the sample position and the deflector. An electron lens, a first-stage drive mode for supplying an excitation signal obtained by multiplying the excitation signal supplied to the first-stage deflector by a variable constant to the second-stage deflector,
In addition to the device provided with the deflection power supply having a function of switching the excitation signal obtained by multiplying the excitation signal supplied to the deflector of the first stage by the variable constant to the second stage initiative mode for supplying the deflector of the first stage, A means for obtaining the position of the electron beam deflection fulcrum necessary for performing an inclination mode for inclining the electron beam incident on the sample or a movement mode for moving the irradiation position of the electron beam incident on the sample from the intensity of the electron lens; The above-mentioned problem is solved by providing means for displaying which of the first-stage initiative mode and the second-stage initiative mode should be selected based on the output of the above.

[作用] 本発明においては、試料位置と偏向子との間に形成され
る電子レンズの強度から所望の偏向を行うための偏向支
点位置を求め、該結果により2段偏向子による最適偏向
モードを求めるようにしているので、透過型電子顕微鏡
における試料照射系の電子線偏向操作をより容易に行う
ことが出来る。
[Operation] In the present invention, the deflection fulcrum position for performing the desired deflection is obtained from the intensity of the electron lens formed between the sample position and the deflector, and the optimum deflection mode by the two-stage deflector is obtained from the result. Since the calculation is performed, the electron beam deflection operation of the sample irradiation system in the transmission electron microscope can be performed more easily.

[実施例] 第1図は、本発明の一実施例装置の構成を示す略図であ
る。透過型電子顕微鏡の真空筐体10の上部には、電子銃
11が設けられており、電子銃11より発散した電子線は、
集束レンズ12、ミニ対物レンズ13及び対物レンズ14の前
方磁場により順次集束されて、対物レンズ14の磁場中に
置かれた観察試料15を照射する。集束レンズ12とミニ対
物レンズ13の間には第1段目の偏向子Aと第2段目の偏
向子Bが設けられている。偏向子A、Bには切替手段16
を介して偏向電源17の出力端子s又はtに接続されてお
り、偏向電源17には、キーボード等の入力手段を経て偏
向強度指定手段18と係数指定手段19から制御信号が印加
されており、その出力端子sには偏向強度調整手段18よ
り指定される偏向信号Ioが出力され、出力端子tには係
数調整手段19より指定された係数Koを偏向信号Ioに乗じ
た偏向信号Ko×Ioが出力される。切替手段16を操作する
ことにより、第1段主導モードと第2段主導モードのい
ずれかが選択される。
[Embodiment] FIG. 1 is a schematic view showing the structure of an embodiment of the present invention. On top of the vacuum housing 10 of the transmission electron microscope, an electron gun
11 is provided, and the electron beam emitted from the electron gun 11 is
The observation sample 15 placed in the magnetic field of the objective lens 14 is irradiated by being sequentially focused by the forward magnetic field of the focusing lens 12, the mini objective lens 13, and the objective lens 14. A first-stage deflector A and a second-stage deflector B are provided between the focusing lens 12 and the mini objective lens 13. Switching means 16 is provided for the deflectors A and B.
Is connected to the output terminal s or t of the deflection power supply 17 via the input terminal of the deflection power supply 17, and the deflection power supply 17 is supplied with a control signal from the deflection intensity designating means 18 and the coefficient designating means 19 via an input means such as a keyboard. A deflection signal Io designated by the deflection intensity adjusting means 18 is output to its output terminal s, and a deflection signal Ko × Io obtained by multiplying the deflection signal Io by the coefficient Ko designated by the coefficient adjusting means 19 is output to the output terminal t. Is output. By operating the switching means 16, either the first stage initiative mode or the second stage initiative mode is selected.

ミニ対物レンズ13と対物レンズ14の各レンズ電源20,21
の出力の一部は、演算装置22に入力されており、移動モ
ード又は傾斜モードのモードを指定する照射モード指定
手段23からの入力信号と共に、予め記憶されたデータを
基にして偏向支点の座標を計算する。次に、この座標値
が第9図における偏向子Aと偏向子Bの中間点Cよりも
上(図で右側)にある場合には第1段主導モードを、ま
た座標値が偏向子Aと偏向子Bの中間点Cよりも下(図
で左側)にある場合には第2段主導モードを表示するよ
うに切替表示手段24に出力する。偏向系の操作者は、照
射モード指定手段23による指示を行った後、切替示手段
24の表示の観察しながら、切替手段16によって第1段主
導モード又は第2段主導モードを選択する。次に、偏向
強度調整手段18と係数調整手段19を操作して所望の電子
線偏向を行う。この様に、偏向支点の座標が偏向子Aと
偏向子Bの中間点Cより上にあるか下にあるかによって
第1段主導モードと第2段主導モードの切替えを行う
と、係数の値が−1から+1の間の範囲に収まるため、
偏向電源の設計が容易となる。
Lens power supply for mini-objective lens 13 and objective lens 14, 20, 21
A part of the output of is input to the arithmetic unit 22, together with the input signal from the irradiation mode designating means 23 for designating the mode of the moving mode or the tilt mode, and the coordinates of the deflection fulcrum based on the data stored in advance. To calculate. Next, when this coordinate value is above the intermediate point C between the deflector A and the deflector B in FIG. 9 (on the right side in the figure), the first stage initiative mode is set, and the coordinate value is the deflector A. When it is below the intermediate point C of the deflector B (on the left side in the figure), it is output to the switching display means 24 so as to display the second stage initiative mode. After the operator of the deflection system gives an instruction by the irradiation mode designating means 23, the switching indicating means
While observing the display of 24, the switching unit 16 selects the first stage initiative mode or the second stage initiative mode. Next, the deflection intensity adjusting means 18 and the coefficient adjusting means 19 are operated to perform the desired electron beam deflection. In this way, when switching between the first-step initiative mode and the second-step initiative mode depending on whether the coordinates of the deflection fulcrum are above or below the intermediate point C between the deflectors A and B, the coefficient value Is in the range between -1 and +1, so
The deflection power supply can be easily designed.

第2図は、本発明の他の実施例装置の要部を示す略図で
あり、第1図と同じ符号を付したものは同じ構成要素を
表している。第2図の装置においては、第1図の装置の
ように演算装置22によって得た結果を切替表示手段24に
表示する代わりに、直接切替手段16を制御して自動的に
第1段主導モードと第2段主導モードの切替えが行われ
るように構成している。
FIG. 2 is a schematic diagram showing a main part of an apparatus according to another embodiment of the present invention, in which the same reference numerals as those in FIG. 1 represent the same constituent elements. In the apparatus of FIG. 2, instead of displaying the result obtained by the arithmetic unit 22 on the switching display means 24 as in the apparatus of FIG. 1, the switching means 16 is directly controlled to automatically perform the first stage initiative mode. And the second stage initiative mode is switched.

第3図は、本発明の更に他の実施例装置を示す略図であ
る。第3図の実施例装置においては、演算装置22から出
力される第1段主導モードまたは第2段主導モードの指
示信号が、偏向制御装置25に印加される。偏向制御装置
25は、偏向強度調整手段18と係数調整手段19からの入力
信号と演算装置22からの指示信号に基づいて第1偏向電
源26と第2偏向電源27に制御信号を送り、第1段主導モ
ードまたは第2段主導モードによる偏向が行われるよう
に制御する。
FIG. 3 is a schematic view showing a device according to still another embodiment of the present invention. In the apparatus of the embodiment shown in FIG. 3, the instruction signal of the first stage initiative mode or the second stage initiative mode output from the arithmetic unit 22 is applied to the deflection controller 25. Deflection control device
The reference numeral 25 sends a control signal to the first deflection power source 26 and the second deflection power source 27 based on the input signals from the deflection intensity adjusting means 18 and the coefficient adjusting means 19 and the instruction signal from the arithmetic unit 22, and the first stage initiative mode. Alternatively, the control is performed so that the deflection is performed in the second stage initiative mode.

[発明の効果] 第1の本発明により、第1段主導モードと第2段主導モ
ードのどちらを選択すればよいのかが直ちに分かり、任
意の点を電子線偏向支点とする電子線偏向の操作が容易
になる。また、第2の本発明により、第1段主導モード
と第2段主導モードの選択が自動的に行なわれ、任意の
点を電子線偏向支点とする電子線偏向の操作がより容易
になる。
EFFECTS OF THE INVENTION According to the first aspect of the present invention, it is immediately known which of the first-stage initiative mode and the second-stage initiative mode should be selected, and the electron beam deflection operation with an arbitrary point as the electron beam deflection fulcrum. Will be easier. Further, according to the second aspect of the present invention, the selection between the first step initiative mode and the second step initiative mode is automatically performed, and the electron beam deflection operation with an arbitrary point as the electron beam deflection fulcrum becomes easier.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例装置の構成を示す略図、第2
図及び第3図は夫々本発明の他の実施例装置を示す略
図、第4図は試料に入射する電子線を傾斜させる傾斜モ
ードを説明するための略図、第5図は試料に入射する電
子線を移動させる移動モードを説明するための略図、第
6図は傾斜モードと移動モードを行うために必要な電子
線の偏向支点を説明するための略図、第7図及び第8図
は2段偏向子により電子線の偏向支点を任意に選定する
際の光学系を説明するための略図、第9図は二段偏向系
における偏向信号強度化と偏向支点の関係を説明するた
めの略図である。 1……光軸 2……電子線 3……試料 4……対物レンズの前磁場 5……ミニ対物レンズ磁場 6,7……偏向支点 10……真空筐体 11……電子銃 12……集束レンズ 13……ミニ対物レンズ 14……対物レンズ 15……試料 16……切替手段 17……偏向電源 18……偏向強度調整手段 19……係数調整手段 20……ミニ対物レンズ電源 21……対物レンズ電源 22……演算装置 23……照射モード指定手段 24……切替表示手段 25……偏向制御装置 26……第1偏向電源 27……第2偏向電源
FIG. 1 is a schematic diagram showing the construction of an apparatus according to an embodiment of the present invention.
FIGS. 3 and 4 are schematic diagrams showing another embodiment of the present invention, FIG. 4 is a schematic diagram for explaining a tilt mode for tilting an electron beam incident on a sample, and FIG. 5 is an electron incident on the sample. FIG. 6 is a schematic diagram for explaining a moving mode for moving a line, FIG. 6 is a schematic diagram for explaining a deflection fulcrum of an electron beam necessary for performing a tilt mode and a moving mode, and FIGS. 7 and 8 are two stages. FIG. 9 is a schematic diagram for explaining the optical system when arbitrarily selecting the deflection fulcrum of the electron beam by the deflector, and FIG. 9 is a schematic diagram for explaining the relationship between the deflection signal strength and the deflection fulcrum in the two-stage deflection system. . 1 ...... Optical axis 2 ...... Electron beam 3 ...... Sample 4 ...... Pre-magnetic field of objective lens 5 ...... Mini objective lens magnetic field 6, 7 ...... Deflection fulcrum 10 ...... Vacuum housing 11 ...... Electron gun 12 ...... Focusing lens 13 …… Mini objective lens 14 …… Objective lens 15 …… Sample 16 …… Switching means 17 …… Deflecting power supply 18 …… Deflection intensity adjusting means 19 …… Coefficient adjusting means 20 …… Mini objective lens power supply 21 …… Objective lens power supply 22 …… Computing device 23 …… Irradiation mode designating means 24 …… Switching display means 25 …… Deflection control device 26 …… First deflection power supply 27 …… Second deflection power supply

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電子銃と観察試料位置との間に設けられた
2段の偏向子と、試料位置と偏向子との間に設けられた
電子レンズと、第1段目の偏向子に供給する励起信号に
可変定数を乗じた励起信号を第2段目の偏向子に供給す
る第1段主導モードと第2段目の偏向子に供給する励起
信号に可変定数を乗じた励起信号を第1段目の偏向子に
供給する第2段主導モードとを切り替える機能を有する
偏向電源を具備した装置において、試料に入射する電子
線を傾斜させる傾斜モード又は試料に入射する電子線の
照射位置を移動させる移動モードを行うに必要な電子線
偏向支点の位置を前記電子レンズの強度から求める手段
と、該手段の出力に基づいて前記第1段主導モードと第
2段主導モードのいずれを選択すべきかを表示する手段
を設けた事を特徴とする電子顕微鏡用偏向装置。
1. A two-stage deflector provided between an electron gun and an observation sample position, an electron lens provided between the sample position and the deflector, and a first-stage deflector. The excitation signal obtained by multiplying the excitation signal obtained by multiplying the excitation signal by the variable constant to the second stage deflector and the excitation signal obtained by multiplying the excitation signal supplied to the second stage deflector by the variable constant are In an apparatus equipped with a deflection power source having a function of switching between a second-stage leading mode for supplying to the first-stage deflector, an inclination mode for inclining an electron beam incident on a sample or an irradiation position of an electron beam incident on the sample is set. A means for obtaining the position of the electron beam deflection fulcrum required to perform the movement mode for moving from the intensity of the electron lens, and which of the first-stage initiative mode and the second-stage initiative mode should be selected based on the output of the means. Characterized by providing a means to display the tick Electron microscope deflection apparatus.
【請求項2】電子銃と観察試料位置との間に設けられた
2段の偏向子と、試料位置と偏向子との間に設けられた
電子レンズと、一方の偏向子に供給する励起信号に所望
の可変定数を乗じた励起信号を他方の偏向子に供給する
偏向電源を具備した装置において、試料に入射する電子
線を傾斜させる傾斜モード又は試料に入射する電子線の
位置を移動させる移動モードを行うに必要な電子線偏向
支点の位置を前記電子レンズの強度から求める手段と、
該手段の結果に基づいて偏向電源から第1段目の偏向子
と第2段目の偏向子に供給する二つの偏向信号の切り替
えを制御する手段を設けた事を特徴とする電子顕微鏡用
偏向装置。
2. A two-stage deflector provided between an electron gun and an observation sample position, an electron lens provided between the sample position and the deflector, and an excitation signal supplied to one of the deflectors. In a device equipped with a deflection power supply for supplying an excitation signal obtained by multiplying the desired variable constant to the other deflector, a tilt mode for tilting the electron beam incident on the sample or a movement for moving the position of the electron beam incident on the sample Means for obtaining the position of the electron beam deflection fulcrum necessary to perform the mode from the intensity of the electron lens,
Deflection for an electron microscope, characterized in that means for controlling switching of two deflection signals supplied from the deflection power source to the first-stage deflector and the second-stage deflector based on the result of the means is provided. apparatus.
JP1215386A 1989-08-22 1989-08-22 Deflection device for electron microscope Expired - Fee Related JPH0760659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1215386A JPH0760659B2 (en) 1989-08-22 1989-08-22 Deflection device for electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1215386A JPH0760659B2 (en) 1989-08-22 1989-08-22 Deflection device for electron microscope

Publications (2)

Publication Number Publication Date
JPH0378950A JPH0378950A (en) 1991-04-04
JPH0760659B2 true JPH0760659B2 (en) 1995-06-28

Family

ID=16671446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1215386A Expired - Fee Related JPH0760659B2 (en) 1989-08-22 1989-08-22 Deflection device for electron microscope

Country Status (1)

Country Link
JP (1) JPH0760659B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213656A (en) * 1985-07-12 1987-01-22 富士物産株式会社 Concrete sprayer
JPH0636347B2 (en) * 1985-12-06 1994-05-11 日本電子株式会社 electronic microscope

Also Published As

Publication number Publication date
JPH0378950A (en) 1991-04-04

Similar Documents

Publication Publication Date Title
US4451737A (en) Electron beam control device for electron microscopes
US5894124A (en) Scanning electron microscope and its analogous device
JPH0233843A (en) Scanning electronic microscope
US4547669A (en) Electron beam scanning device
EP1128413A1 (en) Method of observing image and scanning electron microscope
JPH0760659B2 (en) Deflection device for electron microscope
US5831265A (en) Scanning electron microscope
JP3992848B2 (en) Charged particle beam equipment
JPH03134944A (en) Electron beam device
JP2000036276A5 (en)
CN110364405B (en) Charged particle beam axis alignment device and method, charged particle beam irradiation device
JP2002098897A (en) Microscope
US4439681A (en) Charged particle beam scanning device
JP3125297B2 (en) Charged particle beam equipment
JP3156428B2 (en) Scanning electron microscope
JP2985568B2 (en) Scanning electron microscope
JP4229610B2 (en) Charged particle beam apparatus and control method thereof
JPH0238366Y2 (en)
JPS5853468B2 (en) scanning electron microscope
JP2001236913A (en) Specimen transfer unit
JPH0320942A (en) Scanning electron microscope
JPH0636347B2 (en) electronic microscope
JP3117783B2 (en) Driving device for deflector in electron microscope etc.
JPH09281403A (en) Microscope
JPH10321173A (en) Beam position correction device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees