JPH0760266A - Method for purification of sea water - Google Patents

Method for purification of sea water

Info

Publication number
JPH0760266A
JPH0760266A JP21406993A JP21406993A JPH0760266A JP H0760266 A JPH0760266 A JP H0760266A JP 21406993 A JP21406993 A JP 21406993A JP 21406993 A JP21406993 A JP 21406993A JP H0760266 A JPH0760266 A JP H0760266A
Authority
JP
Japan
Prior art keywords
water
seawater
microorganisms
contg
sodium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21406993A
Other languages
Japanese (ja)
Inventor
Masaki Okazaki
正樹 岡崎
Hiroaki Fujii
弘明 藤井
Takeshi Matsuda
武 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP21406993A priority Critical patent/JPH0760266A/en
Publication of JPH0760266A publication Critical patent/JPH0760266A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To purify efficiently sea water by a method wherein a water-permeable case wherein a water-contg. polymer gel prepd. by immobilizing wholly microorganisms living in a water with a specified concn. of sodium ion is placed, is immersed in water and aeration is performed therein. CONSTITUTION:Purification of sea water is performed by a method wherein a water-permeable case 2 wherein a water-contg. polymer gel prepd. by immobilizing wholly microorganisms living in a water with a sodium ion concn. of at least 0.01g/l or microorganisms acclimated in a water with a sodium ion concn. of at least 0.01g/l, is placed, is immersed in water and aeration is performed therein. As these microorganisms, a bacterium contg. a nitrification bacterium which decomposes and nitrifies a nitrogen-contg. compd. such as COD ingredient and ammonia in the sea water and has oxidative ability, e.g. a petroleum decomposing bacterium is used and as a wholly immobilized carrier, a water-contg. polymer gel such as polyvinyl alcohol is used. The water permeable case 2 is provided by piling up continuously the cases as a closing channel and a divider (a fence) for a pond.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、閉鎖性内湾、養殖等に
より汚染された内湾及び流域河川の流れ込む汽水域から
海水までの範囲におけるナトリウムイオン濃度の水の浄
化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying water having a sodium ion concentration in a range from a brackish water area into which a closed inner bay, an inner bay contaminated by aquaculture or the like, and a basin river flow into seawater.

【0002】[0002]

【従来の技術】近年、閉鎖性海域の水の浄化に関する要
求が高まり、CODの低減はもとより、窒素、リンおよ
びノルマルヘキサン抽出物等に代表される油分等の汚染
物質の高度処理が要求されるようになってきている。特
に、閉鎖系内湾における流入河川からの富栄養化源の蓄
積ならびに魚の養殖場などにおける残飼、魚の排泄物お
よび飼料添加剤による海水汚染が激しく、魚の成育に悪
影響を与えている。また、富栄養化と底質の蓄積による
無酸素状態との兼ね合いから、赤潮や青潮が発生し、海
水の汚染は深まるばかりである。このような海域の浄化
方法に関しては、特開平4−62213号、特開平4−
62214号、特開平4−62215号および特開平4
−62216号に示される礫間接触法をベースとした方
式が主流であり、これらの方式は固体に生物を付着させ
た生物膜により濾過または浄化を行うものである。ま
た、特開平4−90892号には、海水をオゾン酸化
し、残留オキシダントを活性炭カラムで除去することに
よって海水中の有機物、アンモニアおよび亜硝酸等の有
害物を分解する方法が示されている。また、特開平3−
229692号には、通水性ケース内に微生物増殖用充
填材を配置することにより港湾内の海水浄化を図る装置
が示されている。また、特開平5−68991号および
特開平5−68992号には、微生物担持体充填網袋お
よび微生物担持体収納具を排水処理に用いることが示さ
れている。これらの従来の技術の特徴は、微生物担持体
が軽石、カキ殻、砂利、珊瑚等の天然物あるいは発泡ス
チロール、スポンジ、不織布、ラシヒリング等の担持体
表面に微生物が自然に付着するのを待つ方法である。こ
れらの担持体表面に微生物が自然に付着するのを待つ方
法では、処理すべき汚染物質を特定出来ないこと、担持
体表面に付着するためには大変な時間がかかること、水
温の変化や季節変化による付着微生物の脱落などが起こ
り、安定処理などに問題がある。さらに、微生物担持体
の比重が1.0より大きい場合には微生物担持体が沈む
ため種々の問題が起こることから、微生物担持体充填網
袋の全体の比重を0.95〜0.98に調節しているた
めに、該袋が全体の排水に接触しにくいという問題があ
る。さらに、担持体充填網袋の容積が500〜2000
リットルといった大容積の容器に微生物担持体を充填し
ていることから、全体の排水に接触しにくいという問題
がある。このように従来の海水浄化に関する技術は、自
然の力を利用し、礫、砂および石などの表面に微生物が
付着する自然増殖を待つ生物膜法が知られているに過ぎ
ない。
2. Description of the Related Art In recent years, there has been an increasing demand for purification of water in closed sea areas, and not only reduction of COD but also advanced treatment of pollutants such as oil components represented by nitrogen, phosphorus and n-hexane extracts. Is starting to appear. In particular, accumulation of eutrophication sources from inflowing rivers in closed system bays, residual feed in fish farms, fish excrement and seawater pollution due to feed additives are severe, which adversely affects fish growth. In addition, due to the balance between eutrophication and anoxic conditions due to sediment accumulation, red tides and blue tides occur, and pollution of seawater is only deepening. Regarding such a method for purifying the sea area, JP-A-4-62213 and JP-A-4-62213
62214, JP-A-4-62215, and JP-A-4-62215.
The mainstream is a method based on the gravel contact method shown in -62216, and these methods perform filtration or purification by a biofilm in which organisms are attached to a solid. Further, JP-A-4-90892 discloses a method of decomposing organic substances, harmful substances such as ammonia and nitrous acid, in seawater by ozone oxidation of seawater and removing residual oxidant with an activated carbon column. In addition, Japanese Patent Laid-Open No. 3-
No. 229692 discloses a device for purifying seawater in a harbor by arranging a microbial growth filler in a water-permeable case. Further, JP-A-5-68991 and JP-A-5-68992 disclose the use of a microbial carrier-filled mesh bag and a microbial carrier storage device for wastewater treatment. The characteristic of these conventional techniques is that the microbial carrier waits for the microorganisms to naturally adhere to the natural product such as pumice stone, oyster shell, gravel, coral or expanded polystyrene, sponge, non-woven fabric, Raschig ring, etc. is there. By waiting for the microorganisms to naturally attach to the surface of these carriers, it is not possible to identify the pollutants to be treated, it takes a long time to attach to the surface of the carrier, and there are changes in water temperature and season. Due to the change, the adhered microorganisms may fall off and there is a problem in stable treatment. Furthermore, when the specific gravity of the microbial carrier is greater than 1.0, various problems occur because the microbial carrier sinks, so the overall specific gravity of the microbial carrier-filled mesh bag is adjusted to 0.95 to 0.98. Therefore, there is a problem that it is difficult for the bag to contact the entire drainage. Furthermore, the volume of the carrier-filled mesh bag is 500 to 2000.
Since a large-capacity container such as a liter is filled with the microorganism carrier, there is a problem that it is difficult to contact the entire drainage. As described above, the conventional technique relating to seawater purification is merely known as the biofilm method, which utilizes the power of nature and waits for the natural growth of microorganisms on the surface of gravel, sand, stone, and the like.

【0003】[0003]

【発明が解決しようとする課題】ナトリウムイオン濃度
が0.1g/リットル以上の水、特に海水については好
塩性微生物の増殖が極めて遅いために、礫、砂および石
などの表面に微生物の自然増殖を待つ生物膜法では、水
の浄化能力の発現が遅いこと、付着面積から考えて水の
浄化能力が低いこと、季節変化および水温変化により生
物膜が剥離し水の浄化能力がなくなること、浄化する菌
体を選択的にその港湾等の海域に留めおくことが不可能
であることなどの問題があり、海水の浄化方法としては
非常に不安定なものであった。本発明の目的は、上記の
問題点のないナトリウムイオン濃度が0.1g/リット
ル以上の水、特に海水を効率良く浄化する方法を提供す
ることにある。
In the water having a sodium ion concentration of 0.1 g / liter or more, especially seawater, since the growth of halophilic microorganisms is extremely slow, the surface of gravel, sand, stones, etc. is naturally affected by microorganisms. In the biofilm method that waits for growth, the ability to purify water is slow, the ability to purify water is low considering the area of attachment, and the biofilm is peeled off due to seasonal changes and changes in water temperature. There is a problem that it is impossible to selectively retain the bacteria to be purified in the sea area such as the harbor, and it was a very unstable method for purifying seawater. An object of the present invention is to provide a method for efficiently purifying water having a sodium ion concentration of 0.1 g / liter or more, particularly seawater, which does not have the above problems.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討した結果、ナトリウムイオン
濃度が0.01g/リットル以上の水中に生息する微生
物またはナトリウムイオン濃度が0.01g/リットル
以上の水中で馴用した微生物を包括固定化した高分子含
水ゲルを内在する通水性ケースを水中に浸漬し、エアレ
ーションすることを特徴とするナトリウムイオン濃度が
0.1g/リットル以上の水の浄化方法を見出し本発明
を完成させるに至った。本発明における微生物として
は、海水中のCOD成分およびアンモニア等の窒素含有
化合物を分解および硝化したり、酸化能力を有する硝化
菌を含む菌であり、海水中の有機炭素化合物を酸化する
石油分解菌等が挙げられる。包括固定化担体としては、
ポリビニルアルコール等の高分子含水ゲルであって、そ
の形状は最大1cm角のサイコロ状、粒子状、繊維状な
どが挙げられる。通水性ケースとしては、筒状又は板状
物の形状であって、網状の通水性のものが挙げられ、そ
の材質はステンレススチールおよび樹脂製ネット等の1
cm以下の目合を有し、微生物を包括固定化した担体が
流出せず、通水性を有するものである。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have found that the microorganisms inhabiting water having a sodium ion concentration of 0.01 g / liter or more or the sodium ion concentration of 0.1 g / liter or more. Immersing a water-permeable case containing a high-molecular water-containing gel in which microorganisms, which have been acclimatized in water of 01 g / l or more, are immobilized in water and aerated, and having a sodium ion concentration of 0.1 g / l or more. The inventors have found a method for purifying water and completed the present invention. The microorganism in the present invention is a petroleum-degrading bacterium that decomposes and nitrifies COD components in seawater and nitrogen-containing compounds such as ammonia, and contains nitrifying bacteria having oxidizing ability, and oxidizes organic carbon compounds in seawater. Etc. As the entrapping immobilization carrier,
It is a polymer hydrogel such as polyvinyl alcohol, and its shape may be a dice shape with a maximum of 1 cm square, a particle shape, a fibrous shape, or the like. Examples of the water-permeable case include a tubular or plate-shaped material having a mesh-like water-permeable property, and the material thereof is stainless steel, a resin net, or the like.
The carrier has a mesh of cm or less, and the carrier entrapping and immobilizing microorganisms does not flow out and has water permeability.

【0005】通水性ケースの閉鎖性港湾または養魚場な
どへの設置方法は、締切湾又は池の仕切りとして海底面
から満潮時の潮位までの高さにフェンスとして杭又は浮
子に連ね設置する。本設置方法によると、自然の潮位
(干満)の変動時などに、微生物を包括固定化した含水
高分子ゲルを内在する通水性ケースを汚染海水が通過す
る時に、海水中の容存酸素(以下、DOと略記する)ま
たは空気に曝らされた時の酸素との接触により、酸化反
応が進むものである。さらに、空気コンプレッサーを用
いて、外部から空気を海中または海底に導き散気管を通
して曝気する方法でも良い。本発明によると、空気の流
れにより海水の流れが起こり、この流れが微生物を包括
固定化した高分子含水ゲルを内在する通水性ケースを通
ることにより、酸素と海水を積極的に微生物を包括固定
化した高分子含水ゲルに接触させることにより酸化反応
が生じ、海水が浄化される。この方法により、締切った
湾又は池の中(図1(a)、図2を参照)の浄化をして
もよく、又、締切られていないが流れの少ない港湾(図
1(b)、図2を参照)等の浄化をしてもよい。本発明
の浄化方法に用いる装置全体の参考図を図3(a)およ
び図4(a)に平面図を示し、図3(b)および図4
(b)にその断面図を示す。
As a method of installing the water-permeable case in a closed port or a fish farm, it is installed as a fence at the height from the sea bottom to the tide level at high tide and connected to piles or floats as a partition of the dead bay or pond. According to this installation method, when the contaminated seawater passes through the water-permeable case containing the hydrous polymer gel in which microorganisms are entrapped and immobilized, the stored oxygen in seawater (hereinafter , DO) or contact with oxygen when exposed to air, which promotes the oxidation reaction. Further, a method may be used in which air is introduced from the outside into the sea or the sea floor using an air compressor and aerated through an air diffuser. According to the present invention, a flow of seawater occurs due to the flow of air, and this flow passes through a water-permeable case containing a high-molecular hydrogel in which microorganisms are entrapped and immobilized, whereby oxygen and seawater are actively entrapped and immobilized. By bringing into contact with the polymerized hydrogel, an oxidation reaction occurs and seawater is purified. This method may be used to clean a closed bay or pond (see Figure 1 (a), Figure 2), or a non-closed but light-flowing port (Figure 1 (b), (See FIG. 2) and the like. 3 (a) and 4 (a) are reference views of the entire apparatus used in the purification method of the present invention, and FIG. 3 (b) and FIG.
A sectional view thereof is shown in FIG.

【0006】本発明における微生物は、ナトリウムイオ
ン濃度が0.01g/リットル以上(好ましくは0.0
1〜20g/リットル、より好ましくは0.1〜15g
/リットル)の水中に生息する微生物またはナトリウム
イオン濃度が0.01g/リットル以上(好ましくは
0.01〜20g/リットル、より好ましくは0.1〜
15g/リットル)の水中で馴表した微生物であり、海
水の塩濃度及び海水と河川水の混合する冷水機の塩濃度
の範囲において、硝化能力および呼吸能力等の生活活性
を示す微生物である。海水の組成については古くから分
析されており、その具体例(イオン種及びその濃度:g
/kg溶液)を以下に示す。C1-,18.98;So4
2-,2.65;HCO3 -,0.14;Br-,0.0
6;F-,0.001;H3BO3 -,0.02;全アニオ
ン,21.86;Na+,10.56;Mg2+,1.2
7;Ca2+,0.40;K+,0.38;Sr2+,0.
01;全カチオン,12.62;計34.48イオン種
及びその濃度から計算して求めた塩化合物の種類と濃度
(g/kg溶液)は次のとおりである。CaSo4
1.38;MgSO4,2.10;MgBr2,0.0
8;MgCl2,3.28;KCl,0.72;NaC
l,26.69;計34.25上記のような組成の海水
域から気水域の範囲(好ましくはナトリウムイオン濃度
0.1〜140g/リットル、より好ましくは1〜15
g/リットル)において活性を示すことが必要であるた
めに、ナトリウムイオン濃度が0.1g/リットル以下
の水中においては活性が低い。高分子含水ゲルの素材と
しては、寒天、アルギン酸塩、カラギーナンなどの天然
高分子含水ゲル、ポリエチレングリコール、ポリビニル
アルコール、アクリルアミド、エポキシなどの合成高分
子含水ゲルが例示される。これらの中でも、微生物の生
息性が高く、強度・耐久性に優れたポリビニルアルコー
ル系含水ゲルが好ましい。
The microorganism of the present invention has a sodium ion concentration of 0.01 g / liter or more (preferably 0.0
1 to 20 g / liter, more preferably 0.1 to 15 g
The concentration of microorganisms or sodium ions inhabiting water of 0.01 g / liter or more (preferably 0.01 to 20 g / liter, more preferably 0.1 to 20 g / liter).
(15 g / l) of water, and is a microorganism that exhibits living activities such as nitrification ability and respiration ability in the range of salt concentration of seawater and salt concentration of a chiller for mixing seawater and river water. The composition of seawater has been analyzed for a long time, and specific examples (ionic species and their concentrations: g
/ Kg solution) is shown below. C1 -, 18.98; So 4
2-, 2.65; HCO 3 -, 0.14; Br -, 0.0
6; F , 0.001; H 3 BO 3 , 0.02; total anions, 21.86; Na + , 10.56; Mg 2+ , 1.2
7; Ca 2+ , 0.40; K + , 0.38; Sr 2+ , 0.
01; total cation, 12.62; total 34.48 ionic species and the kind and concentration (g / kg solution) of the salt compound calculated from the concentration thereof are as follows. CaSo 4 ,
1.38; MgSO 4 , 2.10; MgBr 2 , 0.0
8; MgCl 2 , 3.28; KCl, 0.72; NaC
1, 26.69; 34.25 in total, ranging from seawater to air-water with the above composition (preferably sodium ion concentration of 0.1 to 140 g / liter, more preferably 1 to 15).
Since it is necessary to exhibit activity at (g / l), the activity is low in water having a sodium ion concentration of 0.1 g / l or less. Examples of the material for the polymer hydrogel include natural polymer hydrogels such as agar, alginate and carrageenan, and synthetic polymer hydrogels such as polyethylene glycol, polyvinyl alcohol, acrylamide and epoxy. Among these, polyvinyl alcohol hydrogel having high habitability of microorganisms and excellent strength and durability is preferable.

【0007】本発明のゲルの形状は、板状、サイコロ
状、球状、繊維状、フィルム状などの任意の形状を適宜
選択することができるが、ゲルを流動させて用いる場合
には、通水性ケース中に内在された高分子含水ゲルが流
出せず、かつ海水と接触して酸化反応を最大限に行うた
めには、サイコロ状または球状が好ましく、その直径は
1〜10mmが好ましく、2〜7mmがより好ましい。
高分子含水ゲルの充填率は通水性ケース容器内で微生物
を包括固定化した高分子含水ゲルが空気と水に良好に接
触するために通水性ケース容器内で流動する必要がある
ことから、通水性ケース容器に50%以下の充填率で充
填するのが好ましい。充填率が50%を越える場合に
は、通水性ケース容器内での高分子含水ゲルの流動性が
低下し、微生物を包括固定化した高分子含水ゲルが空気
と水に良好に接触しない部分が生じ嫌気的となることか
ら好ましくない。
The shape of the gel of the present invention may be appropriately selected from plate-like, dice-like, spherical, fibrous, film-like and the like. When the gel is used by flowing it, it is water-permeable. In order to prevent the polymer hydrogel contained in the case from flowing out and to maximize the oxidation reaction by contacting with seawater, a dice shape or a spherical shape is preferable, and its diameter is preferably 1 to 10 mm, and 2 to 7 mm is more preferable.
The filling rate of the polymer water-containing gel depends on the fact that the polymer water-containing gel in which microorganisms are entrapped and immobilized in the water-permeable case container needs to flow in the water-permeable case container in order to make good contact with air and water. It is preferable to fill the aqueous case container with a filling rate of 50% or less. If the filling rate exceeds 50%, the fluidity of the polymer hydrogel in the water-permeable case container will decrease, and the polymer hydrogel on which the microorganisms have been immobilized will not contact the air and water well. It is not preferable because it is anaerobic.

【0008】本発明において用いる微生物の種類として
は、海水中のBOD成分、COD成分及び窒素含有成分
であるアンモニア蛋白質を酸化又は加水分解する菌が好
ましい。特に海水中において酸化及び加水分解能力を発
揮する耐塩性微生物が好ましく、海水の塩濃度(約2〜
3.5wt%)で馴用した活性汚泥菌、シュードモナス
及び馴用硝化汚泥などを用いることにより耐塩性でかつ
アンモニア、BODおよびCODを酸化、硝化、さらに
場合によっては脱窒処理することが可能である。例え
ば、硝化細菌は、アンモニア性窒素を亜硝酸性窒素に酸
化する亜硝酸菌と亜硝酸性窒素を硝酸性窒素に酸化する
硝酸菌からなる。硝酸菌には、Nitrobacte
r,Nitrocystis,Nitorosomon
as,Nitrosococcus,Nitrosop
rira,Nitrosocyatis,Nitrog
loeaなどがある。脱窒細菌とは、亜硝酸性窒素ある
いは硝酸性窒素を窒素ガスあるいは亜酸化窒素のような
気体に還元する、いわゆる硝酸呼吸を行う細菌を総称す
るが、このような脱窒反応を行う細菌としては、Pse
udomonas,Bacillus,Achromo
bacter,Micrococcusなどの属が用い
られ、これらの中でも、特にPseudomonas
Denitricansは脱窒活性が高い。又、これら
の細菌は酸素を利用して好気的にも生活することがで
き、NO3 -があれば嫌気的にも生活できるが、両者が共
存する場合には、酸素を優先的に利用して脱窒作用を行
わなくなり、脱窒を効果的に行わなくなる。したがっ
て、脱窒を効果的に行わせるには、脱窒細菌の生息環境
の溶存酸素濃度を可能な限り低くする必要がある。動植
物系の油分の分解性を促進するためには、動植物系の油
分を含有する海水濃度で馴用した活性汚泥を用いること
が好ましい。石油系の油分の分解を促進させるために
は、石油系の油分を含有する海水中又は油田等の土中か
ら分離抽出した石油分解菌を培養し、これを用いること
により、油分を積極的に酸化し、炭酸ガス、炭酸カルシ
ウム等の化合物、低分子物、さらに水にまで酸化分解又
は加水分解される。
As the kind of the microorganism used in the present invention, a bacterium that oxidizes or hydrolyzes the BOD component, the COD component and the nitrogen-containing component ammonia protein in seawater is preferable. Particularly, a salt-tolerant microorganism that exerts an oxidizing and hydrolyzing ability in seawater is preferable, and salt concentration of seawater (about 2 to
It is salt-tolerant and can oxidize, nitrify, and even denitrify ammonia, BOD, and COD by using activated sludge bacteria, Pseudomonas, and commonly used nitrifying sludge at 3.5 wt%). is there. For example, nitrifying bacteria consist of nitrite bacteria that oxidize ammoniacal nitrogen to nitrite nitrogen and nitrate bacteria that oxidize nitrite nitrogen to nitrate nitrogen. For nitric acid bacteria, Nitrobacte
r, Nitrocystis, Nitrosomon
as, Nitrosococcus, Nitrosop
rira, Nitrosociatis, Nitrog
loea, etc. Denitrifying bacteria are generically referred to as bacteria that perform so-called nitric respiration, which reduces nitrite nitrogen or nitrate nitrogen to a gas such as nitrogen gas or nitrous oxide. Is Pse
udomonas, Bacillus, Achromo
Genus such as Bacter and Micrococcus are used. Among them, Pseudomonas is particularly used.
Denitricans has high denitrification activity. Also, these bacteria can live aerobically by using oxygen, and can live anaerobically if NO 3 exists, but when both coexist, oxygen is preferentially used. Then, denitrification is not performed, and denitrification is not effectively performed. Therefore, in order to effectively perform denitrification, it is necessary to make the dissolved oxygen concentration in the habitat of denitrification bacteria as low as possible. In order to promote the degradability of animal and vegetable oils, it is preferable to use activated sludge that is used at a seawater concentration containing animal and vegetable oils. In order to accelerate the decomposition of petroleum-based oil components, by culturing petroleum-degrading bacteria that have been separated and extracted from seawater containing oil-based oil components or in the soil of oil fields, etc. It oxidizes and is oxidized or hydrolyzed to carbon dioxide, compounds such as calcium carbonate, low molecular weight substances, and even water.

【0009】高分子含水ゲルの素材として、ポリビニル
アルコールを用いる場合を例に挙げて、本発明をより具
体的に説明する。ポリビニルアルコール系含水ゲルに用
いるポリビニルアルコール(PVA)の平均重合度は1
000以上、好ましくは1700以上で、より好ましく
は1700〜25000であり、ケン化度は98.5モ
ル%以上、好ましくは99.8モル%以上の完全ケン化
PVAがPVA含水ゲルの形成上から好ましい。また本
発明のPVAとしては、本発明の効果を阻害しない範囲
で、公知の種々の変性PVA、シンジオタクチックPV
A等も用いることができる。PVA水溶液の濃度はPV
A含水ゲル形性の観点から、0.1〜40wt%まで可
能であり、PVA濃度が高いほど、より強固なゲルが生
成するが、必要なゲル強度が得られれば、PVA濃度が
低い方が原料コスト面から有利である。PVA含水ゲル
を球状などの形に成形するために、アルギン酸ナトリウ
ムのような水溶性高分子多糖,類を用いてもよい。ま
た、このPVA水溶液には、PVAのゲル化を阻害しな
い範囲で、微生物の培地、固定化担体の強度を上げるた
めの補強剤、生成ゲルの比重を調整する充填材等を添加
してもよい。
The present invention will be described in more detail with reference to the case where polyvinyl alcohol is used as a material for the high-molecular hydrogel. The average degree of polymerization of polyvinyl alcohol (PVA) used for the polyvinyl alcohol-based hydrogel is 1
000 or more, preferably 1700 or more, more preferably 1700 to 25000 and having a saponification degree of 98.5 mol% or more, preferably 99.8 mol% or more from the viewpoint of forming a PVA hydrogel. preferable. The PVA of the present invention includes various known modified PVA and syndiotactic PV within a range that does not impair the effects of the present invention.
A etc. can also be used. The concentration of the PVA aqueous solution is PV
From the viewpoint of A water-containing gel formability, 0.1 to 40 wt% is possible, and the higher the PVA concentration, the stronger the gel is formed, but if the required gel strength is obtained, the lower the PVA concentration is. It is advantageous in terms of raw material cost. In order to form the PVA hydrogel into a spherical shape, a water-soluble polymer polysaccharide, such as sodium alginate, may be used. Further, to the aqueous solution of PVA, a microbial medium, a reinforcing agent for increasing the strength of the immobilized carrier, a filler for adjusting the specific gravity of the produced gel, and the like may be added within a range that does not inhibit the gelation of PVA. .

【0010】PVAのゲル化方法としては、種々の方法
が知られているが、以下の2つの方法が好適に用いられ
る。 PVA水溶液を−5℃以下、好ましくは−10℃以下
に凍結し、少なくとも1時間以上、好ましくは10時間
以上保持後、解凍する凍結−解凍する操作を少なくとも
1回以上、好ましくは2回以上行う。 PVA水溶液をPVAの離液作用のある物質を含む水
溶液、たとえば硫酸ナトリウム水溶液に接触させる。硫
酸ナトリウム水溶液の濃度は100mg/リットル以上
が好ましく、特に飽和水溶液が好ましい。浸漬時間は1
0分以上が好ましく、30分以上がより好ましい。 また、およびの方法を併用してもよいし、乾燥操
作、ホルムアルデヒドやグルタルアルデヒドによる架橋
操作を行ってもよい。
Various methods are known as PVA gelation methods, and the following two methods are preferably used. Freeze the PVA aqueous solution at −5 ° C. or lower, preferably −10 ° C. or lower, and hold it for at least 1 hour or longer, preferably 10 hours or longer, and then thaw-freeze-thaw at least once, preferably twice or more. . The PVA aqueous solution is brought into contact with an aqueous solution containing a substance having a synergic action of PVA, for example, an aqueous sodium sulfate solution. The concentration of the sodium sulfate aqueous solution is preferably 100 mg / liter or more, and a saturated aqueous solution is particularly preferable. Immersion time is 1
0 minutes or more is preferable and 30 minutes or more is more preferable. Further, the methods of and may be used in combination, or a drying operation and a crosslinking operation with formaldehyde or glutaraldehyde may be performed.

【0011】[0011]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例により限定されるもので
はない。高分子含水ゲルの材質・形状は限定されるもの
ではないが、特に耐久性と微生物の生息性に優れた、球
状のPVA系含水ゲルを例に挙げて説明する。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. The material and shape of the polymer hydrogel are not limited, but a spherical PVA hydrogel, which is particularly excellent in durability and habitability of microorganisms, will be described as an example.

【0012】実施例1 (株)クラレ製のポリビニルアルコール(PVA)(平
均重合度4000、ケン化度99.9モル%)を40℃
の温水で約1時間洗浄後、PVA濃度10wt%になる
ようにPVAに水を加えて全量を4kgにしてpH7に
調整した。これを110℃、120分間処理し、PVA
を溶解した後、室温まで放冷した。このPVA水溶液に
4wt%のアルギン酸ナトリウム水溶液2kgを加えて
混合し、さらにナトリウムイオン濃度が0.01〜0.
02g/リットルの排水の排水処理曝気槽より採取し濃
縮操作を施して得られた活性汚泥(MLSS 8000
0mg/リットル)を2kg加え、十分撹拌した。これ
らの混合液を先端に内径1mmのノズルを取り付けた内
径2mmφのステンレス性配管を使用したローラーポン
プで1ノズル当たり1ml/分で送液し、スターラーで
撹拌した0.1モル/リットルの塩化カルシウム(Ca
cl2)水溶液に、液表面15cmの高さより滴下し
た。滴下した液滴はCacl2水溶液中で直ちに球状化
して沈降した。これらの球状化したPVA混合成形物を
全量Cacl2水溶液と分離し、蒸留水で軽く洗浄した
後、−20℃±℃の冷凍庫で凍結した。20時間凍結
後、解凍することによって不透明な褐色の柔軟性に富ん
だ直径約5mmの球状のPVA含水ゲルを得、このPV
A含水ゲルの強度を上げるため、上記の凍結−解凍操作
をさらに2回繰り返した。これを微生物固定化PVA含
水ゲルとして用いた。通水性ケースとして、目合い5m
m塩ビコーティングをしたナイロン製のもじ網を素材に
用いて直径40cm、高さ2m筒状(容積250リット
ル)を作製し、その中に50リットルの微生物固定化P
VA含水ゲルを投入した(充填率20%)。これを10
m四方隔に鉄骨で枠組みした枠を海中に沈め50cm間
隔となるように400本配置した。満潮時に、通水性ケ
ースの先端が海面に出るようにし、重りをつけて海水中
に懸垂した。陸上には送気できるようにブロワーを設置
し、配管にて海底に導入しその先端にセラミック状の散
気管から1週間曝気した(図4(a)および図4(b)
を参照のこと)。その結果、テスト海域近傍の水質を表
1に示す。総合判定としてCODが低下し、アンモニア
が除去された。
Example 1 Polyvinyl alcohol (PVA) manufactured by Kuraray Co., Ltd. (average polymerization degree: 4000, saponification degree: 99.9 mol%) was added at 40 ° C.
After washing with warm water for about 1 hour, PVA was adjusted to pH 7 by adding water to PVA so as to have a concentration of 10 wt% to make the total amount 4 kg. This is treated at 110 ℃ for 120 minutes, PVA
Was dissolved and then left to cool to room temperature. To this PVA aqueous solution, 2 kg of a 4 wt% sodium alginate aqueous solution was added and mixed, and the sodium ion concentration was 0.01 to 0.
Wastewater treatment of 02 g / l wastewater Activated sludge obtained from the aeration tank and concentrated (MLSS 8000
2 mg (0 mg / liter) was added and sufficiently stirred. These mixed solutions were fed at a rate of 1 ml / min per nozzle by a roller pump using a stainless steel pipe having an inner diameter of 2 mmφ with a nozzle having an inner diameter of 1 mm attached to the tip, and stirred with a stirrer to give 0.1 mol / liter calcium chloride. (Ca
It was added dropwise to the cl 2 ) aqueous solution from a height of 15 cm on the liquid surface. The dropped liquid droplets immediately became spherical and settled in the aqueous solution of Cacl 2 . These spheronized PVA mixture molded product separated from the whole amount CaCl 2 aqueous solution, washed briefly with distilled water and frozen in a freezer of -20 ° C. ± ° C.. After freezing for 20 hours and thawing, an opaque brown flexible PVA hydrogel having a diameter of about 5 mm and having a high flexibility was obtained.
The above freeze-thawing operation was repeated twice more in order to increase the strength of the water-containing gel A. This was used as a microorganism-immobilized PVA hydrogel. As a water-permeable case, mesh size is 5m
m Polyvinyl chloride coated nylon mesh net was used as a material to make a cylinder with a diameter of 40 cm and a height of 2 m (volume: 250 liters), in which 50 liters of microorganism-immobilized P
A VA hydrogel was added (filling rate 20%). This is 10
Frames framed by steel frames were sunk in the sea at 400 m intervals, and 400 frames were arranged at 50 cm intervals. At high tide, the tip of the water-permeable case was exposed to the surface of the sea, and a weight was attached to suspend it in the seawater. A blower was installed on the land so that air could be sent, and it was introduced to the seabed by piping, and the tip of the blower was aerated for 1 week from a ceramic diffuser (Fig. 4 (a) and Fig. 4 (b)).
checking). As a result, Table 1 shows the water quality near the test area. As a comprehensive judgment, COD decreased and ammonia was removed.

【0013】[0013]

【表1】 [Table 1]

【0014】実施例2 目開き5mmのステンレス製の板材を用いて、巾10c
m、深さ2m、長さ2mの通水性ケース(0.4m3
を作製し、その中に実施例1で作製した微生物固定化P
VA含水ゲル129リットルを投入した(充填率30
%)。かかる通水性ケースパネルを湾状内へ締切るよう
に設置し、海水の自然潮位により海水が流入流出するよ
うに1ケ月間放置した(図1(a)、図1(b)および
図2を参照のこと)。その結果、海水の水質を表2に示
す。
Example 2 Using a stainless steel plate material having an opening of 5 mm, a width of 10 c
m, depth 2m, length 2m water-permeable case (0.4m 3 )
And the microorganism-immobilized P prepared in Example 1 therein.
129 liters of VA hydrous gel was added (filling rate 30
%). Such a water-permeable case panel was installed so as to close into the bay and left for one month so that seawater could flow in and out due to the natural sea level of the seawater (see FIGS. 1 (a), 1 (b) and 2). See). As a result, the water quality of seawater is shown in Table 2.

【0015】[0015]

【表2】 [Table 2]

【0016】実施例3 横60cm、高さ35.8cm、奥行29.4cmのガ
ラス製の水槽に瀬戸内海(児島湾)の海水55リットル
を入れ、11匹のチヌを投入した。通水性ケースとして
繊維太さ300μmポリエチレン製の玉葱入れ袋をたて
30cm、よこ10cmの袋状に縫い合わせ、その中に
実施例1で作製した微生物固定化PVA含水ゲル200
gを入れて、水槽上部に設けた濾過器に平たく敷き込
み、循環海水がかかるように、浸漬した。水槽内の海水
を1リットル/hrで濾過器に流入し、濾過器槽からオ
ーバーフローする海水を水槽に戻した。エアレーション
を続け、毎日10gの餌を投入した。水槽の海水は交換
しなかった。30日経過後も、水槽の海水は透明なまま
で、藻類も繁殖せず、魚にも異常は認められなかった。
水槽内のTOCおよびアンモニア性窒素濃度を測定し
た。その結果を表3に示すように、きわめた優れた水質
が保たれていることがわかった。
Example 3 55 liters of seawater from the Seto Inland Sea (Kojima Bay) was placed in a glass tank having a width of 60 cm, a height of 35.8 cm, and a depth of 29.4 cm, and 11 chinu were introduced. As a water-permeable case, an onion bag made of polyethylene having a fiber thickness of 300 μm was sewn into a bag shape of 30 cm in height and 10 cm in width, and the microorganism-immobilized PVA hydrogel 200 prepared in Example 1 was sewn into the bag.
g was put and laid flat on a filter provided in the upper part of the water tank, and immersed so that the circulating seawater was applied. Seawater in the water tank was flown into the filter at 1 liter / hr, and seawater overflowing from the filter tank was returned to the water tank. Aeration was continued and 10 g of food was added every day. The seawater in the aquarium was not replaced. After 30 days, the seawater in the aquarium remained transparent, algae did not reproduce, and no abnormalities were observed in the fish.
The TOC and ammonia nitrogen concentration in the water tank were measured. The results are shown in Table 3, and it was found that the excellent water quality was maintained.

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【発明の効果】本発明によると、海水中のBOD、CO
Dおよびアンモニア成分などを浄化することが可能とな
った。更に港湾内、閉鎖性海域および養殖用海域などの
浄化も可能となり、富栄養化の防止および赤潮対策など
の環境保全にも有用である。
According to the present invention, BOD and CO in seawater
It became possible to purify D and ammonia components. In addition, it will be possible to purify the inside of the harbor, closed sea areas and aquaculture areas, and it will be useful for environmental conservation such as prevention of eutrophication and red tide measures.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)は閉鎖性湾の入口部を示し、図1
(b)は閉鎖性湾に通水性ケースを配置した平面図であ
る。
1 (a) shows the entrance to a closed bay, FIG.
(B) is a plan view in which a water-permeable case is arranged in a closed bay.

【図2】図2は、図1(a)および図1(b)の模式的
断面図である。
FIG. 2 is a schematic cross-sectional view of FIGS. 1 (a) and 1 (b).

【図3】図3(a)および図3(b)は閉鎖性湾内に板
状の通水性ケースを配置した平面図および断面図であ
る。
FIG. 3 (a) and FIG. 3 (b) are a plan view and a cross-sectional view in which a plate-shaped water permeable case is arranged in a closed bay.

【図4】図4(a)および図4(b)は閉鎖性湾内に筒
状の通水性ケースを配置した平面図および断面図であ
る。
FIG. 4 (a) and FIG. 4 (b) are a plan view and a cross-sectional view in which a tubular water-permeable case is arranged in a closed bay.

【符号の説明】[Explanation of symbols]

1:陸地 2:通水性ケース 3:通水性ケースの固定杭又はフロート 4:海 5:海底面 6:満潮時潮位 7:干潮時潮位 8:2の通水性ケースの基礎 9:送気ブロワー 10:送気パイプ 11:散気管 12:2を固定する支柱 13:筋かい 1: Land 2: Water-permeable case 3: Fixed pile or float of water-permeable case 4: Sea 5: Sea bottom 6: Tidal level at high tide 7: Tidal level at low tide 8: Basis of water-permeable case 9: Air blower 10 : Air supply pipe 11: Air diffuser 12: Support column for fixing 2 2 13: Brace

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ナトリウムイオン濃度が0.01g/リ
ットル以上の水中に生息する微生物またはナトリウムイ
オン濃度が0.01g/リットル以上の水中で馴用した
微生物を包括固定化した高分子含水ゲルを内在する通水
性ケースを水中に浸漬し、エアレーションすることを特
徴とするナトリウムイオン濃度が0.1g/リットル以
上の水の浄化方法。
1. A high-molecular hydrogel containing a polymer immobilizing and entrapping microorganisms inhabiting water having a sodium ion concentration of 0.01 g / liter or more or microorganisms acclimatized in water having a sodium ion concentration of 0.01 g / liter or more. A method for purifying water having a sodium ion concentration of 0.1 g / liter or more, which comprises immersing the water-permeable case in water and aerating.
JP21406993A 1993-08-30 1993-08-30 Method for purification of sea water Pending JPH0760266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21406993A JPH0760266A (en) 1993-08-30 1993-08-30 Method for purification of sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21406993A JPH0760266A (en) 1993-08-30 1993-08-30 Method for purification of sea water

Publications (1)

Publication Number Publication Date
JPH0760266A true JPH0760266A (en) 1995-03-07

Family

ID=16649737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21406993A Pending JPH0760266A (en) 1993-08-30 1993-08-30 Method for purification of sea water

Country Status (1)

Country Link
JP (1) JPH0760266A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003260481A (en) * 2002-03-08 2003-09-16 Hitachi Plant Eng & Constr Co Ltd Carrier packed body and water treatment method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003260481A (en) * 2002-03-08 2003-09-16 Hitachi Plant Eng & Constr Co Ltd Carrier packed body and water treatment method using the same

Similar Documents

Publication Publication Date Title
Stewart et al. Floating islands as an alternative to constructed wetlands for treatment of excess nutrients from agricultural and municipal wastes–results of laboratory-scale tests
CA2145031C (en) Method and apparatus for in situ water purification including sludge reduction within water bodies by biofiltration and for hypolimnetic aeration of lakes
JPH0899092A (en) Waste water treatment apparatus and method
JP6100301B2 (en) Purification device and aquarium equipped with the same
JPH07124581A (en) Device and process for drainage treatment
CN110759490A (en) Micro-nano aeration biological contact oxidation water body purification method and device
CN109851163B (en) Slow-flow small-watershed algae removal and control method
Parker Process Design Manual for Nitrogen Control.
JP2599834B2 (en) Water quality improvement method
CN110015813A (en) The original sub-block device and method containing middle low concentration nutritive salt based on biofilter
US7008539B2 (en) Submerged ammonia removal system and method
KR101834375B1 (en) Stagnant water bodies and river restoration system
CN209759238U (en) System for adopt combination technology to purify lake water
KR100453199B1 (en) Device for purifying water in lake by functional ceramics and method therefor
CN211198771U (en) Ozone micro-nano aeration biological contact oxidation water body purification device
CN213834719U (en) Immobilized carrier microorganism stabilization pond
JPH0760266A (en) Method for purification of sea water
CN111943434A (en) Micro-polluted drinking water source biological ecological restoration system and method
JP4161124B2 (en) Biological nitrification equipment
KR20010000303A (en) A Soil Clothing-Style Contact Oxidation Apparatus with Recycle of Nitrified Liquid and Contact Oxidation Method of Using the Same
CN105692905A (en) Land treatment method and device for ecotype landscape water body
JPH0351479B2 (en)
JP3299806B2 (en) Wastewater treatment method
CN216106231U (en) Microorganism directional conversion pool
CN211999385U (en) Multistage sewage purification pond