JPH0759907B2 - Deceleration control device for internal combustion engine - Google Patents

Deceleration control device for internal combustion engine

Info

Publication number
JPH0759907B2
JPH0759907B2 JP60293263A JP29326385A JPH0759907B2 JP H0759907 B2 JPH0759907 B2 JP H0759907B2 JP 60293263 A JP60293263 A JP 60293263A JP 29326385 A JP29326385 A JP 29326385A JP H0759907 B2 JPH0759907 B2 JP H0759907B2
Authority
JP
Japan
Prior art keywords
deceleration
air
air flow
fuel ratio
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60293263A
Other languages
Japanese (ja)
Other versions
JPS62153540A (en
Inventor
精一 大谷
伸平 中庭
Original Assignee
株式会社ユニシアジェックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニシアジェックス filed Critical 株式会社ユニシアジェックス
Priority to JP60293263A priority Critical patent/JPH0759907B2/en
Publication of JPS62153540A publication Critical patent/JPS62153540A/en
Publication of JPH0759907B2 publication Critical patent/JPH0759907B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は内燃機関の減速制御装置に関する。The present invention relates to a deceleration control device for an internal combustion engine.

〈従来の技術〉 内燃機関のアイドル回転数を最適値に保持させて燃費を
改善するために、近年では第6図に示すように吸気絞弁
1の上下流間をバイパス接続する補助空気通路2に空気
流量制御弁としてのアイドル制御弁3を介装し、このア
イドル制御弁3の開度を、機関回転数及び機関冷却水温
度等に基づく機関運転状態に応じてコントロールユニッ
ト4からのパルス信号のデューティ比を変化させること
により増減調整して、アイドル回転数を制御するように
したアイドル回転数制御装置が設けられている。尚、5
は機関本体、6はエアフローメータ、7はエアクリーナ
を示す。
<Prior Art> In order to maintain the idle speed of the internal combustion engine at an optimum value and improve the fuel consumption, in recent years, as shown in FIG. 6, an auxiliary air passage 2 that bypass-connects the upstream and downstream of the intake throttle valve 1 An idle control valve 3 as an air flow control valve is installed in the valve, and the opening degree of the idle control valve 3 is a pulse signal from the control unit 4 according to the engine operating state based on the engine speed, the engine cooling water temperature, and the like. There is provided an idle speed control device for controlling the idle speed by increasing / decreasing the duty ratio by controlling the idle speed. 5
Is an engine body, 6 is an air flow meter, and 7 is an air cleaner.

ところで、かかるアイドル回転数制御装置には、減速直
後のオーバリッチに基づくアフターバーンの防止及びエ
ミッション対策としてアンチアフターバーンバルブ(AB
V)機能に相当する減速時空燃比補正機能が備えられて
いる。
By the way, such an idle speed control device has an anti-afterburn valve (AB
V) function is provided for deceleration air-fuel ratio correction.

これは、吸気絞弁1が全閉となる減速直後に吸気マニホ
ルド内の燃料が燃焼室に流れ込むと、空燃比がオーバリ
ッチになり着火せずにそのまま排気系に排出され、2次
空気や排気熱によりアフターバーニングを起こし排気系
に悪影響を及ぼすので、これを防止するために減速時に
吸気マニホルドに空気を導入するようにしており、この
空気量をアイドル制御弁3の開度を調整して制御するよ
うにしたものである。
This is because when the fuel in the intake manifold flows into the combustion chamber immediately after deceleration when the intake throttle valve 1 is fully closed, the air-fuel ratio becomes overrich, and it is discharged to the exhaust system as it is without igniting secondary air and exhaust gas. Afterburning is caused by heat and adversely affects the exhaust system. To prevent this, air is introduced into the intake manifold during deceleration, and this air amount is controlled by adjusting the opening of the idle control valve 3. It is something that is done.

〈発明が解決しようとする問題点〉 従来の減速時空燃比補正制御では、機関冷却水温度及び
吸入空気流量に基づいて、減速直前のアイドル制御弁3
の初期開度制御量、即ち空燃比補正分のパルス信号の初
期デューティ比を決定し、以後、減速中は一定の割合で
この空燃比補正分のデューティ比を零になるまで減少さ
せるようにしている(第5図中実線で示す)。
<Problems to be Solved by the Invention> In the conventional deceleration air-fuel ratio correction control, the idle control valve 3 immediately before deceleration is based on the engine cooling water temperature and the intake air flow rate.
The initial opening control amount, that is, the initial duty ratio of the pulse signal for the air-fuel ratio correction is determined, and thereafter, during deceleration, the duty ratio for the air-fuel ratio correction is reduced to zero at a constant rate. (Shown by the solid line in FIG. 5).

ところが、従来の前記初期デューティ比及び減少割合の
設定では、機関の減速応答性が悪く加速感のある減速状
態となり市街地走行時には危険であった。
However, in the conventional setting of the initial duty ratio and the reduction ratio, the deceleration response of the engine is poor and the vehicle is in a decelerated state with a feeling of acceleration, which is dangerous when driving in urban areas.

そこで、かかる問題を改善するために、初期デューティ
比の設定レベルを下げたり、或いは減少割合を大きくす
る等の対策が考えられる(第5図中鎖線で示す)が、こ
の場合には、加速感を伴う減速状態は解消できるもの
の、減速ショックが大きくなってしまうという問題が発
生してしまう。
Therefore, in order to improve such a problem, measures such as lowering the set level of the initial duty ratio or increasing the reduction ratio can be considered (indicated by the chain line in FIG. 5). Although the deceleration state accompanied by the can be solved, the problem that the deceleration shock becomes large occurs.

本発明は上記の実情に鑑みてなされたもので、減速ショ
ックを増大させることなく快い減速感が得られるような
減速時空燃比補正機能を有する減速制御装置を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a deceleration control device having a deceleration-time air-fuel ratio correction function that allows a pleasant deceleration feeling to be obtained without increasing deceleration shock.

〈問題点を解決するための手段〉 このため本発明では、第1図に示すように、吸気絞弁を
バイパスする補助空気通路にパルス信号によって駆動さ
れそのデューティ比に応じて開度が調整される空気流量
制御弁を有する一方、減速時に前記空気流量制御弁の開
度制御を行って減速時の空燃比オーバリッチを防止する
減速時空燃比補正手段を備えた内燃機関において、機関
吸入空気流量検出手段と、機関冷却水温検出手段と、機
関回転数検出手段とを設けると共に、前記減速時空燃比
補正手段を、減速開始時の吸入空気流量と冷却水温とに
基づいて前記空気流量制御弁の開度制御量の初期値を設
定する初期制御量設定手段と、該初期制御量設定手段で
設定された初期値を減速開始からの経過時間に応じて減
少割合を増大させつつ且つ機関回転数が高い程前記減少
割合の増大を大きくして減少補正する補正手段とで構成
するようにした。
<Means for Solving Problems> Therefore, in the present invention, as shown in FIG. 1, the auxiliary air passage bypassing the intake throttle valve is driven by a pulse signal to adjust the opening degree according to the duty ratio. In an internal combustion engine having a deceleration-time air-fuel ratio correction means for controlling an opening degree of the air-flow rate control valve during deceleration to prevent an air-fuel ratio overrich during deceleration, Means, an engine cooling water temperature detection means, and an engine speed detection means, and the deceleration-time air-fuel ratio correction means is configured to open the air flow control valve based on the intake air flow rate and the cooling water temperature at the start of deceleration. The initial control amount setting means for setting the initial value of the control amount, the initial value set by the initial control amount setting means, while increasing the reduction rate according to the elapsed time from the start of deceleration The higher the reduction ratio, the larger the increase in the decrease ratio, and the correction means for correcting the decrease.

〈作用〉 上記の構成において、減速の検出によりその検出時の吸
入空気流量及び冷却水温に基づいて空気流量制御弁の空
燃比補正分の初期弁開度制御量が設定され、減速時にお
ける空燃比補正分の初期空気流量が決定される。その
後、減速開始からの経過時間に応じて空燃比と補正分の
初期設定値をその減少割合を増大させつつ且つ機関回転
数が高い程減少割合の増大を大きくして空燃比補正分が
零となるまで減少補正するので、減速初期ではオーバリ
ッチを防止するのに充分な空気量を供給できて失火等に
伴う減速ショックが増大することはなく、また、時間の
経過に伴い、しかも、減速開始時の機関回転数が高い程
空気量の減少勾配が大きくなって、機関の減速がスムー
ズに行え良好な減速感が得られるようになる。
<Operation> In the above configuration, by detecting deceleration, the initial valve opening control amount for air-fuel ratio correction of the air flow control valve is set based on the intake air flow rate and cooling water temperature at the time of detection, and the air-fuel ratio at deceleration is set. The correction initial air flow rate is determined. After that, the initial set values of the air-fuel ratio and the correction amount are increased in accordance with the elapsed time from the start of deceleration, and the increase in the reduction ratio is increased as the engine speed increases, and the air-fuel ratio correction amount becomes zero. Since the decrease correction is performed until that time, in the initial stage of deceleration, enough air can be supplied to prevent overrich, and the deceleration shock due to misfire etc. will not increase, and with the passage of time, deceleration start The higher the engine speed at this time, the larger the gradient of decrease in the amount of air, so that the engine can be smoothly decelerated and a good feeling of deceleration can be obtained.

〈実施例〉 以下、本発明の実施例を図面に基づいて説明する。尚、
ハードウェア構成は第6図に示した従来のものと同様で
あり、減速時空燃比補正制御に関するソフトウェア構成
のみが異なるので、このソフトウェア構成のみについて
以下に説明する。
<Example> Hereinafter, an example of the present invention is described based on a drawing. still,
The hardware configuration is the same as that of the conventional one shown in FIG. 6, and only the software configuration relating to the deceleration air-fuel ratio correction control is different. Therefore, only this software configuration will be described below.

第2図は本発明の一実施例の減速時空燃比補正制御に関
するフローチャートである。
FIG. 2 is a flow chart relating to deceleration air-fuel ratio correction control of one embodiment of the present invention.

図において、S1では、例えばクランク角センサ,水温セ
ンサ,エアフローメータからそれぞれ機関回転数,冷却
水温度,吸入空気流量の各データとアイドルスイッチか
らのデータを入力する。S2では、前記アイドルスイッチ
がONかOFFかにより減速か否かの判定を行う。そして、
減速であると判定されたときはS3に進み、減速判定が初
回か2回目以後か、即ち減速開始時か減速途中かの判定
を行い初回(YES)、即ち減速開始時の場合はS4に進
む。
In FIG. 1, in S1, data of engine speed, cooling water temperature, intake air flow rate, and data from an idle switch are input from a crank angle sensor, a water temperature sensor, and an air flow meter, respectively. In S2, it is determined whether or not deceleration is being performed depending on whether the idle switch is ON or OFF. And
When it is determined that the vehicle is decelerating, the process proceeds to S3, and it is determined whether the deceleration determination is the first time or the second or later time, that is, whether the deceleration is started or is in the middle of deceleration. .

S4では、第3図に示す減速時空燃比補正分の初期制御量
マップにより減速開始時の吸入空気流量及び冷却水温度
に基づいて、減速開始時点における減速時空燃比補正分
の初期制御量、即ちデューティ比の初期値を設定する
(初期制御量設定機能)。次にS5では、第4図に示すよ
うな減速開始時の機関回転数に基づいた制御量の減少率
特性を選択し経過時間に応じて減少率を検索し、S6で現
在の減速時空燃比補正分の制御量からS5で検索した減少
率を減算する(減少補正機能)。
In S4, based on the initial control amount map for deceleration air-fuel ratio correction shown in FIG. 3, based on the intake air flow rate and cooling water temperature at the start of deceleration, the initial control amount for deceleration air-fuel ratio correction at the time of deceleration start, that is, duty Set the initial value of the ratio (initial control amount setting function). Next, in S5, the decrease rate characteristic of the control amount based on the engine speed at the start of deceleration as shown in FIG. 4 is selected, the decrease rate is searched according to the elapsed time, and the current deceleration air-fuel ratio correction is performed in S6. The reduction rate retrieved in S5 is subtracted from the minute control amount (decrease correction function).

そして、S7ではS6で減算演算値が零になったか否かの判
定を行い、零でなければ再び経過時間に基づいて減少率
の検索を行って前回の減算演算値を現在の制御量とし
て、当該制御量から検索された減少率を減算する。この
ようにして、漸次減速時空燃比補正分の制御量を減算補
正して零になるまで減少させていく。
Then, in S7, it is determined whether or not the subtraction calculation value becomes zero in S6, and if it is not zero, the decrease rate is searched again based on the elapsed time, and the previous subtraction calculation value is set as the current control amount, The reduction rate retrieved is subtracted from the control amount. In this manner, the control amount corresponding to the air-fuel ratio correction during gradual deceleration is subtractively corrected to decrease it to zero.

このようにすれば、減速初期にはオーバリッチ防止及び
エミッション対策上、充分な吸入空気量を確保すること
ができると共に、減速時での空燃比補正分の減少を早め
ることができる。このため、減速直後における減速ショ
ックは増大せず、しかも機関回転数をスムーズに低下さ
せることができ快い減速感が得られる(第5図中の破線
で示す)。
With this configuration, it is possible to secure a sufficient intake air amount in the early stage of deceleration for the purpose of preventing overrich and emission measures, and it is possible to accelerate the decrease in the air-fuel ratio correction amount during deceleration. Therefore, the deceleration shock immediately after deceleration does not increase, and moreover, the engine speed can be smoothly reduced and a pleasant deceleration feeling can be obtained (shown by the broken line in FIG. 5).

〈発明の効果〉 以上述べたように本発明によれば、減速開始時の吸入空
気流量と冷却水温に基づいて減速時の空燃比補正分制御
量の初期値を設定すると共に、減速開始時の機関回転数
が高い程且つ減速からの時間が経過する程制御量の減少
割合を大きくして減少補正する構成としたので、減速時
空燃比補正分の空気量を時間の経過に伴って急激に減少
でき、かつ、減速時の機関回転数が高い程減速後期の減
少を速くできる。従って、減速ショックを増大させるこ
となく素早く減速でき減速感を向上できる。また、減速
時のオーバリッチ化の主要因である壁流燃料の量に合っ
た減速時の空燃比補正精度が向上する。
<Effects of the Invention> As described above, according to the present invention, the initial value of the air-fuel ratio correction amount control amount at the time of deceleration is set based on the intake air flow rate at the time of deceleration start and the cooling water temperature. As the engine speed is higher and the time after deceleration elapses, the reduction rate of the control amount is increased and the reduction correction is performed.Therefore, the air amount for deceleration air-fuel ratio correction decreases rapidly with the passage of time. In addition, the higher the engine speed during deceleration, the faster the reduction in the latter half of deceleration. Therefore, it is possible to quickly decelerate without increasing the deceleration shock and improve the feeling of deceleration. Further, the accuracy of air-fuel ratio correction during deceleration that matches the amount of wall-flow fuel, which is the main cause of overriching during deceleration, is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例の制御フローチャート、第3図は同上実施
例で使用する初期制御量設定特性図、第4図は同上実施
例で使用する制御量減少率特性図、第5図は本発明と従
来例との減速特性を比較する図、第6図は従来例を説明
するためのハードウェア構成図である。 1……吸気絞弁、2……補助空気通路、3……アイドル
制御弁(空気流量制御弁)、4……コントロールユニッ
ト、5……機関本体、6……エアフロメータ
FIG. 1 is a block diagram showing the configuration of the present invention, FIG. 2 is a control flowchart of an embodiment of the present invention, FIG. 3 is an initial control amount setting characteristic diagram used in the same embodiment, and FIG. FIG. 5 is a diagram for comparing deceleration characteristics of the present invention with a conventional example, and FIG. 6 is a hardware configuration diagram for explaining the conventional example. 1 ... intake throttle valve, 2 ... auxiliary air passage, 3 ... idle control valve (air flow control valve), 4 ... control unit, 5 ... engine body, 6 ... air flow meter

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−32035(JP,A) 特開 昭57−2441(JP,A) 特開 昭59−119040(JP,A) 特開 昭58−155239(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-57-32035 (JP, A) JP-A-57-2441 (JP, A) JP-A-59-119040 (JP, A) JP-A 58- 155239 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】吸気絞弁をバイパスする補助空気通路にパ
ルス信号によって駆動されそのデューティ比に応じて開
度が調整される空気流量制御弁を有する一方、減速時に
前記空気流量制御弁の開度制御を行って減速時の空燃比
オーバリッチを防止する減速時空燃比補正手段を備えた
内燃機関において、機関吸入空気流量検出手段と、機関
冷却水温検出手段と、機関回転数検出手段とを設けると
共に、前記減速時空燃比補正手段を、減速開始時の吸入
空気流量と冷却水温とに基づいて前記空気流量制御弁の
開度制御量の初期値を設定する初期制御量設定手段と、
該初期制御量設定手段で設定された初期値を減速開始か
ら経過時間に応じて減少割合を増大させつつ且つ機関回
転数が高い程前記減少割合の増大を大きくして減少補正
する補正手段とで構成したことを特徴とする内燃機関の
減速制御装置。
1. An auxiliary air passage that bypasses an intake throttle valve is provided with an air flow control valve that is driven by a pulse signal and whose opening is adjusted according to its duty ratio, while the opening of the air flow control valve is used during deceleration. In an internal combustion engine equipped with deceleration air-fuel ratio correction means for performing control to prevent air-fuel ratio overrich during deceleration, engine intake air flow rate detection means, engine cooling water temperature detection means, and engine speed detection means are provided. An air-fuel ratio correction means for deceleration, an initial control amount setting means for setting an initial value of an opening control amount of the air flow control valve based on an intake air flow rate and a cooling water temperature at the start of deceleration,
Correcting means for increasing and decreasing the initial value set by the initial control amount setting means in accordance with the elapsed time from the start of deceleration, and increasing the decrease rate as the engine speed increases to correct the decrease. A deceleration control device for an internal combustion engine, which is configured.
JP60293263A 1985-12-27 1985-12-27 Deceleration control device for internal combustion engine Expired - Lifetime JPH0759907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60293263A JPH0759907B2 (en) 1985-12-27 1985-12-27 Deceleration control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60293263A JPH0759907B2 (en) 1985-12-27 1985-12-27 Deceleration control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS62153540A JPS62153540A (en) 1987-07-08
JPH0759907B2 true JPH0759907B2 (en) 1995-06-28

Family

ID=17792557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60293263A Expired - Lifetime JPH0759907B2 (en) 1985-12-27 1985-12-27 Deceleration control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0759907B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368738A (en) * 1986-09-10 1988-03-28 Mazda Motor Corp Air intake amount control device for engine
JPH03237242A (en) * 1990-02-13 1991-10-23 Mitsubishi Motors Corp Intake air quantity control for internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732035A (en) * 1980-08-05 1982-02-20 Toyota Motor Corp Intake air quantity control method for internal combustion engine
JPS58155239A (en) * 1982-03-11 1983-09-14 Toyota Motor Corp Control method for idling revolution number

Also Published As

Publication number Publication date
JPS62153540A (en) 1987-07-08

Similar Documents

Publication Publication Date Title
JPH0821290A (en) Sensor abnormality resolving device for electronic control system for internal combustion engine
JP3970532B2 (en) EGR valve control device
JPH0759907B2 (en) Deceleration control device for internal combustion engine
JPH09209800A (en) Intake air quantity control device for internal combustion engine
JP2510877B2 (en) Auxiliary air control device for internal combustion engine
JPS6019936A (en) Method of controlling rotational speed of internal-combustion engine
JPH06123258A (en) Exhaust gas recirculation device for internal combustion engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
JP2572733B2 (en) Engine fuel supply control device
JPH08284765A (en) Evaporative fuel purged quantity controller for evaporative fuel treatment device
JP2930256B2 (en) Engine throttle valve controller
JP2555211B2 (en) Internal combustion engine control method
JPH09217642A (en) Control device of internal combustion engine
JPS61247868A (en) Engine ignition timing control device
JPS6019934A (en) Method of controlling rotational speed of internal-combustion engine
JP2778392B2 (en) Engine control device
JP2987675B2 (en) Intake control device for internal combustion engine
JPH08277752A (en) Exhaust gas reflux controller of internal combustion engine
JP2516058B2 (en) Idle speed control device for internal combustion engine for vehicle
JP2526909B2 (en) Idle speed control method for internal combustion engine
JPH0788790B2 (en) Deceleration control device for internal combustion engine
JP2510878B2 (en) Auxiliary air amount control device for internal combustion engine
JPH0734918A (en) Controller of internal combustion engine
JPH086616B2 (en) Engine controller
JPS6040744A (en) Intake-air vacuum detecting device in cylinder-number controlling engine