JPH0759777A - Ultrasonic diagnostic system for lumen - Google Patents

Ultrasonic diagnostic system for lumen

Info

Publication number
JPH0759777A
JPH0759777A JP5214168A JP21416893A JPH0759777A JP H0759777 A JPH0759777 A JP H0759777A JP 5214168 A JP5214168 A JP 5214168A JP 21416893 A JP21416893 A JP 21416893A JP H0759777 A JPH0759777 A JP H0759777A
Authority
JP
Japan
Prior art keywords
center
tomographic image
gravity
lumen
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5214168A
Other languages
Japanese (ja)
Other versions
JP3316268B2 (en
Inventor
Takashi Ito
貴司 伊藤
Keibun Sou
景文 曹
Kazuhiro Jo
和博 城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP21416893A priority Critical patent/JP3316268B2/en
Publication of JPH0759777A publication Critical patent/JPH0759777A/en
Application granted granted Critical
Publication of JP3316268B2 publication Critical patent/JP3316268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To stably observe the tomographic image of a lumen by operating the center-of-gravity position of an ultrasonic tomographic image and superposing the same on the center position of a screen. CONSTITUTION:The echo data stored in an echo data memory 17 is stored in a display memory 19 through a DSC circuit 18. The DSC circuit 18 performs the coordinates transformation from an orthogonal coordinate system to a polar coordinate system. The center of an ultrasonic probe (the origin of radial scanning) is altered corresponding to the displacement of the relative position of a lumen and the ultrasonic probe. This displacement is detected by detecting the shift of the center of gravity of a tomographic image from the echo data. The shift quantity of the center of gravity of the tomographic image to the origin is calculated as a center-of-gravity position. Then, the origin is calculated at every frame from the center-of-gravity position of the detected tomographic image and the position of the center point of the screen on the display memory 19 according to a predetermined formula. By converting the center-of-gravity position of the tomographic image, the shift of the center of gravity of the tomographic image in the display memory is corrected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、管腔内超音波診断装置
に関し、特に管腔及び超音波プローブの変動に対し、再
現性良く安定性の高い診断像を得る管腔内超音波診断装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intraluminal ultrasonic diagnostic apparatus, and more particularly, to an intraluminal ultrasonic diagnostic apparatus that obtains a diagnostic image with high reproducibility and stability against variations in the lumen and the ultrasonic probe. Regarding

【0002】[0002]

【従来の技術】管腔内超音波診断装置として、超音波内
視鏡が胃壁などの診断に用いられている。近年、エコー
カテーテル、超音波マイクロプローブなどの小型超音波
プローブを血管や胆管、膵管などの管腔内に挿入しなが
ら管腔内の断層像を表示する装置が開発されている。通
常、これら管腔内用の超音波プローブは、超音波ビーム
を機械的、又は、電子的にラジアル走査して、管腔内で
超音波の送受信を行っている。そして、ラジアル走査の
原点を表示画面の中央に置き、管腔断層像を画面上に表
示している。
2. Description of the Related Art As an intraluminal ultrasonic diagnostic apparatus, an ultrasonic endoscope is used to diagnose the stomach wall and the like. In recent years, a device has been developed which displays a tomographic image in a lumen while inserting a small ultrasonic probe such as an echo catheter or an ultrasonic microprobe into the lumen such as a blood vessel, a bile duct, or a pancreatic duct. Usually, these ultrasonic probes for intraluminal use mechanically or electronically scan the ultrasonic beam radially to transmit and receive ultrasonic waves within the lumen. Then, the origin of the radial scanning is placed at the center of the display screen, and the lumen tomographic image is displayed on the screen.

【0003】[0003]

【発明が解決しようとする課題】超音波ビームをラジア
ル走査して管腔内の断層像を得る場合、管腔の断面図の
中心と超音波マイクロプローブの原点とが常に一致する
状態であるならば、再現性良く、安定した断層像を観察
可能である。しかし、実際の使用上では、超音波マイク
ロプローブを管腔内の挿入経路に沿って移動させたり、
管腔が変動を生じたりする。このため、断層像に位置変
動を生じる。この断層像の位置変動について、血管断層
像の画面である図5を用いて説明する。図5(a)は、
血管の断面図の中心と超音波マイクロプローブの原点と
を一致させた状態である。図5(b)は、超音波マイク
ロプローブは前記図5(a)と同一位置であるが、血管
が変動したため血管の外壁が画面から食み出し、観測で
きない血管の部分も存在する。もしこの食み出た部分に
疾患があった場合、重要な部分を見落とすなど誤診の可
能性も生じ、超音波診断の目的を果たせない結果となる
可能性もある。
When the ultrasonic beam is radially scanned to obtain a tomographic image in the lumen, if the center of the cross-sectional view of the lumen and the origin of the ultrasonic microprobe are always coincident with each other. If so, a stable tomographic image can be observed with good reproducibility. However, in actual use, the ultrasonic microprobe is moved along the insertion path inside the lumen,
The lumen may fluctuate. Therefore, the position change occurs in the tomographic image. The positional variation of the tomographic image will be described with reference to FIG. 5, which is a screen of the blood vessel tomographic image. Figure 5 (a) shows
It is a state in which the center of the cross-sectional view of the blood vessel and the origin of the ultrasonic microprobe are aligned. FIG. 5B shows the ultrasonic microprobe at the same position as in FIG. 5A, but the outer wall of the blood vessel protrudes from the screen because the blood vessel has changed, and there is also a portion of the blood vessel that cannot be observed. If there is a disease in this protruding part, there is a possibility of misdiagnosis such as overlooking an important part, which may result in the failure of the purpose of ultrasonic diagnosis.

【0004】ここでは、血管が変位した場合の一例を示
したが、超音波マイクロプローブが変位した場合、又
は、血管及び超音波マイクロプローブが共に変位し、こ
の血管と超音波マイクロプローブとの相対位置が変化し
た場合も同様の問題が生じる。この変化による影響は、
いずれの場合も血管と超音波マイクロプローブとの相対
位置の変位により表現される。
Here, an example in which the blood vessel is displaced is shown, but when the ultrasonic microprobe is displaced, or both the blood vessel and the ultrasonic microprobe are displaced, the blood vessel and the ultrasonic microprobe are moved relative to each other. A similar problem occurs when the position changes. The impact of this change is
In either case, it is expressed by the displacement of the relative position between the blood vessel and the ultrasonic microprobe.

【0005】本発明は、このような課題に鑑みなされた
ものであり、例えば図5(a)に対する図5(b)の血
管と超音波マイクロプローブとの相対位置の変位方向と
変位量を検出し、血管の断面図を前記変位方向と逆方向
に前記変異量と同じ値移動したならば、図5(c)のよ
うな断層像となり、超音波マイクロプローブが変位した
場合と等価状態となるが、血管の位置は初めの図5
(a)と同一位置となり、再現性ある断層像の観測が継
続可能である。このように、管腔内における超音波プロ
ーブと血管との相対位置の変動に起因する管腔断層像の
変位を補正して表示することにより、安定した管腔断層
像を観測可能な管腔内超音波診断装置を提供することが
できる。
The present invention has been made in view of the above problem, and detects the displacement direction and the displacement amount of the relative position between the blood vessel and the ultrasonic microprobe in FIG. 5B with respect to FIG. 5A, for example. Then, if the cross-sectional view of the blood vessel is moved in the direction opposite to the displacement direction by the same value as the amount of mutation, a tomographic image as shown in FIG. 5C is obtained, which is equivalent to the case where the ultrasonic microprobe is displaced. However, the position of the blood vessel is shown in the first figure.
The position is the same as in (a), and reproducible tomographic image observation can be continued. In this way, by correcting and displaying the displacement of the luminal tomographic image caused by the change in the relative position between the ultrasonic probe and the blood vessel in the luminal cavity, a stable luminal tomographic image can be observed in the luminal cavity. An ultrasonic diagnostic apparatus can be provided.

【0006】[0006]

【課題を解決するための手段】管腔内に挿入した超音波
プローブにより、管腔内の超音波断層像を得る管腔内超
音波診断装置において、超音波断層像の重心点を演算す
る重心位置設定手段と、前記重心位置が画面の中心位置
に重なるように超音波診断像全体を移動させる重心補正
手段と、を備える。
[MEANS FOR SOLVING THE PROBLEMS] In an intraluminal ultrasonic diagnostic apparatus for obtaining an ultrasonic tomographic image in a lumen by an ultrasonic probe inserted in the lumen, a center of gravity for calculating the center of gravity of the ultrasonic tomographic image. Position setting means and center-of-gravity correction means for moving the entire ultrasonic diagnostic image so that the center-of-gravity position overlaps the center position of the screen.

【0007】[0007]

【作用】上記重心補正手段により、管腔内における超音
波プローブと管腔との相対的位置の変動に起因する管腔
断層像の変位を補正して、管腔の変動前の超音波診断像
の重心位置に管腔を移動させる。
The displacement of the tomographic image of the lumen caused by the change in the relative position between the ultrasonic probe and the lumen in the lumen is corrected by the center-of-gravity correcting means, and the ultrasonic diagnostic image before the change of the lumen is corrected. Move the lumen to the center of gravity position of.

【0008】[0008]

【実施例】図1に本発明の一実施例に係る管腔内超音波
診断装置の概略構成図を示す。図1において、超音波プ
ローブ21は管腔内挿入用のプローブ、例えばエコーカ
テーテルであり、これは超音波を送波するための高周波
パルス発信器と、超音波ビームのラジアル走査を行うた
めの走査機構と、管腔内から返ってくるエコーを受信す
る受信回路とを備える送受信回路14に接続される。超
音波プローブ21と送受信回路14により受信されたエ
コー信号は、増幅検波回路15により、増幅及び検波な
どの信号処理が行われ、その出力がA/Dコンバータ1
6でデジタル信号に変換された後、エコーデータとして
一旦エコーデータメモリ17に格納される。エコーデー
タはR,θアドレス発生器11から発生するアドレスに
従って、図2(a)に示すようにラジアル走査における
ビーム番号であるθアドレスと半径方向のデータ番号で
あるRアドレスとにより位置情報が決定され、格納され
る。この位置情報は、一般に図2(b)のように極座標
(R,θ)上で表現される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic configuration diagram of an intraluminal ultrasonic diagnostic apparatus according to an embodiment of the present invention. In FIG. 1, an ultrasonic probe 21 is a probe for intraluminal insertion, for example, an echo catheter, which is a high frequency pulse transmitter for transmitting ultrasonic waves and a scan for performing radial scanning of ultrasonic beams. It is connected to a transmitter / receiver circuit 14 that includes a mechanism and a receiver circuit that receives echoes returned from within the lumen. The echo signal received by the ultrasonic probe 21 and the transmission / reception circuit 14 is subjected to signal processing such as amplification and detection by the amplification detection circuit 15, and the output thereof is the A / D converter 1
After being converted into a digital signal in 6, the echo data is temporarily stored in the echo data memory 17 as echo data. According to the address generated from the R, θ address generator 11, the echo data has position information determined by the θ address which is the beam number in the radial scanning and the R address which is the data number in the radial direction as shown in FIG. Stored. This position information is generally expressed on polar coordinates (R, θ) as shown in FIG.

【0009】このエコーデータメモリ17に格納された
エコーデータは、DSC(Digital Scan Converter)回路
18を介して表示イメージ形成用のフレームメモリであ
る表示メモリ19に記憶される。DSC回路18は、ラ
ジアル走査方式から表示器22のTV走査方式に変更す
るため、直交座標系(X,Y)から極座標系(R,θ)
への座標変換を行う。この座標変換は、X,Yアドレス
発生器13から発生するアドレスに従って、表示メモリ
19のアドレスX,Yに対応するエコーデータメモリ1
7のアドレスが式(1a),(1b)によってDSC回
路18で算出され極座標系(R,θ)に変換される。こ
の算出された極座標系アドレスR,θに従って、エコー
データがエコーデータメモリ17から読み出され、表示
メモリ19に記憶され、表示器22に表示される。
The echo data stored in the echo data memory 17 is stored in a display memory 19 which is a frame memory for forming a display image via a DSC (Digital Scan Converter) circuit 18. The DSC circuit 18 changes from the radial scanning system to the TV scanning system of the display 22, so that the Cartesian coordinate system (X, Y) to the polar coordinate system (R, θ).
Coordinate conversion to. This coordinate conversion is performed by the echo data memory 1 corresponding to the addresses X and Y of the display memory 19 according to the address generated from the X and Y address generator 13.
The address 7 is calculated by the DSC circuit 18 by the equations (1a) and (1b) and converted into the polar coordinate system (R, θ). In accordance with the calculated polar coordinate system addresses R and θ, echo data is read from the echo data memory 17, stored in the display memory 19, and displayed on the display 22.

【0010】 R=[(X−X0 2 +(Y−Y0 2 1/2 (1a) θ=tan-1[(Y−Y0 )/(X−X0 )] (1b) ここで、X0 , Y0 は表示イメージ上における超音波プ
ローブの中心、つまりラジアル走査の原点である。従来
の装置は、X0 , Y0 を表示メモリの画面上の特定の位
置(一般には中央)に置き、固定している。
[0010] R = [(X-X 0 ) 2 + (Y-Y 0) 2] 1/2 (1a) θ = tan -1 [(Y-Y 0) / (X-X 0)] (1b ) Here, X 0 and Y 0 are the centers of the ultrasonic probes on the display image, that is, the origins of radial scanning. In the conventional device, X 0 and Y 0 are placed and fixed at a specific position (generally the center) on the screen of the display memory.

【0011】本実施例では、X0 , Y0 を管腔と超音波
プローブとの相対的な位置の変位に応じて変更させる。
この変位の検出法に関し、公知の検出法として注目領域
の相関ピーク位置検出法や、画像の重心のずれ検出法等
種々の検出法があり、これを利用可能である。本実施例
では、エコーデータから断層像の重心のずれを検出する
方法による。図2(b)に示すエコーデータの極座標系
において、原点に対する断層像の重心のずれ量は、原点
と断層像の重心との位置の差、つまり重心の位置として
求まる。そこで、画像フレーム番号iにおいて、検出さ
れる断層像の重心位置をXg(i),Yg(i)とし、
表示メモリ上の画面の中心点の位置をXc,Ycとすれ
ば、式(1a),(1b)におけるX0 、Y0 は次式
(2a),(2b)により各フレーム毎に求められる。
In this embodiment, X 0 and Y 0 are changed according to the displacement of the relative position between the lumen and the ultrasonic probe.
Regarding this displacement detection method, there are various known detection methods such as a correlation peak position detection method for the region of interest and a center-of-gravity shift detection method for an image, which can be used. In this embodiment, a method of detecting the shift of the center of gravity of the tomographic image from the echo data is used. In the polar coordinate system of the echo data shown in FIG. 2B, the shift amount of the center of gravity of the tomographic image with respect to the origin is found as the difference in position between the origin and the center of gravity of the tomographic image, that is, the position of the center of gravity. Therefore, at the image frame number i, the barycentric position of the tomographic image detected is set to Xg (i) and Yg (i),
Assuming that the position of the center point of the screen on the display memory is Xc and Yc, X 0 and Y 0 in equations (1a) and (1b) can be obtained for each frame by the following equations (2a) and (2b).

【0012】 X0 (i)=XC −Xg (i) (2a) Y0 (i)=YC −Yg (i) (2b) この式(2a),(2b)により、Xg,Ygを減算す
ることにより、表示メモリにおける断層像重心のずれ、
つまり変位分が補正されたことになる。なお、このX
g,Ygは図1の変位検出回路12より得られる。この
Xg,Ygを極座標系のエコーデータf(R,θ)を用
いて表現すると、式(3a),(3b)となる。
X 0 (i) = X C −X g (i) (2a) Y 0 (i) = Y C −Y g (i) (2b) From the formulas (2a) and (2b), Xg, By subtracting Yg, the displacement of the center of gravity of the tomographic image in the display memory,
That is, the displacement amount is corrected. In addition, this X
g and Yg are obtained from the displacement detection circuit 12 of FIG. When these Xg and Yg are expressed using the echo data f (R, θ) in the polar coordinate system, the equations (3a) and (3b) are obtained.

【0013】 このように、Xg,Ygは、上式(3a),(3b)に
より求まるが、前記式中のR,θの最小単位をなるべく
小さく、演算範囲をなるべく大きくすることにより、X
g,Ygの値は有効桁数を上げられるが、その分データ
数は多くなり、長時間の演算時間を要する。このように
R,θの最小単位及び演算範囲は、Xg,Ygの値の必
要とする有効桁数と演算速度との仕様により決定され
る。
[0013] As described above, Xg and Yg are obtained by the above equations (3a) and (3b), but by making the minimum unit of R and θ in the above equation as small as possible and making the calculation range as large as possible,
Although the number of significant digits can be increased for the values of g and Yg, the number of data is increased accordingly, and a long calculation time is required. As described above, the minimum unit of R and θ and the calculation range are determined by the specifications of the number of significant digits required for the values of Xg and Yg and the calculation speed.

【0014】ただし、上記Xg,Ygの有効桁数は必要
以上に上げても実用上は無意味であるので、以下図3を
用いて、簡略法による断層像の重心の演算法の説明を行
う。図3において、一例としてθの最小単位を45°、
演算範囲を360°とした場合を示す。
However, even if the number of significant digits of Xg and Yg is increased more than necessary, it is meaningless in practice. Therefore, a method of calculating the center of gravity of a tomographic image by the simplified method will be described below with reference to FIG. . In FIG. 3, as an example, the minimum unit of θ is 45 °,
The case where the calculation range is 360 ° is shown.

【0015】図3の極座標上の原点を中心とする45°
毎の8本の点線を、原点より引き、点線により分離され
た各領域をセクタとする。それぞれのセクタの点線が交
差する中心角を2等分する各セクタの中心線を実線で示
す。各セクタ内のθ方向の平均値は、前記各実線上にあ
ると仮定し、各実線上の断層像を閾値処理により二値化
処理する。この二値化された前記各実線上の各エコーデ
ータf(R,θ)を式(3a),(3b)に代入するこ
とにより、少ないデータでXg,Ygが求められる。こ
こで、Rの最小単位、演算範囲については、特に例示し
ていないが、適当な所定値を選択するものとする。ま
た、θの演算範囲は、360°以下の限定した範囲とし
ても実行可能である。
45 ° centered on the origin on the polar coordinates of FIG.
Each of the eight dotted lines is drawn from the origin, and each area separated by the dotted line is a sector. The center line of each sector that bisects the center angle at which the dotted lines of each sector intersect is shown by a solid line. The average value in the θ direction in each sector is assumed to be on each solid line, and the tomographic image on each solid line is binarized by thresholding. By substituting the binarized echo data f (R, θ) on the solid lines into equations (3a) and (3b), Xg and Yg can be obtained with a small amount of data. Here, the minimum unit of R and the calculation range are not particularly illustrated, but an appropriate predetermined value is selected. Further, the calculation range of θ can be executed as a limited range of 360 ° or less.

【0016】図4に図1の変位検出回路12の構成を示
す。図4において、平均処理回路41は、図3の点線に
より分割された各領域であるセクタ内でのf(R,θ)
の平均値を求める回路である。二値化回路42と重心計
算回路43は、前記簡略法による断層像の重心を求める
ための回路である。重心計算回路43では、式(3
a),(3b)により、管腔断層像の重心位置Xg,Y
gが算出される。重心計算回路43の出力は、図1のD
SC回路18で、このXg,Ygを式(2a),(2
b)に代入する。このことによって、DSC回路18に
おいて、超音波プローブ21の相対位置の変動に起因す
る管腔断層像の変位が補正される。この重心補正によ
り、管腔断層像の重心は常に画面の表示イメージの中央
に置かれることになる。
FIG. 4 shows the configuration of the displacement detection circuit 12 shown in FIG. In FIG. 4, the averaging circuit 41 uses f (R, θ) in the sector, which is each area divided by the dotted line in FIG.
This is a circuit for obtaining the average value of. The binarization circuit 42 and the center of gravity calculation circuit 43 are circuits for obtaining the center of gravity of the tomographic image by the above-mentioned simplification method. In the centroid calculation circuit 43, the equation (3
a) and (3b), the center of gravity position Xg, Y of the luminal tomographic image
g is calculated. The output of the center-of-gravity calculation circuit 43 is D in FIG.
In the SC circuit 18, these Xg and Yg are expressed by the equations (2a) and (2
Substitute in b). As a result, the displacement of the lumen tomographic image due to the change in the relative position of the ultrasonic probe 21 is corrected in the DSC circuit 18. By this center of gravity correction, the center of gravity of the lumen tomographic image is always placed in the center of the display image on the screen.

【0017】以上のように、従来の管腔内超音波診断装
置の断層像に変位を生じた場合、図5(b)に示すよう
に、画像イメージ上、超音波プローブ21の中心が中央
に固定され、診断対象物が移動するため、再現性良く安
定した診断対象物の断層像を得ることは不可能である。
それに対し、本発明の管腔内超音波診断装置では、断層
像に変位を生じた場合、画像イメージ上、超音波プロー
ブ21の移動を生じるが、中心診断対象物の重心が固定
であるため診断対象物の断層像は、図5(c)に示すよ
うに再現性良く安定して得られる。
As described above, when displacement occurs in the tomographic image of the conventional intraluminal ultrasonic diagnostic apparatus, as shown in FIG. 5B, the center of the ultrasonic probe 21 is at the center on the image. Since the diagnosis target is fixed and moves, it is impossible to obtain a stable tomographic image of the diagnosis target with good reproducibility.
On the other hand, in the intraluminal ultrasonic diagnostic apparatus of the present invention, when a displacement occurs in the tomographic image, the ultrasonic probe 21 moves on the image, but the center of gravity of the central diagnostic object is fixed, so the diagnosis is performed. The tomographic image of the object can be stably obtained with good reproducibility as shown in FIG.

【0018】[0018]

【発明の効果】以上説明したように、本発明において、
重心補正手段により、管腔内における超音波プローブと
管腔との相対的位置の変動に起因する管腔断層像の変位
を補正し、管腔を変動前の重心位置に移動させるため、
管腔及び超音波プローブの変動に対し、管腔断層像の位
置を安定させ、再現性の高い超音波診断像を得る管腔内
超音波診断装置の提供を可能とする。
As described above, in the present invention,
The center-of-gravity correction means corrects the displacement of the lumen tomographic image due to the change in the relative position of the ultrasonic probe and the lumen in the lumen, and moves the lumen to the position of the center of gravity before the change.
(EN) It is possible to provide an intraluminal ultrasonic diagnostic apparatus that stabilizes the position of a lumen tomographic image with respect to changes in the lumen and the ultrasonic probe and obtains an ultrasonic diagnostic image with high reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る管腔内超音波診断装置
の概略構成図である。
FIG. 1 is a schematic configuration diagram of an intraluminal ultrasonic diagnostic apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例に係るエコーデータメモリの
直交座標表現及び極座標表現の概念図である。
FIG. 2 is a conceptual diagram of rectangular coordinate representation and polar coordinate representation of an echo data memory according to an embodiment of the present invention.

【図3】本発明の一実施例に係る極座標表現による画像
重心を求める概念図である。
FIG. 3 is a conceptual diagram for obtaining an image centroid by polar coordinate expression according to an embodiment of the present invention.

【図4】本発明の一実施例に係る変位検出回路の構成図
である。
FIG. 4 is a configuration diagram of a displacement detection circuit according to an embodiment of the present invention.

【図5】従来例に係る断層像の変位と、本発明の一実施
例に係る変位の補正を説明するための図である。
FIG. 5 is a diagram for explaining displacement of a tomographic image according to a conventional example and correction of displacement according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 R,θアドレス発生器 12 変位検出回路 13 X,Yアドレス発生器 14 送受信回路 15 増幅検波回路 16 A/Dコンバータ 17 エコーデータメモリ 18 DSC回路 19 表示メモリ 21 超音波プローブ 22 表示器 11 R, θ address generator 12 Displacement detection circuit 13 X, Y address generator 14 Transmission / reception circuit 15 Amplification detection circuit 16 A / D converter 17 Echo data memory 18 DSC circuit 19 Display memory 21 Ultrasonic probe 22 Display

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 管腔内に挿入した超音波プローブによ
り、管腔内の超音波断層像を得る管腔内超音波診断装置
において、 超音波断層像の重心位置を演算する重心位置設定手段
と、 前記重心位置が画面の中心位置に重なるように超音波診
断像全体を移動させる重心補正手段と、 を備えることを特徴とする管腔内超音波診断装置。
1. A barycentric position setting means for calculating a barycentric position of an ultrasonic tomographic image in an intraluminal ultrasonic diagnostic apparatus for obtaining an ultrasonic tomographic image in the lumen by an ultrasonic probe inserted in the lumen. An intraluminal ultrasonic diagnostic apparatus comprising: a centroid correction unit that moves the entire ultrasound diagnostic image so that the centroid position overlaps the center position of the screen.
JP21416893A 1993-08-30 1993-08-30 Intraluminal ultrasound diagnostic device Expired - Fee Related JP3316268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21416893A JP3316268B2 (en) 1993-08-30 1993-08-30 Intraluminal ultrasound diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21416893A JP3316268B2 (en) 1993-08-30 1993-08-30 Intraluminal ultrasound diagnostic device

Publications (2)

Publication Number Publication Date
JPH0759777A true JPH0759777A (en) 1995-03-07
JP3316268B2 JP3316268B2 (en) 2002-08-19

Family

ID=16651366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21416893A Expired - Fee Related JP3316268B2 (en) 1993-08-30 1993-08-30 Intraluminal ultrasound diagnostic device

Country Status (1)

Country Link
JP (1) JP3316268B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238903A (en) * 2001-02-14 2002-08-27 Ge Medical Systems Global Technology Co Llc Blood vessel wall tracking method, blood vessel diameter measuring method and ultrasonic diagnostic apparatus
JP2009077961A (en) * 2007-09-26 2009-04-16 Toshiba Corp Ultrasonic diagnostic device and medical image display
JP2011193995A (en) * 2010-03-18 2011-10-06 Terumo Corp Information processor, processing method of the same, and program
WO2014133208A1 (en) * 2013-02-28 2014-09-04 알피니언메디칼시스템 주식회사 Method for focal point compensation, and ultrasonic medical apparatus therefor
JP2017131666A (en) * 2008-12-08 2017-08-03 アシスト・メディカル・システムズ,インコーポレイテッド System and method for imaging
WO2023189261A1 (en) * 2022-03-29 2023-10-05 テルモ株式会社 Computer program, information processing device, and information processing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4468677B2 (en) 2003-05-19 2010-05-26 オリンパス株式会社 Ultrasonic image generation method and ultrasonic image generation program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238903A (en) * 2001-02-14 2002-08-27 Ge Medical Systems Global Technology Co Llc Blood vessel wall tracking method, blood vessel diameter measuring method and ultrasonic diagnostic apparatus
JP4638991B2 (en) * 2001-02-14 2011-02-23 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Blood vessel wall tracking method, blood vessel diameter measuring method, and ultrasonic diagnostic apparatus
JP2009077961A (en) * 2007-09-26 2009-04-16 Toshiba Corp Ultrasonic diagnostic device and medical image display
US8366621B2 (en) 2007-09-26 2013-02-05 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus and medical image display apparatus
JP2017131666A (en) * 2008-12-08 2017-08-03 アシスト・メディカル・システムズ,インコーポレイテッド System and method for imaging
JP2011193995A (en) * 2010-03-18 2011-10-06 Terumo Corp Information processor, processing method of the same, and program
WO2014133208A1 (en) * 2013-02-28 2014-09-04 알피니언메디칼시스템 주식회사 Method for focal point compensation, and ultrasonic medical apparatus therefor
WO2023189261A1 (en) * 2022-03-29 2023-10-05 テルモ株式会社 Computer program, information processing device, and information processing method

Also Published As

Publication number Publication date
JP3316268B2 (en) 2002-08-19

Similar Documents

Publication Publication Date Title
US4058001A (en) Ultrasound imaging system with improved scan conversion
EP0545778B1 (en) Ultrasonic synthetic aperture diagnostic apparatus
JP3354619B2 (en) Ultrasound diagnostic equipment
US20060173327A1 (en) Ultrasound diagnostic system and method of forming arbitrary M-mode images
EP0806682A2 (en) Ultrasonic imaging method and ultrasonic diagnostic apparatus
CN102056548A (en) Ultrasonic apparatus and control method therefor
US4787395A (en) Blood flow measuring apparatus
US20100125201A1 (en) Ultrasound imaging apparatus
JP3316268B2 (en) Intraluminal ultrasound diagnostic device
JP3450937B2 (en) Ultrasound image processing device
US5105813A (en) Ultrasonic diagnosing apparatus with steerable ultrasonic beams
JP4768315B2 (en) Ultrasonic signal processing apparatus and ultrasonic signal processing method
CN111956309B (en) Image acquisition method, device, equipment and medium
US10820889B2 (en) Acoustic wave image generating apparatus and method
JPH02307436A (en) Ultrasonic blood flow imaging apparatus
JPH0556971A (en) Ultrasonic diagnostic device
JP4192545B2 (en) Ultrasonic diagnostic equipment
JP3363513B2 (en) Ultrasound diagnostic equipment
JPS5869538A (en) Ultrasonic diagnostic apparatus
JPS6157017B2 (en)
JPH10118070A (en) Ultrasonograph
GB1564873A (en) Ultrasonic imaging system with small format resolution
KR20070105607A (en) Ultrasound system and method for forming ultrasound image
JPH11290325A (en) Ultrasonic diagnostic system
JP6294067B2 (en) Ultrasonic diagnostic equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees