JPH0759532B2 - Method of quenching methacrylic acid production gas - Google Patents

Method of quenching methacrylic acid production gas

Info

Publication number
JPH0759532B2
JPH0759532B2 JP15882787A JP15882787A JPH0759532B2 JP H0759532 B2 JPH0759532 B2 JP H0759532B2 JP 15882787 A JP15882787 A JP 15882787A JP 15882787 A JP15882787 A JP 15882787A JP H0759532 B2 JPH0759532 B2 JP H0759532B2
Authority
JP
Japan
Prior art keywords
gas
reaction gas
condensate
conduit
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15882787A
Other languages
Japanese (ja)
Other versions
JPS646232A (en
Inventor
守正 倉賀野
実 越部
晃三 岩崎
博三 瀬川
勝治 與口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP15882787A priority Critical patent/JPH0759532B2/en
Priority to CA000570305A priority patent/CA1316545C/en
Priority to EP88305764A priority patent/EP0297788B1/en
Priority to DE8888305764T priority patent/DE3876156T2/en
Priority to IN517/CAL/88A priority patent/IN170253B/en
Priority to US07/211,903 priority patent/US4987252A/en
Priority to KR1019880007781A priority patent/KR910002223B1/en
Priority to CN88104812A priority patent/CN1022237C/en
Publication of JPS646232A publication Critical patent/JPS646232A/en
Publication of JPH0759532B2 publication Critical patent/JPH0759532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 〔産業状の利用分野〕 本発明はメタクリル酸生成ガスの急冷方法に関する。よ
り詳しくはイソブチレン、第3級ブタノール、イソブチ
ルアルデヒドおよびメタクロレインから選ばれる1種以
上の化合物を気相酸化してメタクロレインおよび/また
はメタクリル酸を製造するに際し、気相酸化反応部より
流出する高沸点副生物を含む反応ガスを急冷塔で急冷
し、メタクロレインおよび/またはメタクリル酸を回収
する方法に関する。
The present invention relates to a method for quenching a methacrylic acid-producing gas. More specifically, when one or more compounds selected from isobutylene, tertiary butanol, isobutyraldehyde and methacrolein are vapor-phase-oxidized to produce methacrolein and / or methacrylic acid, a high amount of gas flowing out from the gas-phase oxidation reaction part is produced. TECHNICAL FIELD The present invention relates to a method for recovering methacrolein and / or methacrylic acid by quenching a reaction gas containing a boiling byproduct in a quenching tower.

〔従来の技術〕[Conventional technology]

通常、イソブチレン、第3級ブタノール、イソブチルア
ルデヒドおよびメタクロレインから選ばれる1種以上の
化合物を気相酸化して得られる反応ガスよりメタクロレ
インおよび/またはメタクリル酸を捕集するのに急冷塔
が用いられる。急冷塔での気液の接触方法としては向流
接触または並流接触の双方がある。これらの接触に用い
る液としては反応ガスの凝縮液、ベンゼン、炭素数1〜
4のアルキル基、アルコキシル基もしくはアルコキシカ
ルボニル基で置換されたベンゼン誘導体、炭素数5〜7
の脂肪族炭水素または脂環式炭化水素等が挙げられる。
しかしながら反応生成ガス中には目的成分であるメタク
ロレインおよび/メタクリル酸の他に高沸点副生物、す
なわち安息香酸、トルイル酸、マレイン酸、シトラコン
酸、テレフタール酸およびタール状物がかなり含有され
ているため、冷却過程でこれらの高沸点副生物が析出し
管路を閉塞させるというトラブルが生ずる。そこで管路
閉塞防止方法として種々の提案がなされている。例えば
(1)反応生成ガスの圧力での無水マレイン酸の沸点以
上の温度を保ち、かつ、該ガスの平均線速度を5m/秒以
上とする配管閉塞防止方法(特開昭50−126605号)、
(2)反応生成ガスを凝縮させる前に補修器内の補修部
分の温度を内部の圧力における該ガスの露点以上、250
℃以下に保った捕集器に導き高沸点副生物を除去する方
法(特開昭58−52239号)、(3)急冷塔への反応ガス
供給口での流速を10m/秒以上で供給し、反応ガスと凝縮
液とを並流接触させる方法(特開昭57−91944号)、
(4)スクラバー入口での該反応ガスの温度を130℃以
上に保つ方法(特開昭56−122327号)、(5)ガス状反
応混合物を予め凝縮蓄積された凝縮液の一部と、100℃
以下の温度で直接向流接触させる方法(特開昭54−5205
7号)等がある。
Usually, a quenching tower is used to collect methacrolein and / or methacrylic acid from a reaction gas obtained by vapor-phase oxidizing one or more compounds selected from isobutylene, tertiary butanol, isobutyraldehyde and methacrolein. To be The gas-liquid contact method in the quenching tower includes both countercurrent contact and cocurrent contact. Liquids used for these contacts include a condensate of reaction gas, benzene, and a carbon number of 1 to 1.
A benzene derivative substituted with an alkyl group, an alkoxyl group or an alkoxycarbonyl group having 4 carbon atoms;
And aliphatic hydrocarbons or alicyclic hydrocarbons thereof.
However, in addition to the target components methacrolein and / or methacrylic acid, high boiling by-products such as benzoic acid, toluic acid, maleic acid, citraconic acid, terephthalic acid and tar-like substances are contained in the reaction product gas. Therefore, in the cooling process, these high-boiling-point by-products are deposited to cause a trouble of blocking the pipeline. Therefore, various proposals have been made as a method for preventing the duct blockage. For example, (1) a method for preventing clogging of pipes in which the temperature above the boiling point of maleic anhydride at the pressure of the reaction product gas is maintained and the average linear velocity of the gas is 5 m / sec or more (Japanese Patent Laid-Open No. 126605). ,
(2) Before condensing the reaction product gas, the temperature of the repaired portion in the repair device is set to 250 ° C or more, which is equal to or higher than the dew point of the gas at the internal pressure.
Method of introducing high boiling point by-products to a collector kept at ℃ or less (JP-A-58-52239), (3) Supplying the reaction gas to the quenching tower at a flow rate of 10 m / sec or more. , A method in which a reaction gas and a condensate are brought into parallel flow contact (JP-A-57-91944),
(4) A method of keeping the temperature of the reaction gas at the scrubber inlet at 130 ° C. or higher (JP-A-56-122327), (5) a part of a condensate liquid in which the gaseous reaction mixture is condensed and accumulated in advance, and 100 ℃
Direct countercurrent contact at the following temperatures (Japanese Patent Laid-Open No. 54-5205)
No. 7) etc.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、これらの方法は管路閉塞防止方法として
それなりの効果は上げられるが、未だ根本的な方法とは
いい難い。すなわち(1)、(3)、(4)、(5)の
方法は、一定速度以上のガス線速度および/または一定
温度以上のガス温度を保持する点で考え方としては共通
であり、高沸点の付着防止上優れた方法ではあるが、反
応生成物を急冷塔へ供給する供給管のうち急冷塔への入
口部で、周囲の冷却部への伝熱によって、局部的な温度
の低下を招いたり、凝縮液を並流で供給している場合に
はその飛沫がガス流出部先端に当たり、そこで飛沫が濃
縮されたりして、高沸点副生物の析出を招く。こうして
一旦高沸点副生物の析出が起こると、反応ガス中に多量
に含まれる目的成分であるメタクロレインおよび/また
はメタクリル酸が高沸点副生物に含浸される。これらは
熱安定性が悪いため、そこで重合を起こし次第に増加し
遂には管路を閉塞することになる。
However, although these methods have some effects as methods for preventing duct line obstruction, they are still far from the fundamental methods. That is, the methods (1), (3), (4), and (5) are common in terms of maintaining a gas linear velocity of a certain speed or more and / or a gas temperature of a certain temperature or more, and have a high boiling point. Although it is an excellent method for preventing the adhesion of heat, it causes local temperature drop due to heat transfer to the surrounding cooling section at the inlet to the quench tower of the supply pipe that supplies the reaction product to the quench tower. Alternatively, when the condensate is supplied in parallel flow, the droplet hits the tip of the gas outlet, and the droplet is concentrated there, causing the precipitation of high-boiling by-products. Once the precipitation of the high boiling by-product thus occurs, the high boiling by-product is impregnated with methacrolein and / or methacrylic acid which are the target components contained in the reaction gas in a large amount. Since they have poor thermal stability, they gradually polymerize there and eventually block the conduit.

(2)の方法は上記欠点を補うため、反応生成ガス中に
気体状で含まれる高沸点、高融点の不純物を強制的に析
出させて除去するものである。しかし析出する不純物は
種々の物があるため、一様の温度範囲で不純物を完全に
除去することは極めて困難であり、また析出した付着不
純物の取出し等の点において、工業的に連続運転する上
では実用上問題が多い。
In the method (2), in order to make up for the above-mentioned drawback, impurities having a high boiling point and a high melting point, which are contained in a gaseous state in the reaction product gas, are forcibly deposited and removed. However, since there are various kinds of precipitated impurities, it is extremely difficult to completely remove the impurities within a uniform temperature range, and in terms of taking out the deposited impurities that have adhered, it is difficult to operate continuously on an industrial scale. Then there are many practical problems.

そこで本発明者らは、反応生成ガスの凝縮液とともに、
アンモニアガスまたはアンモニアの水酸化物を反応生成
ガスに接触させて急冷する方法を先に提案した(特開昭
62−438)。この方法は高沸点副生物であるテレフタル
酸等の多塩基性有機酸の析出を防止すると共にメタクロ
レインおよび/またはメタクリル酸の重合を防止する上
で非常に効果がある。しかしながら、上記有機酸のアン
モニウム塩は次の抽出工程で抽残液側に分配し排液の一
部となる。この場合排液中にアンモニア分があることは
活性汚泥処理で脱窒処理が必要となる上に、焼却する場
合にはNOx対策が必要となり、総合的に考えると必ずし
も好ましい方法とは言えない。
Therefore, the present inventors, along with the condensate of the reaction product gas,
A method has been previously proposed in which ammonia gas or hydroxide of ammonia is brought into contact with a reaction product gas to rapidly cool the gas (Japanese Patent Laid-Open No. Sho 61-206).
62-438). This method is very effective in preventing the precipitation of polybasic organic acids such as terephthalic acid, which is a high boiling by-product, and the polymerization of methacrolein and / or methacrylic acid. However, the ammonium salt of the above organic acid is distributed to the raffinate side in the next extraction step and becomes a part of the drainage. In this case, the presence of ammonia in the effluent requires denitrification treatment by activated sludge treatment, and requires NOx countermeasures when incinerated, which is not necessarily a preferable method from a comprehensive viewpoint.

以下、メタクリル酸等の回収に利用する向流および並流
接触式急冷法プロセスに言及しつつ、これらの欠点を図
面に基づいて更に詳細に説明する。
Hereinafter, these drawbacks will be described in more detail with reference to the drawings while referring to the countercurrent and cocurrent contact quenching processes used for recovery of methacrylic acid and the like.

第1図は、従来の一般的な向流接触式の急冷塔8廻りの
プロセスを実施するための装置を示す概略図である。こ
のプロセスでは、反応ガスは、導管1に接続されかつ塔
壁と直角に取りつけられた導管2を通過して急冷塔底部
に入る。その際、反応ガスは衝突分散用プレート3に当
り、紙面と直角の方向に分散し、塔内を塔頂の方向に上
昇する。一方ポンプアップされ熱交換器4で冷却された
凝縮液は、導管7から供給された重合禁止剤と共に、塔
頂導管11からシャワー状に塔内を落下し塔内に入った反
応ガスと向流接触し、反応ガスは急冷され凝縮する。反
応ガスは連続的に凝縮するので、凝縮液は一定液面にな
るように抜き出され導管5を経て次工程へ送り出され
る。凝縮の終った廃ガスは塔頂部から導管6を経て廃ガ
ス処理装置へ排出される。
FIG. 1 is a schematic diagram showing an apparatus for carrying out the process of a conventional general countercurrent contact type quenching tower 8. In this process, the reaction gas enters the quench tower bottom through conduit 2 which is connected to conduit 1 and mounted at right angles to the tower wall. At that time, the reaction gas hits the collision dispersion plate 3 and is dispersed in the direction perpendicular to the paper surface, and rises in the column toward the top of the column. On the other hand, the condensate that has been pumped up and cooled in the heat exchanger 4 flows countercurrently with the polymerization inhibitor supplied from the conduit 7 through the tower top conduit 11 in a shower shape inside the tower and enters the tower. Upon contact, the reaction gas is rapidly cooled and condensed. Since the reaction gas is continuously condensed, the condensate is extracted so as to have a constant liquid level and sent to the next step through the conduit 5. The waste gas, which has been condensed, is discharged from the top of the tower through a conduit 6 to a waste gas treatment device.

ガス吹き込み部の詳細は第3図に示す通りである。導管
1を経て、反応ガスは導管2に導入された後、コの字型
に取り付けられた衝突分散用プレート3に衝突し、紙面
と直角の方向に分散し上昇する。しかし、分散用プレー
ト3の上方から流下してくる冷却された凝縮液が分散用
プレート3に当りこれを冷却しているため、反応ガスは
冷却された分散用プレート3に衝突し、そこで冷却され
て高沸点副生物の凝縮、凝固を招く。一旦析出した高沸
点副生物は、分散用プレート3内には重合禁止剤を含ん
だ凝縮液が直接触れないため、導管2の先端部で高沸点
副生ガスの凝縮、凝固、重合が進行し、高沸点副生物10
により閉塞が進行し遂には運転不能となる。
Details of the gas blowing section are as shown in FIG. After being introduced into the conduit 2 through the conduit 1, the reaction gas collides with the collision dispersion plate 3 attached in a U-shape, and is dispersed and rises in the direction perpendicular to the paper surface. However, since the cooled condensate flowing down from above the dispersion plate 3 hits the dispersion plate 3 and cools it, the reaction gas collides with the cooled dispersion plate 3 and is cooled there. It causes condensation and solidification of high boiling by-products. The once-precipitated high-boiling by-product does not come into direct contact with the condensate containing the polymerization inhibitor in the dispersion plate 3, so that the condensation, coagulation and polymerization of the high-boiling by-product gas proceed at the tip of the conduit 2. , High boiling by-products 10
Due to this, the blockage progresses and finally the operation becomes impossible.

一方第2図は、従来の一般的な並流接触式急冷プロセス
実施のための装置を示す図である。イソブチレン等の気
相酸化により得られた反応部より流出する反応ガスは、
急冷塔8′の塔頂部より急冷塔内部へ導入され、熱交換
器4′により冷却された凝縮液を導管11′からフィード
し並流接触させることにより急冷される。未凝縮分のメ
タクロレインおよび/またはメタクリル酸を含むガス相
は導管6′より次工程へ導かれる。この際、ガス吹き込
み部の詳細は第4図に示す通りである。加熱気体導入管
3′を経て加熱気体吹き込み口9′に吹き込まれた加熱
気体によって、反応ガスは保温され、高沸点副生物の凝
縮、凝固等が防止されるように配慮されている。したが
って、反応ガスの導管2′は加熱気体の効果により該導
管2′の先端部での閉塞が緩和される。しかしながら同
時に急冷塔頂部の壁が加熱され、伝熱により下方の壁も
高温に曝されることになり、並流で導管11′から供給さ
れた凝縮液が飛散して塔壁に付着した場合に該凝縮液が
濃縮され、高沸点副生物の析出やメタクロレインおよび
/またはメタクリル酸の重合を招くことになる。それが
次第に蓄積し、そのまま閉塞に至るか、あるいはある程
度成長した時点で落下し下部配管の詰りや次工程のメタ
クリル酸抽出工程での閉塞等のトラブルを来たすことに
なる。
On the other hand, FIG. 2 is a view showing an apparatus for carrying out a conventional general co-flow contact quenching process. The reaction gas flowing out from the reaction part obtained by vapor phase oxidation of isobutylene or the like is
The condensate introduced from the top of the quenching tower 8'to the inside of the quenching tower and cooled by the heat exchanger 4'is fed from the conduit 11 'and brought into parallel flow contact to quench it. The gas phase containing uncondensed methacrolein and / or methacrylic acid is led to the next step through the conduit 6 '. At this time, details of the gas blowing portion are as shown in FIG. The reaction gas is kept warm by the heated gas blown into the heated gas blowing port 9'through the heated gas introduction pipe 3 ', so that condensation and solidification of the high boiling by-products are prevented. Therefore, the reaction gas conduit 2'is relieved of blockage at the tip of the conduit 2'because of the effect of the heated gas. However, at the same time, the wall at the top of the quenching tower is heated and the lower wall is also exposed to high temperature due to heat transfer, and when the condensate supplied from the conduit 11 'is scattered in parallel flow and adheres to the tower wall. The condensate is concentrated, leading to the precipitation of high boiling by-products and the polymerization of methacrolein and / or methacrylic acid. It gradually accumulates, and then it leads to clogging as it is, or it falls when it has grown to some extent, causing problems such as clogging of the lower pipe and clogging in the methacrylic acid extraction step which is the next step.

本発明の目的は、メタクリル酸生成ガス用急冷塔のノズ
ルの閉塞を防止し、かつ該急冷塔内にタール状物質の付
着のない該急冷塔の安定した運転方法を提供することに
ある。
An object of the present invention is to prevent clogging of a nozzle of a quenching tower for methacrylic acid producing gas, and to provide a stable operation method of the quenching tower in which no tar-like substance is attached in the quenching tower.

〔問題点を解決するための手段および作用〕[Means and Actions for Solving Problems]

本発明者らは管路閉塞の防止策として種々検討した結
果、反応ガスが急冷塔へ供給される供給管と急冷塔本体
との接続部での伝熱を抑えること及び凝縮液の飛沫が温
度の高い供給管の挿入部の先端に接触しないようにする
ことで上記目的が達成されることを見い出し本発明を完
成するに至った。
As a result of various investigations by the present inventors as a measure for preventing the blockage of the pipe line, the reaction gas is supplied to the quenching tower, the heat transfer at the connection part between the supply pipe and the main body of the quenching tower is suppressed, and the splash of the condensate is the temperature. It has been found that the above object can be achieved by preventing the contact of the tip of the insertion portion of the high supply pipe, and the present invention has been completed.

すなわち、本発明は、イソブチレン、第3級ブタノー
ル、メタクロレインまたはイソブチルアルデヒドを水蒸
気の存在下に分子状酸素含有ガスにより接触酸化して得
られるメタクリル酸を含有する反応ガスと反応ガス凝縮
液の冷却液とを接触させて、該反応ガスを急冷するに際
し、該反応ガスおよび断熱用ガスを、急冷塔壁を貫通す
る反応ガス用導管を内管とし該内管の周囲に断熱用ガス
の導管を外管として配置してなる二重管をそれぞれ通過
せしめて、急冷塔の塔底部液面へ向けて放出し、予め冷
却した凝縮液の一部を該反応ガス放出部に向けてスプレ
ーすると共に、該凝縮液の一部を急冷塔塔頂部へ循環
し、急冷塔内充填物を介して該反応ガスと該凝縮液の一
部とを向流接触させることを特徴とするメタクリル酸生
成ガスの急冷方法である。
That is, the present invention is directed to cooling a reaction gas containing methacrylic acid and a reaction gas condensate obtained by catalytically oxidizing isobutylene, tertiary butanol, methacrolein or isobutyraldehyde with a molecular oxygen-containing gas in the presence of steam. When the reaction gas is brought into contact with a liquid to quench the reaction gas, the reaction gas and the adiabatic gas are used as a reaction gas conduit penetrating the wall of the quenching tower as an inner tube and a heat insulating gas conduit is provided around the inner tube. Passing through each double tube arranged as an outer tube, discharging toward the liquid level at the bottom of the quenching tower, and spraying a part of the pre-cooled condensate toward the reaction gas discharging section, A part of the condensate is circulated to the top of the quenching tower, and the reaction gas and a part of the condensate are countercurrently contacted with each other through the filling material in the quenching tower. By way .

本発明において用いる分子状酸素含有ガスとは、一般に
は空気、純酸素、または窒素と酸素の混合ガスであり、
この中に一酸化炭素、二酸化炭素等が含まれていてもよ
い。
The molecular oxygen-containing gas used in the present invention is generally air, pure oxygen, or a mixed gas of nitrogen and oxygen,
Carbon monoxide, carbon dioxide, etc. may be contained in this.

反応ガスの温度は、一般には、230〜370℃の範囲とす
る。急冷塔の凝縮液の温度は、一般には10〜100℃、好
ましくは40〜60℃に調整する。
The temperature of the reaction gas is generally in the range of 230 to 370 ° C. The temperature of the condensate in the quench tower is generally adjusted to 10 to 100 ° C, preferably 40 to 60 ° C.

断熱用ガスは、生成物回収を妨げず断熱効果のできるだ
け大きいものが好ましく、一般に空気、窒素、または窒
素と酸素の混合ガスが利用できるが、この中に一酸化炭
素、二酸化炭素等が含まれていてもよい。
The adiabatic gas is preferably one that has the greatest adiabatic effect without hindering product recovery, and generally air, nitrogen, or a mixed gas of nitrogen and oxygen can be used, but carbon monoxide, carbon dioxide, etc. are included in this. May be.

第5図は本発明の急冷方法を実施する装置の一例の概略
図である。第6図はこの装置のガス吹き込み部の詳細部
であり、第7図はスプレー部の詳細図である。
FIG. 5 is a schematic view of an example of an apparatus for carrying out the quenching method of the present invention. FIG. 6 is a detailed view of the gas blowing section of this apparatus, and FIG. 7 is a detailed view of the spraying section.

イソブチレン等の気相酸化により得られた反応部より流
出する反応ガスは、導管1″を介して導管2″に導入さ
れる。導管2″を通った反応ガスは急冷塔8″の塔底部
から急冷塔の底部液面へ向けて放出される。熱交換器
4″により冷却された凝縮液を、スプレー12″にて、こ
の放出された反応ガスと並流接触させると、その反応ガ
スの多くは、凝縮液の蒸発により、断熱的に,初めの温
度と凝縮液温度のほぼ中間温度にまで急冷され凝縮成分
の一部は凝縮される。
The reaction gas such as isobutylene, which is obtained by the gas phase oxidation and flows out from the reaction section, is introduced into the conduit 2 ″ through the conduit 1 ″. The reaction gas passing through the conduit 2 ″ is discharged from the tower bottom of the quench tower 8 ″ toward the bottom liquid level of the quench tower. When the condensate cooled by the heat exchanger 4 ″ is brought into cocurrent contact with the released reaction gas by the spray 12 ″, most of the reaction gas is adiabatically initially caused by evaporation of the condensate. The temperature is rapidly cooled to an intermediate temperature between the temperature and the condensate temperature, and a part of the condensed component is condensed.

次いで、反応ガスが方向を変えて上昇する過程で、塔頂
導管11″からの凝縮液を向流接触させることにより、凝
縮成分の残部はほぼ完全に冷却捕集される。この際、ス
プレー側と塔頂側へ分配される凝縮液の比は1:5から1:2
0が好ましい。
Then, as the reaction gas changes direction and rises, the condensate from the overhead conduit 11 ″ is brought into countercurrent contact with the remainder of the condensed components to be cooled and collected almost completely. And the ratio of condensate distributed to the top of the column is 1: 5 to 1: 2
0 is preferable.

未凝縮のメタクロレインおよび/またはメタクリル酸を
含むガス相は、導管6″により次の工程へ導かれる。こ
の際、第6図に示す詳細図の如く反応ガスが冷却塔内に
放出された場合は、断熱用ガス導入管3″を介して断熱
用ガス吹き出し口9″に吹き込まれた断熱用ガスが、断
熱気体雰囲気をつくることによって、次の利点が生ず
る。すなわち、第7図の冷却用スプレー液が熱い導管
2″に直接触れることがないため濃縮されたり、高沸点
副生物の析出および/またはメタクロレインもしくはメ
タクリル酸の重合が生じたりするのが防止される。それ
と共に、導入管3″が急冷塔8″の一部側面を貫通する
貫通部に於いても、断熱用ガスの効果で導管2″が冷や
されることがなく、導入管2″内部での高沸点副生物の
析出もなく閉塞は完全に防止される。この際、導入管
3″より放出される断熱用ガスは0.3〜5m/sec.の流速を
維持することが好ましい。
The gas phase containing uncondensed methacrolein and / or methacrylic acid is led to the next step by means of the conduit 6 ″. In this case, when the reaction gas is discharged into the cooling tower as shown in the detailed view of FIG. Has the following advantages because the heat insulating gas blown into the heat insulating gas outlet 9 ″ through the heat insulating gas introducing pipe 3 ″ creates a heat insulating gas atmosphere. The spray liquid does not come into direct contact with the hot conduit 2 ″ and is thus prevented from being concentrated and from having high boiling by-products and / or methacrolein or methacrylic acid polymerized. At the same time, the conduit 2 ″ is not cooled by the effect of the heat insulating gas even at the penetration portion where the introduction pipe 3 ″ penetrates a part of the side surface of the quenching tower 8 ″, and the high temperature inside the introduction pipe 2 ″ is maintained. Blocking is completely prevented without the precipitation of boiling by-products. At this time, it is preferable that the heat insulating gas discharged from the introduction pipe 3 ″ maintains a flow velocity of 0.3 to 5 m / sec.

また反応ガスを塔底液面に吹き付け且つ充填物の分散効
果により塔壁も凝縮液で完全に濡れているため、流入す
る熱いガスにより充填物が部分的に渇くということもな
く、導管2″のみならず塔内のどの部分に於いても閉塞
現象は生じない。なお、導管7″からは重合禁止剤が供
給され、導管5″からは凝縮液が抜き出される。また、
反応ガス量Gと塔頂からの凝縮液Lとの比L/Gは通常0.3
〜2.0の範囲で行なわれる。
Further, since the reaction gas is blown to the liquid level at the bottom of the column and the column wall is completely wetted by the condensate due to the dispersion effect of the packing material, the packing material is not partially exhausted by the hot gas flowing in, and the conduit 2 ″ is used. Not only does the clogging phenomenon occur in any part of the column, the polymerization inhibitor is supplied from the conduit 7 ″ and the condensate is withdrawn from the conduit 5 ″.
The ratio L / G between the reaction gas amount G and the condensate L from the top of the column is usually 0.3.
It is done in the range of ~ 2.0.

〔実施例〕〔Example〕

以下に実施例および比較例をあげて本発明を更に詳細に
説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

実施例1 イソブチレンの接触気相酸化法によるメタクリル酸製造
装置に於て、1段目酸化反応器でイソブチレンを酸化し
てメタクロレインとし、2段目酸化反応器でメタクロレ
インを酸化してメタクリル酸とし、2段目酸化反応器を
出た反応ガスを第5図のタイプの急冷塔へ吹き込んだ。
Example 1 In a methacrylic acid production apparatus by a catalytic gas phase oxidation method of isobutylene, isobutylene is oxidized in a first-stage oxidation reactor to methacrolein, and methacrolein is oxidized in a second-stage oxidation reactor. Then, the reaction gas discharged from the second-stage oxidation reactor was blown into the quenching tower of the type shown in FIG.

メタクロレイン0.3モル%、メタクリル酸2.0モル%、水
36.0モル%、非凝縮性ガス61.4モル%、その他のガス0.
3モル%の組成を有する反応ガスを、導管1″を介し
て,導管内で高沸点のガスが凝縮または凝固しない温度
230℃,圧力0.3kg/cm2で、急冷塔8″の塔底部に向けて
放出した。一方導管3″より導入された常温の空気を円
環状の断熱用ガス吹き出し口9″から吹き出し、反応ガ
ス用導管2″から流出する該反応ガスを断熱状態に保っ
た。
0.3 mol% methacrolein, 2.0 mol% methacrylic acid, water
36.0 mol%, non-condensable gas 61.4 mol%, other gases 0.
The reaction gas having a composition of 3 mol% is passed through the conduit 1 ″ to a temperature at which the high boiling point gas does not condense or solidify.
At 230 ° C and a pressure of 0.3 kg / cm 2 , it was discharged toward the bottom of the quenching tower 8 ″. On the other hand, the room temperature air introduced from the conduit 3 ″ was blown out from the ring-shaped heat insulating gas outlet 9 ″ to react. The reaction gas flowing out from the gas conduit 2 ″ was kept adiabatic.

急冷塔の運転は、凝縮液の循環量5000/hr、液温40〜6
0℃、急冷塔からの排出ガス温度41℃になるように熱交
換器4″で、凝縮液を冷却して、急冷塔塔頂から4000
/hr、反応ガス流出口へ向けて1000/hrをスプレーし
た。凝縮して増加した液は塔底部の液面コントロールに
より抜き出され、導管5″を経て、またガス相は導管
6″を経て次工程へ送られた。
The quench tower is operated at a condensate circulation rate of 5000 / hr and a liquid temperature of 40-6.
Cool the condensate with a heat exchanger 4 ″ so that the temperature of the exhaust gas from the quenching tower is 41 ° C.
/ hr, 1000 / hr was sprayed toward the reaction gas outlet. The condensed and increased liquid was withdrawn by controlling the liquid level at the bottom of the column, and was sent to the next step via conduit 5 ″ and the gas phase via conduit 6 ″.

この運転で6ケ月以上も系内の圧力上昇は見られず、ま
たストップ後反応ガスおよび塔内の様子を点検したが、
ノズル部に導く黒色物質が付着していたのみで、他は全
く異常が観察されなかった。
During this operation, no pressure rise was seen in the system for more than 6 months, and after the stop, the reaction gas and the inside of the tower were inspected.
Only the black substance leading to the nozzle portion was attached, and no other abnormality was observed.

比較例1 イソブチレンの接触気相酸化法によるメタクリル酸製造
装置に於て、1段目酸化反応器でイソブチルアルデヒド
を酸化しメタクロレインとし、2段目酸化反応器でメタ
クロレインをメタクリル酸とし、2段目酸化反応器を出
た反応ガスを第2図のタイプの急冷塔に吹き込んだ。
Comparative Example 1 In a methacrylic acid production apparatus by the catalytic gas phase oxidation method of isobutylene, isobutyraldehyde was oxidized in the first stage oxidation reactor to methacrolein, and methacrolein was changed to methacrylic acid in the second stage oxidation reactor. The reaction gas exiting the stage oxidation reactor was blown into a quenching tower of the type shown in FIG.

メタクロレイン0.3モル%、メタクリル酸2.0モル%、水
36.0モル%、非凝縮性ガス61.4モル%、その他のガス0.
3モル%の組成を有する反応ガスを、導管1′を介し
て,導管内で高沸点のガスが凝縮または凝固しない温度
230℃,圧力0.3kg/cm2で、急冷塔の塔頂部に吹き込ん
だ。導管3′より230℃に加熱した空気をガス平均流速1
00m/秒でノズルの周囲に吹き込んだ。急冷塔運転の諸元
は凝縮液の循環量10T/hr、凝縮液の温度40〜60℃、急冷
塔からの排出ガス41℃になるように熱交換器4′で凝縮
液を冷却して、急冷塔塔頂から凝縮液を並流に降らせ
た。尚重合禁止剤も凝縮液循環ラインに入れて塔頂部よ
り降らせた。凝縮して逐次増加した液は塔底部の液面コ
ントロールにより抜き出され、導管5′を経て、またガ
ス相は導管6′を経て次工程へ送られた。この運転で、
30日後も系内の圧力上昇は見られず経過は良好であった
が、2ケ月目に入り次第に圧力の上昇が見られたので、
ストップし内部点検したところ、凝縮液循環ライン11″
周辺の塔壁に黒色タール状の物質が付着成長し塔内流路
を縮小していた。
0.3 mol% methacrolein, 2.0 mol% methacrylic acid, water
36.0 mol%, non-condensable gas 61.4 mol%, other gases 0.
The reaction gas having a composition of 3 mol% is passed through the conduit 1 ', at which the high boiling point gas does not condense or solidify.
It was blown into the top of the quenching tower at 230 ° C and a pressure of 0.3 kg / cm 2 . Air heated to 230 ° C through conduit 3'mean gas velocity 1
Blow around the nozzle at 00m / sec. The specifications of the quench tower operation are as follows: the condensate circulation rate is 10 T / hr, the condensate temperature is 40-60 ° C, and the exhaust gas from the quench tower is 41 ° C. The condensate was allowed to flow in parallel from the top of the quench tower. The polymerization inhibitor was also placed in the condensate circulation line and dropped from the top of the tower. The liquid condensed and successively increased was withdrawn by controlling the liquid level at the bottom of the column and sent to the next step via the conduit 5'and the gas phase via the conduit 6 '. In this driving,
Even after 30 days, no pressure increase in the system was observed and the progress was good, but since the pressure increased gradually in the second month,
When stopped and inspected, condensate circulation line 11 ″
A black tar-like substance adhered and grew on the peripheral wall of the tower, and the flow path in the tower was reduced.

〔発明の効果〕〔The invention's effect〕

本発明によりメタクリル酸生成ガス用急冷塔の循環液挿
入ノズルの閉塞が防止でき、かつ該急冷塔の内部にター
ル状の物質の付着も防止でき、その結果として長期に亘
る急冷塔の安定運転ができるようになった。
According to the present invention, it is possible to prevent clogging of the circulating liquid insertion nozzle of the quenching tower for methacrylic acid producing gas, and also prevent tar-like substances from adhering to the inside of the quenching tower, which results in stable operation of the quenching tower for a long period of time. I can do it now.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は従来の一般的急冷塔廻りのプロセ
スを実施する装置の概略図、第3図は第1図におけるガ
ス吹き込み部の詳細図、第4図は第2図におけるガス吹
き込み部の詳細図、第5図は本発明の方法を適用した急
冷塔廻りのプロセスを実施する装置の概略図、第6図は
第5図におけるガス吹き込み部の詳細図、第7図は第5
図におけるスプレー部の詳細図である。 1,1′,1″,2,2′,2″……導管 4,4′,4″……熱交換器、 5,5′,5″……凝縮液抜き出し用の導管 7,7′,7″……重合禁止剤供給用の導管 8,8′,8″……急冷塔、 9″……断熱ガス吹き出し口 12″……スプレー
1 and 2 are schematic views of a conventional apparatus for carrying out a process around a conventional quenching tower, FIG. 3 is a detailed view of a gas blowing section in FIG. 1, and FIG. 4 is a gas blowing in FIG. FIG. 5 is a detailed view of a part, FIG. 5 is a schematic view of an apparatus for carrying out a process around a quenching tower to which the method of the present invention is applied, FIG. 6 is a detailed view of a gas blowing part in FIG. 5, and FIG.
It is a detailed view of the spray part in the figure. 1,1 ′, 1 ″, 2,2 ′, 2 ″ …… Conduit 4,4 ′, 4 ″ …… Heat exchanger, 5,5 ′, 5 ″ …… Condensate withdrawal conduit 7,7 ′ , 7 ″ …… Conduit for supplying polymerization inhibitor 8,8 ′, 8 ″ …… Quenching tower, 9 ″ …… Adiabatic gas outlet 12 ″ …… Spray

───────────────────────────────────────────────────── フロントページの続き (72)発明者 與口 勝治 大阪府高石市加茂4丁目7−4−411 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuharu Yoguchi 4-7-4-411 Kamo, Takaishi City, Osaka Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】イソブチレン、第3級ブタノール、メタク
ロレインまたはイソブチルアルデヒドを水蒸気の存在下
に分子状酸素含有ガスにより接触酸化して得られるメタ
クリル酸を含有する反応ガスと反応ガス凝縮液の冷却液
とを接触させて、該反応ガスを急冷するに際し、該反応
ガスおよび断熱用ガスを、急冷塔壁を貫通する反応ガス
用導管を内管とし該内管の周囲に断熱用ガスの導管を外
管として配置してなる二重管をそれぞれ通過せしめて、
急冷塔の塔底部液面へ向けて放出し、予め冷却した凝縮
液の一部を該反応ガス放出部に向けてスプレーすると共
に、該凝縮液の一部を急冷塔塔頂部へ循環し、急冷塔内
充填物を介して該反応ガスと該凝縮液の一部とを向流接
触させることを特徴とするメタクリル酸生成ガスの急冷
方法。
1. A cooling liquid of a reaction gas containing methacrylic acid and a reaction gas condensate obtained by catalytically oxidizing isobutylene, tertiary butanol, methacrolein or isobutyraldehyde with a molecular oxygen-containing gas in the presence of steam. When the reaction gas and the heat insulating gas are rapidly cooled by bringing the reaction gas and the heat insulating gas into contact with each other, the reaction gas conduit that penetrates the wall of the quenching tower is used as an inner tube, and the heat insulating gas conduit is removed around the inner tube. Pass the double pipes arranged as pipes,
It is discharged toward the liquid level at the bottom of the quenching tower, and a part of the pre-cooled condensate is sprayed toward the reaction gas discharge part, while a part of the condensate is circulated to the top of the quenching tower for rapid cooling. A method for quenching a methacrylic acid-producing gas, characterized in that the reaction gas and a part of the condensate are countercurrently contacted with each other through a column packing.
JP15882787A 1987-06-27 1987-06-27 Method of quenching methacrylic acid production gas Expired - Lifetime JPH0759532B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP15882787A JPH0759532B2 (en) 1987-06-27 1987-06-27 Method of quenching methacrylic acid production gas
CA000570305A CA1316545C (en) 1987-06-27 1988-06-23 Quenching process of reaction product gas containing methacrylic acid and treatment method of quenched liquid
EP88305764A EP0297788B1 (en) 1987-06-27 1988-06-24 Process of quenching reaction product gas containing methacrylic acid and method of treating quenched liquid
DE8888305764T DE3876156T2 (en) 1987-06-27 1988-06-24 METHOD FOR QUICKENING A REACTION PRODUCT GAS CONTAINING METHACRYLIC ACID AND METHOD FOR TREATING THE QUENCHED LIQUID.
IN517/CAL/88A IN170253B (en) 1987-06-27 1988-06-24
US07/211,903 US4987252A (en) 1987-06-27 1988-06-27 Quenching process of reaction product gas containing methacrylic acid and treatment method of quenched liquid
KR1019880007781A KR910002223B1 (en) 1987-06-27 1988-06-27 Queniching process of reaction product gas containing methacrylic acid and treatment method of ouenched liquid
CN88104812A CN1022237C (en) 1987-06-27 1988-06-27 Quenching process of reaction product gas containing methacrycic acid and treatment method of quenched liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15882787A JPH0759532B2 (en) 1987-06-27 1987-06-27 Method of quenching methacrylic acid production gas

Publications (2)

Publication Number Publication Date
JPS646232A JPS646232A (en) 1989-01-10
JPH0759532B2 true JPH0759532B2 (en) 1995-06-28

Family

ID=15680247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15882787A Expired - Lifetime JPH0759532B2 (en) 1987-06-27 1987-06-27 Method of quenching methacrylic acid production gas

Country Status (1)

Country Link
JP (1) JPH0759532B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298384A (en) * 2004-04-09 2005-10-27 Asahi Kasei Chemicals Corp Method of cooling reaction gas containing (meth)acrylic acid and/or (meth)acrolein
EP1773748B1 (en) * 2004-08-02 2010-05-19 LG Chem, Ltd. Method for producing (meth)acrylic acid
JP2014177417A (en) * 2013-03-14 2014-09-25 Mitsubishi Chemicals Corp Method for manufacturing conjugated diene
JP2014189543A (en) * 2013-03-28 2014-10-06 Mitsubishi Chemicals Corp Method for manufacturing conjugated diene

Also Published As

Publication number Publication date
JPS646232A (en) 1989-01-10

Similar Documents

Publication Publication Date Title
CN101516820B (en) Process for producing acrylic acid
EP1388532B1 (en) Method for production of acrylic acid
SA03240323B1 (en) Preparation of ACRYLIC ACID
US20040097756A1 (en) Hydraulically sealed crossflow mass transfer tray
CA1316545C (en) Quenching process of reaction product gas containing methacrylic acid and treatment method of quenched liquid
JP2001226320A (en) Method for collecting acrylic acid and method for purifying acrylic acid
JP2845361B2 (en) Method and plant for purification of a gas stream containing acrolein
US4925981A (en) Method of isolating methacrylic acid
JPH0759532B2 (en) Method of quenching methacrylic acid production gas
JPS6059891B2 (en) Method for separating methacrolein and methacrylic acid
JP2002525354A (en) A method for quenching gaseous acrylonitrile and hydrogen cyanide product streams.
US7786323B2 (en) Method for collecting (meth)acrolein or (meth)acrylic acid and collecting device for the same
JP2857993B2 (en) Method for continuous production of aqueous formaldehyde solution
JP5364884B2 (en) Method for producing (meth) acrylonitrile
US4950462A (en) Process for absorbing CO
JP2001220362A (en) Method for preventing plugging of gas pipe for exhaust
JP2504777B2 (en) Method of quenching reaction gas
JPS60115531A (en) Production of butadiene
JPS6366301B2 (en)
JP3083343B2 (en) Method and apparatus for producing concentrated acrylamide aqueous solution
JPH01242547A (en) Method for absorbing methacrolein
JP2008162956A (en) System for obtaining (meth)acrylic acid solution, and method for producing (meth)acrylic acid
JPS62148445A (en) Production of p-methoxybenzaldehyde
JPS6032609B2 (en) Processing method for gas produced by oxidation reaction
JPS5821896B2 (en) High Suino Riyouhouhou

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term