JPH0757741B2 - Method for producing methacrylic acid - Google Patents

Method for producing methacrylic acid

Info

Publication number
JPH0757741B2
JPH0757741B2 JP31419487A JP31419487A JPH0757741B2 JP H0757741 B2 JPH0757741 B2 JP H0757741B2 JP 31419487 A JP31419487 A JP 31419487A JP 31419487 A JP31419487 A JP 31419487A JP H0757741 B2 JPH0757741 B2 JP H0757741B2
Authority
JP
Japan
Prior art keywords
stage
gas
reactor
methacrylic acid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31419487A
Other languages
Japanese (ja)
Other versions
JPH01157930A (en
Inventor
晃三 岩崎
守正 倉賀野
実 越部
豊 林田
博三 瀬川
勝治 與口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURARE KK
Mitsui Toatsu Chemicals Inc
Original Assignee
KURARE KK
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURARE KK, Mitsui Toatsu Chemicals Inc filed Critical KURARE KK
Priority to JP31419487A priority Critical patent/JPH0757741B2/en
Publication of JPH01157930A publication Critical patent/JPH01157930A/en
Publication of JPH0757741B2 publication Critical patent/JPH0757741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はイソブチレン及び/又は第3級ブタノール等を
原料とし、気相で接触酸化してメタクリル酸を製造する
方法に関する。特にメタクロレインを得る前段酸化と、
メタクロレインからメタクリル酸を得る後段酸化とから
なる二段酸化を経るメタクリル酸の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing methacrylic acid by catalytically oxidizing in the gas phase using isobutylene and / or tertiary butanol as a raw material. Especially with pre-stage oxidation to obtain methacrolein,
The present invention relates to a method for producing methacrylic acid through a two-step oxidation consisting of a latter-stage oxidation for obtaining methacrylic acid from methacrolein.

〔従来の技術と問題点〕[Conventional technology and problems]

イソブチレン及び/又は第3級ブタノール等を原料と
し、気相で接触酸化してメタクリル酸を製造する場合、
一段酸化で一気にメタクリル酸とする方法と、一旦メタ
クロレインとした後メタクリル酸とする二段酸化方法が
ある。このうち反応成績の点で一段酸化には難点があ
り、現状では二段酸化が工業的に採用されている。(化
学工学VOL47,NO.6,1983,PETROTECH VOL6,NO.9,1983)こ
の酸化の方法としては二段直結反応方式と単独反応方式
がある。前者は前段生成ガスを直接に後段反応器に供給
して反応させるものであり、後者は前段の生成ガスより
メタクロレインを分離回収し、このメタクロレインを新
たに後段反応用の原料ガスとして供給しメタクリル酸と
するもので、二段の反応をそれぞれ独立に行うものであ
る。
When isobutylene and / or tertiary butanol or the like is used as a raw material to produce methacrylic acid by catalytic oxidation in the gas phase,
There is a method of converting methacrylic acid at once by one-step oxidation, and a two-step oxidation method of once converting methacrolein to methacrylic acid. Among them, the one-step oxidation is difficult in terms of reaction results, and the two-step oxidation is industrially adopted at present. (Chemical engineering VOL47, NO.6,1983, PETROTECH VOL6, NO.9,1983) As a method of this oxidation, there are a two-step direct coupling reaction method and a single reaction method. The former directly supplies the former-stage product gas to the latter-stage reactor for reaction, and the latter separates and recovers methacrolein from the former-stage product gas, and supplies this methacrolein as a new raw material gas for the latter-stage reaction. Methacrylic acid is used, and two-step reactions are performed independently.

かかる二段酸化の方法にはいくつかの欠点がある。There are some drawbacks to such a two-stage oxidation method.

(a)反応器差圧の上昇を招き長期間の連続運転に支障
を来たす。
(A) The differential pressure of the reactor is increased, which hinders long-term continuous operation.

(b)差圧の増大は圧縮機の消費動力の増大を招く。(B) An increase in differential pressure causes an increase in power consumption of the compressor.

(c)圧力の上昇は触媒層での分解反応を助長する。(C) The increase in pressure promotes the decomposition reaction in the catalyst layer.

(d)前段と後段の間の滞留部が大きいと生成したメタ
クロレインが自動酸化され分解してしまう。
(D) If the retention area between the first and second stages is large, the methacrolein produced is autoxidized and decomposed.

本発明は、上記の問題点、即ち、差圧上昇に起因する圧
縮機の動力増大や触媒層での分解反応の助長、更には作
業効率の低下等も解決しうるメタクリル酸の製造方法を
提供することにある。
The present invention provides a method for producing methacrylic acid which can solve the above problems, namely, increase in power of a compressor due to increase in differential pressure, promotion of decomposition reaction in a catalyst layer, and further decrease in working efficiency. To do.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは二段酸化反応方式における供給ガスの流れ
方向について種々の検討を加えた結果、上記障害が原料
の流れに起因していることが判明し、前段は上方から下
方へ、後段は下方から上方へ反応に関与するガスを流す
ことによりその障害が回避できることを見出し本発明を
完成した。
As a result of various studies on the flow direction of the supply gas in the two-stage oxidation reaction system, the inventors have found that the above-mentioned obstacle is caused by the flow of the raw material, and the former stage is from the upper side to the lower stage, and the latter stage is the lower stage. The present invention has been completed by finding that the obstacle can be avoided by flowing a gas involved in the reaction from the lower side to the upper side.

即ち本発明は不活性ガスおよび触媒の存在下に分子状酸
素とイソブチレン及び/又は第3級ブタノールとを反応
させることにより、メタクロレインを得る前段酸化と該
メタクロレインを触媒の存在下、分子状酸素を含むガス
と反応させてメタクリル酸を得る後段酸化とからなる二
段酸化を経るイソブチレン及び/又は第3級ブタノール
からのメタクリル酸製造法において、前段酸化では反応
器触媒層の上方から下方へ通過反応せしめ、前段反応器
触媒層出口直後で該前段出口生成ガスに後段反応用補充
ガスを冷却用ガスとして混合した後、この混合後段原料
ガスを後段反応器触媒層の下方から上方へ通過反応せし
めることを特徴とするメタクリル酸の製造法である。
That is, in the present invention, by reacting molecular oxygen with isobutylene and / or tertiary butanol in the presence of an inert gas and a catalyst, pre-stage oxidation to obtain methacrolein and the methacrolein in the presence of a catalyst are obtained. In the method for producing methacrylic acid from isobutylene and / or tertiary butanol, which is subjected to a two-stage oxidation consisting of a latter-stage oxidation to react with a gas containing oxygen to obtain methacrylic acid, the former-stage oxidation is performed from the upper side to the lower side of the reactor catalyst layer. After passing through the reaction, the post-reaction supplement gas is mixed as a cooling gas with the pre-reactor catalyst layer outlet gas just after the pre-reactor catalyst layer outlet, and the mixed post-reacting raw material gas is passed through from below the post-reactor catalyst layer to above. It is a method for producing methacrylic acid, which is characterized in that

かかる本発明によれば、前段での差圧上昇およびそれに
伴う欠点に加え後段での作業効率の低下等の欠点を防止
できる。
According to the present invention, in addition to the increase in the differential pressure in the former stage and the defects associated therewith, it is possible to prevent disadvantages such as a decrease in work efficiency in the latter stage.

二段酸化の方法においては供給するガスの流れ方向の制
御には本発明の他に(1)前段、後段共に上方から下方
へ流す方法。(2)前段、後段共に下方から上方へ流す
方法が知られている。(1)の例としては特開53-5361
3、特開56-92831、特開57-144237、特開59-11873等があ
る。(2)の例としてはPERP REPORT No.86-1,1987,CHE
M SYSTEMS INC.がある。前者では後段に供給されるメタ
クロレインの安定性を保つために添加した重合禁止剤の
炭化物が、触媒層上部に次第に蓄積したり、更に/ある
いは一段目で生成した高沸点物質或いは重合物等の沈積
により前記した欠点(a),(b),(c)を招き好ま
しくない。後者では前段から後段への接続配管が必然的
に長くなるため前記した欠点(d)が生じてしまう。こ
れを避けるため反応帯出口に熱交換器を直結し、生成ガ
スを急冷する方法もあるが、これは触媒充填時に障害と
なり著しく作業効率を低下させる。又これを取外す方法
もあるが大型設備の場合その作業も大変であり好ましく
ない。一方前段は下方から、後段は上方から原料ガスを
流す方法は接続配管が最短にできるが(2)の例と同じ
理由で好ましくない。
In the two-stage oxidation method, in order to control the flow direction of the gas to be supplied, in addition to the present invention, (1) a method in which both the upstream and downstream stages flow from the upper side to the lower side. (2) A method of flowing from the lower side to the upper side in both the front and rear stages is known. As an example of (1), JP-A-53-5361
3, JP-A-56-92831, JP-A-57-144237 and JP-A-59-11873. As an example of (2), PERP REPORT No.86-1,1987, CHE
There is M SYSTEMS INC. In the former case, the carbide of the polymerization inhibitor added to maintain the stability of methacrolein supplied in the latter stage gradually accumulates in the upper part of the catalyst layer, and / or the high boiling point substance or polymer generated in the first stage Deposition causes the above-mentioned defects (a), (b), and (c), which is not preferable. In the latter case, since the connecting pipe from the former stage to the latter stage is inevitably long, the above-mentioned defect (d) occurs. In order to avoid this, there is also a method of directly connecting a heat exchanger to the outlet of the reaction zone and quenching the produced gas, but this causes an obstacle at the time of filling the catalyst and significantly lowers the work efficiency. There is also a method of removing this, but in the case of a large-scale facility, the work is difficult, which is not preferable. On the other hand, the method of flowing the raw material gas from the lower side of the front stage and from the upper side of the rear stage can shorten the connecting pipe, but is not preferable for the same reason as in the example of (2).

本発明の前段酸化に関与するイソブチレン及び/又は第
3級ブタノールは、分子状酸素、他に通常窒素、二酸化
炭素等を含む、後段の酸化生成物から凝縮成分を分離後
の排ガスと予め十分に混合された後、この混同ガス状態
で、前段の酸化反応器に、その上部より供給される。こ
の場合、イソブチレン及び/又は第3級ブタノールに対
する分子状酸素の使用割合はモル比で0.5〜20の範囲が
好ましく、特に1〜10の範囲が好ましい。また供給原料
ガスには、爆発範囲を回避したり、触媒層温度の異常上
昇を抑える目的で上記の二酸化炭素、窒素の如き不活性
ガスが希釈用に混合されるが、イソブチレン及び/又は
第3級ブタノールに対してモル比で10〜30の範囲が好ま
しい。更に反応を円滑に進行させるために供給原料ガス
中に水を水蒸気の形でイソブチレン及び/又は第3級ブ
タノールに対してモル比で1〜20の範囲で加えることが
好ましい。
The isobutylene and / or the tertiary butanol involved in the pre-stage oxidation of the present invention includes molecular oxygen, and usually other than nitrogen, carbon dioxide, etc., and the exhaust gas after separating the condensed components from the post-stage oxidation product is sufficiently preliminarily sufficient. After being mixed, this mixed gas state is supplied to the oxidation reactor at the preceding stage from above. In this case, the molar ratio of molecular oxygen to isobutylene and / or tertiary butanol is preferably in the range of 0.5 to 20, particularly preferably in the range of 1 to 10. The feed gas is mixed with an inert gas such as carbon dioxide or nitrogen for dilution in order to avoid an explosion range or suppress an abnormal rise in the catalyst layer temperature. The molar ratio with respect to the grade butanol is preferably in the range of 10 to 30. Further, in order to make the reaction proceed smoothly, it is preferable to add water in the form of water vapor in the form of water vapor in the range of 1 to 20 with respect to isobutylene and / or tertiary butanol.

前段の反応温度は250〜400℃が好ましい。原料ガスの供
給量は空間速度(SV)に対してNTP基準で100〜6000/hr
が好ましく、より好ましくは400〜3000/hrである。又、
反応圧力は特に制限はないが一般に大気圧付近の圧力が
適している。
The reaction temperature in the first stage is preferably 250 to 400 ° C. The amount of raw material gas supplied is 100 to 6000 / hr based on NTP with respect to space velocity (SV)
Is preferable, and more preferably 400 to 3000 / hr. or,
The reaction pressure is not particularly limited, but a pressure around atmospheric pressure is generally suitable.

次の後段酸化に関与するメタクロレインは分子状酸素、
回収のメタクロレイン及び希釈用の不活性ガス(これら
を後段反応用補充ガスという)と共に前段生成ガスの冷
却用ガスとして混合し後段反応器へ、その下部から供給
される。この場合分子状酸素はメタクロレインに対して
モル比で0.5〜20の範囲で使用するのが好ましく、特に
1〜10の範囲で用いるのが好ましい。又不活性ガスはメ
タクロレインに対しモル比で10〜30の範囲が好ましい。
更に水を水蒸気の形でメタクロレインに対しモル比で1
〜20の範囲で加えるのが好ましい。
The methacrolein involved in the subsequent post-stage oxidation is molecular oxygen,
The recovered methacrolein and the inert gas for dilution (these are referred to as the supplementary gas for the post-reaction) are mixed as a gas for cooling the pre-produced gas and supplied to the post-reactor from the lower part thereof. In this case, molecular oxygen is preferably used in a molar ratio of 0.5 to 20 with respect to methacrolein, and particularly preferably in a range of 1 to 10. The inert gas preferably has a molar ratio of 10 to 30 with respect to methacrolein.
Furthermore, water in the form of steam is used in a molar ratio of 1 to methacrolein.
It is preferable to add in the range of -20.

後段の反応温度は200〜400℃が好ましい。原料ガス供給
量は空間速度(SV)にしてNTP基準で100〜5000/hrが好
ましく、望ましくは400〜3000/hrである。また本反応圧
力は加圧下又は減圧下でも差し支えないが、一般には大
気圧付近の圧力が適している。
The reaction temperature in the latter stage is preferably 200 to 400 ° C. The raw material gas supply rate is preferably 100 to 5000 / hr, and more preferably 400 to 3000 / hr based on NTP in terms of space velocity (SV). The reaction pressure may be increased or decreased, but a pressure around atmospheric pressure is generally suitable.

〔発明の効果〕〔The invention's effect〕

以上のように二段酸化反応において原料ガスを前段は上
方から下方へ流すことにより、生成ガスの出口は当然の
ことながら触媒充填層の下部となるため、急冷用の熱交
換器や/又は急冷用ガス分散ノズルを配置しても触媒充
填時の作業の障害とならない。特に本発明の場合には、
前段生成を予め冷却することなく後段反応用補充ガスを
急冷用ガスとして混合するため、反応器と熱交換器との
接続フランジが不要となり、反応器の製作費が安価とな
る。本発明を実施するための工業設備においては、その
経済規模から反応器の大きさは直径が5〜6mにもおよぶ
ため経済的効果は大きい。更に前段反応器の下方から出
てきた生成ガスが急冷された後、後段反応器に下方から
供給されるため、ガス配管は最短となり後段反応器に入
るまでのメタクロレインの分解を最小にすることがで
き、また上方からの供給と違い触媒層への高沸点物や炭
化物の沈積が解消され、長期間の運転でも差圧の上昇を
伴うことなく安定操業を行うことができる。
As described above, in the two-stage oxidation reaction, the raw gas is made to flow from the upper side to the lower side, so that the outlet of the produced gas is naturally the lower side of the catalyst packed bed, and therefore the heat exchanger for quenching and / or the quenching is performed. Even if the gas dispersion nozzle is installed, it does not hinder the work of filling the catalyst. Particularly in the case of the present invention,
Since the supplementary gas for the second-stage reaction is mixed as the quenching gas without previously cooling the first-stage generation, the connecting flange between the reactor and the heat exchanger is not required, and the manufacturing cost of the reactor is low. In the industrial equipment for carrying out the present invention, the size of the reactor is as large as 5 to 6 m in diameter due to its economic scale, so that the economical effect is large. Furthermore, after the product gas that has come out from the lower part of the first-stage reactor is rapidly cooled and then supplied to the second-stage reactor from below, the gas pipe becomes the shortest and the decomposition of methacrolein before entering the latter-stage reactor is minimized. Also, unlike the case of supplying from above, the deposition of high-boiling substances and carbides on the catalyst layer is eliminated, and stable operation can be carried out without increasing the differential pressure even during long-term operation.

〔実施例〕〔Example〕

以下、実施例をあげて本発明をさらに具体的に説明す
る。
Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1 第1図に模式的に示す装置により次のように本発明を実
施した。
Example 1 The present invention was carried out as follows by the apparatus schematically shown in FIG.

前段反応器6は内径25mm、長さ5mの鋼管製反応管3本か
らなる多管式反応器であり、これに前段酸化用触媒(Mo
-V系)6lを充填し、管1からイソブチレン:酸素:窒
素:水蒸気=1:3:18:4なる組成を有する原料ガスをSV=
1500/hr(NTP基準)となるように前段反応器6に通し溶
融塩で360℃に加熱した。後段反応器7は内径25mm、長
さ5mの鋼管製反応管6本からなる多管式反応器であり、
これに後段酸化用触媒(ヘテロポリ酸系)12lを充填し
た。管2からの生成ガスにメタクロレイン:酸素:窒
素:水蒸気=1:2.5:14:7のモル比となるように、管3か
らメタクロレイン、空気、窒素及び水蒸気を補充した原
料ガスを、管4からSV=1200/hr(NTP基準)となるよう
に反応管に通し、溶融塩で310℃に加熱し300日間反応を
行った。この間前段反応器6の入口圧力は1.0kg/cm2
で殆ど圧力の上昇は見られなかった。また運転終了後、
後段反応器7下部及び入口配管を開放点検したところ、
配管ベンド部に黒色の沈着物が少量見られたのみで、触
媒層にはなんら異常は認められなかった。またこの間の
反応成績は一、二段目通してイソブチレン転化率が100
%、メタクロレイン収率が6.9%、メタクリル酸収率が6
4.5%で有効成分の選択率は71.4%であった。
The pre-stage reactor 6 is a multi-tubular reactor consisting of three steel pipe reaction tubes having an inner diameter of 25 mm and a length of 5 m.
-V system) 6 l, and a raw material gas having a composition of isobutylene: oxygen: nitrogen: steam = 1: 3: 18: 4 from the tube 1 is SV =
It was passed through the first-stage reactor 6 so as to be 1500 / hr (NTP standard) and heated to 360 ° C. with a molten salt. The latter-stage reactor 7 is a multi-tubular reactor composed of six steel pipe reaction tubes each having an inner diameter of 25 mm and a length of 5 m.
This was filled with 12 liters of the latter stage oxidation catalyst (heteropolyacid type). The raw material gas supplemented with methacrolein, air, nitrogen and steam from the pipe 3 was added to the product gas from the pipe 2 so that the methacrolein: oxygen: nitrogen: steam = 1: 2.5: 14: 7 molar ratio was obtained. From 4 to SV = 1200 / hr (NTP standard), it was passed through a reaction tube, heated to 310 ° C. with molten salt, and reacted for 300 days. During this time, the inlet pressure of the front-stage reactor 6 was 1.0 kg / cm 2 g.
There was almost no increase in pressure. Also, after the end of operation,
After inspecting the lower part of the latter stage reactor 7 and the inlet pipe,
Only a small amount of black deposit was found in the pipe bend, and no abnormality was found in the catalyst layer. In addition, the reaction results during this period are the first and second stages, and the isobutylene conversion rate is 100.
%, Methacrolein yield 6.9%, methacrylic acid yield 6
At 4.5%, the active ingredient selectivity was 71.4%.

比較例1 実施例1と同様の反応器を用い、第2図の様に流路を変
えた以外は実施例1と同様に反応を行った。60日頃から
徐々に圧力の上昇が見え始め、100日目で前段反応器の
入口圧力が運転開始時の1.0kg/cm2gから1.2kg/cm2g迄
上昇した。その後更に圧力の上昇傾向が見られたので、
運転を停止し各反応器の上下を開放点検した。その結
果、二段目反応器上部に黒色の沈着物が多量に見られ、
触媒層上部の内層部にも同様の沈着物が認められた。ま
たこの間の反応成績は一二段目通してイソブチレン転化
率が100%、メタクロレイン収率が6.1%、メタクリル酸
収率が62.1%で有効成分の選択率は68.2%であった。
Comparative Example 1 The same reaction as in Example 1 was performed except that the same reactor as in Example 1 was used and the flow path was changed as shown in FIG. The pressure gradually started to increase from around 60 days, and at the 100th day, the inlet pressure of the front-stage reactor increased from 1.0 kg / cm 2 g at the start of operation to 1.2 kg / cm 2 g. Since there was a tendency for the pressure to increase further,
The operation was stopped and the top and bottom of each reactor were inspected for openness. As a result, a large amount of black deposits were seen at the top of the second reactor,
Similar deposits were also found in the inner layer above the catalyst layer. The reaction results during this period were as follows: the conversion of isobutylene was 100%, the yield of methacrolein was 6.1%, the yield of methacrylic acid was 62.1%, and the selectivity of the active ingredient was 68.2%.

比較例2 第3図の様に流路を変えた以外は実施例1と同様の方法
で連続運転を行った。比較例2と同様60日頃から徐々に
圧力の上昇が見え始め、100日目で前段反応器の入口圧
力が運転開始時の1.0kg/cm2gから1.2kg/cm2g迄上昇し
た。その後更に圧力の上昇傾向が見られたので、運転を
停止し各反応器の上下を開放点検した。その結果、二段
目反応器上部に黒色の沈着物が多量に見られ、触媒層上
部の内層部にも同様の沈着物が認められた。またこの間
の反応成績は一二段目通してイソブチレン転化率が100
%、メタクロレイン収率が6.7%、メタクリル酸収率が6
2.5%で有効成分の選択率は69.2%であった。
Comparative Example 2 Continuous operation was performed in the same manner as in Example 1 except that the flow path was changed as shown in FIG. Similar to Comparative Example 2, the pressure gradually started to increase from about 60 days, and the inlet pressure of the front-stage reactor increased from 1.0 kg / cm 2 g at the start of operation to 1.2 kg / cm 2 g on the 100th day. After that, the tendency of further increase in pressure was observed, so the operation was stopped and the upper and lower sides of each reactor were inspected for open inspection. As a result, a large amount of black deposits was observed at the upper part of the second reactor, and similar deposits were also found at the inner layer part above the catalyst layer. In addition, the reaction results during this period were passed through the first and second stages, and the isobutylene conversion rate was 100.
%, Methacrolein yield 6.7%, methacrylic acid yield 6
At 2.5%, the active ingredient selectivity was 69.2%.

比較例3 第4図の様に流路を変えた以外は実施例1と同様の方法
で連続運転を行った。100日間の連続運転でも前段反応
器の入口圧力は1.0kg/cm2gで殆ど圧力の上昇は見られ
なかった。また運転終了後二段目反応器下部及び入口配
管を開放点検したところ、配管ベンド部に黒色の沈着物
が少量見られたのみで、触媒層にはなんら異常は認めら
れなかった。しかしこの間の反応成績は一二段目通して
イソブチレン転化率が100%、メタクロレイン収率が6.2
%、メタクリル酸収率が62.5%で有効成分の選択率は6
8.7%であった。
Comparative Example 3 Continuous operation was performed in the same manner as in Example 1 except that the flow path was changed as shown in FIG. Even after continuous operation for 100 days, the inlet pressure of the front-stage reactor was 1.0 kg / cm 2 g, and almost no increase in pressure was observed. When the lower part of the second reactor and the inlet pipe were inspected after the completion of the operation, only a small amount of black deposit was found in the bend part of the pipe, and no abnormality was found in the catalyst layer. However, the reaction results during this period went through the first and second stages, with an isobutylene conversion rate of 100% and a methacrolein yield of 6.2.
%, The yield of methacrylic acid is 62.5%, and the selectivity of the active ingredient is 6
It was 8.7%.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に用いる装置の模式図、第2図
〜第4図は、それぞれ比較例に用いる装置の模式図であ
る。 1……前段酸化反応原料ガス供給用の管 2……前段生成ガス搬送用の管 3……後段酸化反応用補充ガス供給用の管 4……後段酸化反応原料ガス搬送用の管 5……後段生成ガス搬送用の管 6……前段酸化反応器 7……後段酸化反応器
FIG. 1 is a schematic view of an apparatus used in the examples of the present invention, and FIGS. 2 to 4 are schematic views of apparatuses used in comparative examples. 1 ... Pipe for supplying raw material gas for first-stage oxidation reaction 2 ... Pipe for feeding produced gas for first-stage 3 ... Pipe for supplying supplemental gas for second-stage oxidation reaction 4 ... Pipe for feeding raw-material gas for second-stage oxidation reaction 5 ... Pipe for transporting the second-stage product gas 6 ... Front-stage oxidation reactor 7 ... Rear-stage oxidation reactor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瀬川 博三 新潟県北蒲原郡中条町協和町2―1 (72)発明者 與口 勝治 大阪府高石市加茂4―7―411 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirozo Segawa 2-1 Kyowa-cho, Nakajo-cho, Kitakanbara-gun, Niigata Prefecture (72) Inventor Katsuji Yoguchi 4-7-411 Kamo, Takaishi-shi, Osaka

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】不活性ガスおよび触媒の存在下に分子状酸
素とイソブチレン及び/又は第3級ブタノールとを反応
させることにより、メタクロレインを得る前段酸化と、
該メタクロレインを触媒の存在下、分子状酸素を含むガ
スと反応させてメタクリル酸を得る後段酸化とからな
る、二段酸化を経るイソブチレン及び/又は第3級ブタ
ノールからのメタクリル酸製造法において、前段酸化で
は原料ガスを反応器の上方から下方へ通過反応せしめ、
前段反応器触媒層出口直後で該前段生成ガスに後段反応
用補充ガスを冷却用ガスとして混合した後、この混合後
段原料ガスを後段反応器触媒層の下方から上方へ通過反
応せしめることを特徴とするメタクリル酸の製造法。
1. Pre-stage oxidation to obtain methacrolein by reacting molecular oxygen with isobutylene and / or tertiary butanol in the presence of an inert gas and a catalyst,
In the method for producing methacrylic acid from isobutylene and / or tertiary butanol, which undergoes two-step oxidation, which comprises the latter-stage oxidation in which the methacrolein is reacted with a gas containing molecular oxygen in the presence of a catalyst to obtain methacrylic acid, In the first-stage oxidation, the raw material gas is allowed to pass through the reactor from above to below,
Immediately after the exit of the catalyst layer of the front reactor, after mixing the replenishment gas for the second reaction as a cooling gas to the gas produced in the front stage, the mixed raw material gas is allowed to pass through from the lower side to the upper side of the catalyst layer of the rear reactor to react. A method for producing methacrylic acid.
JP31419487A 1987-12-14 1987-12-14 Method for producing methacrylic acid Expired - Fee Related JPH0757741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31419487A JPH0757741B2 (en) 1987-12-14 1987-12-14 Method for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31419487A JPH0757741B2 (en) 1987-12-14 1987-12-14 Method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JPH01157930A JPH01157930A (en) 1989-06-21
JPH0757741B2 true JPH0757741B2 (en) 1995-06-21

Family

ID=18050400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31419487A Expired - Fee Related JPH0757741B2 (en) 1987-12-14 1987-12-14 Method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JPH0757741B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4132684A1 (en) * 1991-10-01 1993-04-08 Basf Ag METHOD FOR CATALYTIC GAS PHASE OXIDATION FROM METHACROLEIN TO METHACRYLIC ACID
CN1238326C (en) 2001-12-06 2006-01-25 三菱化学株式会社 Oxidation reactor, method for producing (meth)acrylic acid or the like
ES2659921T3 (en) * 2007-05-25 2018-03-20 Evonik Röhm Gmbh Use of feed compositions in the preparation of methacrylic acid by oxidation

Also Published As

Publication number Publication date
JPH01157930A (en) 1989-06-21

Similar Documents

Publication Publication Date Title
US5004830A (en) Process for oxidation of alkyl aromatic compounds
CA1309418C (en) Preparation of methacrylic acid
EP0274681B1 (en) Process for production of acrylic acid
JPS6217579B2 (en)
JP2002518466A (en) Highly productive method for producing maleic anhydride from N-butane
US5300684A (en) Process for the fluidized bed oxidation of ethane to acetic acid
JPH0757741B2 (en) Method for producing methacrylic acid
JP3747491B2 (en) Process for producing 1,2-dichloroethane
JP4753515B2 (en) Production of maleic anhydride
US5688970A (en) Process to recycle exhaust gases from n-butane conversion into maleic anhydride
US4835308A (en) Process for producing trimellitic acid
US6998505B2 (en) Process for producing (meth)acrylic acid compound
EP0655432B1 (en) Process for continuously producing dimethyl carbonate
JPH0116816B2 (en)
JPS6032615B2 (en) Method for producing acrylic acid by catalytic gas phase oxidation of propylene
JP2004505938A (en) Method for producing organic substances in a catalytic manner by partial oxidation
NO932029L (en) Phthalic anhydride process with high pressure
US7589217B2 (en) Yield improvement in the production of maleic anhydride
JPH01165543A (en) Production of acrylic acid
EP0057629B1 (en) Vapor state process for the preparation of diesters of oxalic acid
JPH0940628A (en) Production of acrylonitrile
JP2003514787A (en) Method for hydroformylation of olefinically unsaturated compounds
KR850001401B1 (en) Process for producing acrylic acid
EP1086744A1 (en) Iron containing catalyst
JPH07188199A (en) Production of ethylene oxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees