JPH01165543A - Production of acrylic acid - Google Patents

Production of acrylic acid

Info

Publication number
JPH01165543A
JPH01165543A JP62322690A JP32269087A JPH01165543A JP H01165543 A JPH01165543 A JP H01165543A JP 62322690 A JP62322690 A JP 62322690A JP 32269087 A JP32269087 A JP 32269087A JP H01165543 A JPH01165543 A JP H01165543A
Authority
JP
Japan
Prior art keywords
reactor
stage
reaction
gas
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62322690A
Other languages
Japanese (ja)
Other versions
JPH07107016B2 (en
Inventor
Tatsuya Kawajiri
達也 川尻
Mamoru Takamura
高村 守
Shinichi Uchida
内田 伸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP62322690A priority Critical patent/JPH07107016B2/en
Publication of JPH01165543A publication Critical patent/JPH01165543A/en
Publication of JPH07107016B2 publication Critical patent/JPH07107016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To prevent the blockage trouble of a latter-stage catalyst layer with a by-product of former-stage reaction in the production of acrylic acid from propylene using a two-stage vapor-phase catalytic oxidation process comprising the former stage reaction and the latter stage reaction, by inserting a rod or plate insert into a gas-inlet of the latter-stage reaction tube. CONSTITUTION:Propylene is oxidized mainly to acrolein by a vapor-phase catalytic oxidation in a first reactor filled with an oxide catalyst containing Bi, Mo and Fe and the reaction product gas is directly supplied to a heat- exchange tubular reactor which is separated from the first reactor, directly connected with the reactor through a pipe and filled with an oxide catalyst containing Mo and V to effect the vapor-phase catalytic oxidation of acrolein acrylic acid. In the above two-stage oxidation process for the production of acrylic acid, a rod or plate insert is inserted in a space of a gas-inlet part of the catalyst tube of the second reactor to an extent to get a free volume ratio in the pipe of 40-99%. The blockage of the latter-stage catalyst layer with the by-product existing in the former-stage reaction product gas can be prevented by this process to enable smooth and stable production of the objective compound on an industrial scale.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、プロピレンから接触気相酸化反応によりアク
リル酸を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing acrylic acid from propylene by a catalytic gas phase oxidation reaction.

詳しく述べると本発明は、プロピレンを接触気相酸化し
、主にアクロレインを生成せしめる前段反応と、このア
クロレインをアクリル酸に変換せしめる後段反応とから
なる、いわゆる前後段連結反応からなり、後段反応にお
いて、前段反応生成ガス中に含まれる閉塞性物質による
触媒層閉塞トラブルを防止し、円滑に工業的に安定して
プロピレンからアクリル酸を生産する方法を提供するも
のである。
To be more specific, the present invention consists of a so-called front and rear linkage reaction consisting of a first stage reaction in which propylene is catalytically oxidized in a gas phase to mainly produce acrolein, and a second stage reaction in which this acrolein is converted into acrylic acid. The present invention provides a method for smoothly and industrially stably producing acrylic acid from propylene by preventing catalyst layer clogging troubles due to occlusive substances contained in the gas produced by the first stage reaction.

〈従来の技術〉 プロピレンから接触気相酸化法によりアクリル酸を製造
する場合には、−旦プロピレンを接触気相酸化してアク
ロレインに変換しく以下この反応は「前段反応」とし、
これに使用される触媒を「前段触媒」という)、ついで
このアクロレインを接触気相酸化してアクリル酸に変換
する(以下、この反応を「後段反応」とし、これに使用
される触媒は[後段触媒Jという)、いわゆる2段酸化
反応が一般に採用されている。
<Prior art> When producing acrylic acid from propylene by a catalytic vapor phase oxidation method, propylene is first oxidized to acrolein in a catalytic vapor phase.
The catalyst used in this process is referred to as the "first-stage catalyst"), and then this acrolein is oxidized in a catalytic gas phase to convert it into acrylic acid (hereinafter, this reaction is referred to as the "second-stage reaction", and the catalyst used in this is the second-stage reaction). catalyst J), a so-called two-stage oxidation reaction is generally employed.

前段触媒に使用される触媒はモリブデン、ビスマスおよ
び鉄を含む多元素系触媒酸化物が一般的であるが、これ
らの系の触媒を用いてプロピレンを接触気相酸化した場
合、主生成物のアクロレインのほかに、マレイン酸やテ
レフタール酸等の比較的高沸点の化合物が副生じたり、
同時に重合物やタール状物質が生成ガス中に含まれてく
る。このような物質を含む反応ガスをそのまま後段反応
に供すると、これらの物質は配管内や後段触媒充填層で
の閉塞を引き起し、圧力損失の増大や、触媒活性の低下
、アクリル酸への選択率の低下などの原因となる。この
ようなトラブルはアクリル酸の生産性を高めるためにプ
ロピレンの供給mを増やす、すなわちl1affiを上
げたりプロピレン濃度をあげると多く発生する。
The catalyst used in the first stage catalyst is generally a multi-element catalytic oxide containing molybdenum, bismuth and iron, but when propylene is catalytically oxidized using these catalysts, the main product acrolein is In addition to this, compounds with relatively high boiling points such as maleic acid and terephthalic acid are produced as by-products.
At the same time, polymers and tar-like substances are included in the generated gas. If the reaction gas containing these substances is directly subjected to the subsequent reaction, these substances will cause blockages in the pipes and in the latter catalyst packed bed, increasing pressure loss, decreasing catalyst activity, and causing damage to acrylic acid. This may cause a decrease in selectivity. Such troubles often occur when the propylene supply m is increased in order to increase the productivity of acrylic acid, that is, when l1affi is increased or the propylene concentration is increased.

かくして、このトラブルを防止するため一般に採用され
る方法としては、定期的に反応を止めて、後段触媒のガ
ス入口側に触媒層での閉塞や触媒の活性低下を防止する
ために充填した不活性物質、たとえばセラミックスポー
ルなどを抜き出して入れ替えたり、あるいは性膜反応生
成ガスからアクロレインを一旦分離し、あらためてこの
分離アクロレインを後段反応に供給することで酸化反応
の最適化プロセスを採用したり、さらには原料ガス濃度
を必要以上に希釈して、副生成物m度を下げて反応を行
う方法が提案されている。しかしながら、これらの方法
はいずれも工業的方法としては煩雑かつコスト高であり
、満足のいくものではない。また前段反応も後段反応も
反応ガス組成物としては酸素含有量をできるだけ低くし
て過度の酸化を抑えるため反応ガスからの廃ガスを不活
性ガスとしてリサイクル使用することも一般的であり、
その他、後段反応に用いられる触媒の形状を特定し゛て
触媒間の空隙率をあげて前段反応器からの固形物の閉塞
を抑える(特開昭61−221149号公報)方法等が
提案されている。このような後段反応器ガス入口側での
閉塞トラブル防止の対策は、今侵後段触媒の開発がすす
み、反応湿度の低温化、高負荷化が可能となってきつつ
ある現在、ますます重要な課題となりつつある。
Therefore, a commonly adopted method to prevent this problem is to periodically stop the reaction and fill the gas inlet side of the latter stage catalyst with an inert gas in order to prevent blockage in the catalyst layer and decrease in catalyst activity. The process of optimizing the oxidation reaction can be carried out by extracting a substance such as a ceramic pole and replacing it, or by separating acrolein from the gas produced by the membrane reaction and then supplying this separated acrolein to the subsequent reaction. A method has been proposed in which the reaction is carried out by diluting the concentration of the raw material gas more than necessary to lower the amount of by-products. However, all of these methods are complicated and expensive as industrial methods, and are not satisfactory. In addition, in order to suppress excessive oxidation by reducing the oxygen content of the reaction gas composition in both the first and second reactions, it is common to recycle the waste gas from the reaction gas as an inert gas.
In addition, a method has been proposed in which the shape of the catalyst used in the post-stage reaction is specified and the porosity between the catalysts is increased to suppress clogging of solids from the pre-stage reactor (Japanese Unexamined Patent Publication No. 61-221149). . Measures to prevent blockage problems on the gas inlet side of the second stage reactor are becoming an increasingly important issue now that the development of advanced stage catalysts is progressing, and it is becoming possible to lower the reaction humidity and increase the load. It is becoming.

く本発明が解決しようとする問題点〉 本発明はプロピレンから前段反応および後段反応からな
る接触気相酸化反応により、アクリル酸を製造するにあ
たり、模膜反応器の反応管ガス入口側に棒状或は板状の
挿入物を挿入することにより前段反応生成ガス中に含有
されてくる副生成物による後段触媒層閉塞を防止し、工
業的に円滑にかつ安定して反応を遂行しうる方法を提供
するものである。
Problems to be Solved by the Present Invention> The present invention uses a rod-shaped or provides a method in which the reaction can be carried out smoothly and stably on an industrial scale by inserting a plate-shaped insert to prevent clogging of the latter stage catalyst layer due to by-products contained in the first stage reaction product gas. It is something to do.

〈手   段〉 すなわち、本発明は以下の如くに特定されるものである
<Means> That is, the present invention is specified as follows.

ビスマス、モリブデンおよび鉄を含有してなる触媒酸化
物を充填した第1反応器にてプロピレンを接触気相酸化
して主としてアクロレインを生成せしめ、ついでえられ
る反応生成ガスをそのまま、第1反応器から分離され、
配管にて直結されたモリブデンおよびバナジウムを含有
してなる触媒醇化物を充填した熱変換型多管式第2反応
器に供給し、もってアクロレインを接触気相酸化しアク
リル酸を生成せしめるに際し、第2反応器触媒充填管の
ガス入口部空間に棒状また板状の挿入物を挿入しかつ該
挿入物による管内空隙率が40〜99%とせしめられて
なることを特徴とする2段酸化法によるアクリル酸の製
造方法。
In a first reactor filled with a catalytic oxide containing bismuth, molybdenum, and iron, propylene is catalytically oxidized in a gas phase to mainly produce acrolein, and the resulting reaction product gas is directly transferred from the first reactor. separated,
When the acrolein is catalytically oxidized in gas phase to produce acrylic acid by supplying it to a heat conversion type multi-tubular second reactor filled with a catalytic infusion containing molybdenum and vanadium, which is directly connected with piping, A two-stage oxidation method characterized in that a rod-shaped or plate-shaped insert is inserted into the gas inlet space of a catalyst-filled tube in two reactors, and the porosity in the tube is made to be 40 to 99%. Method for producing acrylic acid.

ここで空隙率とは、以下の定義によるものである。Here, the porosity is defined as below.

空間容積−挿入物体積 以下、さらに本発明を具体的に説明する。Spatial volume - insert volume The present invention will be further explained in detail below.

プロピレンから接触気相酸化反応により対応するアクリ
ル酸を製造する場合、いわゆる2段酸化法が多く採用さ
れている。この2段酸化法にも萌段触媒層において生成
した主にアクロレインを含む混合ガスからアクロレイン
を分離し、後段触媒層に供給しζ接触酸化法により、ア
クリル酸にする方法と、アクロレインを分離せずに直接
に後段触媒層に供し接触気相法によりアクリル酸に変換
させる方法があるが、これらの方法にもさらに有効成分
を回収後の反応排ガスの燃焼ガスを循環利用したり、未
反応アクロレインを循環再利用するため、プロピレンに
混ぜて再利用される方法がある。ところで前段触媒にビ
スマス、モリブデン、鉄を含む多元系触媒を採用する場
合、マレイン酸やテレフタール酸等の高沸点化合物や重
合物、或はタール状物質の生成はさけられない。また重
合物、タール状物質、或はヒユーム状固形物は反応生成
物から配管中でも熱的に、或は配管壁との衝突でも生成
しつる。従って、上記のようなプロセスでアクリル酸を
製造する場合、かかる重合物や副生成物質は例えばガス
状とか固形微粒子とか、ヒユーム状で装置内を循環し、
反応器に導入されることはさけられず、特に後段反応器
に多層に同伴される機会が多いことになる。かかる状況
下では後段反応器に導入される混合ガスの温度が低けれ
ば低い程、高沸点化合物等の副生成物は固体の状態にな
り易く、後段触媒入口側で固着ないし付着して閉塞を招
き易い。
When producing the corresponding acrylic acid from propylene by catalytic gas phase oxidation reaction, a so-called two-stage oxidation method is often employed. In this two-stage oxidation method, acrolein is separated from the mixed gas mainly containing acrolein generated in the moe stage catalyst layer, and is supplied to the latter stage catalyst bed to convert it into acrylic acid by ζ catalytic oxidation method. There is a method of converting it into acrylic acid by a catalytic gas phase method by directly supplying it to a later stage catalyst layer, but these methods also involve recycling the combustion gas of the reaction exhaust gas after recovering the active ingredient, or converting unreacted acrolein into acrylic acid. There is a method of recycling by mixing it with propylene. By the way, when a multicomponent catalyst containing bismuth, molybdenum, and iron is used as the first-stage catalyst, the production of high-boiling compounds such as maleic acid and terephthalic acid, polymers, or tar-like substances is unavoidable. Furthermore, polymers, tar-like substances, or fume-like solids are generated from reaction products thermally in the piping or by collision with the walls of the piping. Therefore, when producing acrylic acid by the process described above, such polymers and by-products circulate within the equipment in the form of gases, solid particles, or fumes.
It cannot be avoided that it is introduced into the reactor, and there are many chances that it will be entrained in multiple layers, especially in the later stage reactor. Under such circumstances, the lower the temperature of the mixed gas introduced into the post-stage reactor, the more likely by-products such as high-boiling compounds will become solid, and they will stick or adhere to the post-catalyst inlet side, leading to blockage. easy.

更には、プロピレンの温度が上がれば、それにつれて反
応生成ガス中の高沸点化合物、タール状物質等の副生成
物の吊が増大することからこの場合も閉塞のトラブルが
起り易い。このような閉塞トラブルをさける方法として
上記した以外にも後段反応器に入る前にガス温度を高め
る、或は後段反応器で触媒入口部までの予熱層部を設け
る等の方法が考えられる。しかしこれらの対策には通常
の方法ではそれぞれに問題がある。後段触媒層に供給す
るガス温度を高めるにしても前段触媒層で生成したアク
ロレインの自動酸化を抑えることが必要であり、更には
爆発範囲を避けな(プればならないなどの制約を受ける
ために限界がある。触媒層に入る前にガスの予熱層部を
空筒状態で設けると空筒部の層長をある程度長くする必
要があり、その分反応器を大型にする必要がある。又、
予熱層部に不活性担体を入れる場合にも、この部分で閉
塞を起すおそれがある。このような状況の下でかかる閉
塞トラブルの解決法について検討したところ、本発明者
等は以下の如き知見を得た。すなわら、プロピレンの接
触気相酸化反応によりアクリル酸を!ll造する場合、
2段酸化法を採用すると、前段反応器での生成ガスは通
常自動酸化を防止するため、かつ燃焼範囲を回避するた
めに生成ガスは充分に冷却されるが、前述した様に、ガ
ス温度を冷却しすぎると副生成物は固体状やヒユーム状
となり、そのままでは後段反応器の触媒層入口側で閉塞
を引きおこす。それを避けるためには線速を高めた状態
で、できるだけすみやかにガス温度をあげて後段触媒上
で前段反応からの副反応生成物の過反応を起り易くする
ことにより、むしろ無害化されたガス状で後段触媒層を
通過せしめうるようになり、後段触媒層での閉塞が回避
可能であろうという観点から検問を進めた結果、不活性
担体充填とか後段触媒層等での予熱ではどうにも閉塞ト
ラブルの回避が不十分であるが、意外にも金属製または
セラミックス製の棒状、板状の挿入物を後段触媒の入口
側空間部に挿入するだけで復段反応用ガスの予熱効果が
現われ、閉塞が回避可能となり、長期且つ安定的に反応
が継続できること、さらには渦電上界の過程においてア
クロレインの自動酸化を抑制しうろことを見い出し本発
明を完成するに至った。
Furthermore, as the temperature of propylene rises, the amount of by-products such as high-boiling compounds and tar-like substances in the reaction product gas increases, which also tends to cause clogging problems. In addition to the methods described above, methods to avoid such clogging troubles include increasing the gas temperature before entering the downstream reactor, or providing a preheating layer in the downstream reactor up to the catalyst inlet. However, each of these countermeasures has its own problems when used as a normal method. Even if the temperature of the gas supplied to the latter catalyst layer is increased, it is necessary to suppress the autooxidation of acrolein generated in the former catalyst layer, and furthermore, due to restrictions such as having to avoid the explosive range, There is a limit.If a gas preheating layer is provided in a hollow cylinder before entering the catalyst layer, the layer length of the hollow cylinder needs to be increased to some extent, and the reactor needs to be made larger accordingly.Also,
Even when an inert carrier is placed in the preheating layer portion, there is a risk of clogging in this portion. As a result of studying methods for solving the blockage problem under these circumstances, the inventors of the present invention obtained the following knowledge. In other words, acrylic acid is produced by catalytic gas phase oxidation reaction of propylene! When building a
When a two-stage oxidation method is adopted, the produced gas in the first reactor is usually sufficiently cooled to prevent auto-oxidation and to avoid the combustion range, but as mentioned above, the gas temperature is If it is cooled too much, the by-product will become solid or fume-like, and if left as it is, it will cause a blockage on the inlet side of the catalyst layer of the latter stage reactor. In order to avoid this, it is possible to raise the gas temperature as quickly as possible while increasing the linear velocity to facilitate overreaction of the side reaction products from the first stage reaction on the second stage catalyst. As a result of conducting inspections from the viewpoint that the blockage in the latter catalyst layer could be avoided, it was found that filling the inert carrier or preheating the latter catalyst layer could not cause any blockage problems. Surprisingly, simply inserting a rod-shaped or plate-shaped insert made of metal or ceramic into the space on the inlet side of the second-stage catalyst produces a preheating effect on the second-stage reaction gas, and prevents blockage. The present inventors have discovered that the reaction can be avoided and the reaction can continue stably for a long period of time, and that autooxidation of acrolein can be suppressed in the process of an eddy electric upper field, leading to the completion of the present invention.

この場合、挿入物の形態は棒状の場合は直線状、ジグザ
ク状、ツイスト状でもよい。棒状挿入物は円筒状でも円
柱状でもよい。又、板状の場合は、タンザク状、ジグザ
ク状、ツイスト状でもよい。
In this case, if the insert is rod-shaped, it may be linear, zigzag, or twisted. The rod-shaped insert may be cylindrical or cylindrical. Moreover, in the case of a plate shape, it may be a tanzak shape, a zigzag shape, or a twisted shape.

板状も完全な板でも金網でできていてもよい。挿入物の
形状により空間での最高空隙率にちがいが起り棒状の挿
入物では空隙率は好適には40%以上99.0%以下、
板状の挿入物では好適には50%以上99.0%以下と
なる。この範囲を採ることにより、挿入物層での固形物
による閉塞が防止され、予熱効果が果たされ、後段触媒
層での反応が円滑に遂行できる。これらの挿入物の材質
は高い熱伝導率を持つ金属、たとえば鉄、ニッケル、ア
ルミニウムおよび合金など特にステンレス製が好ましい
が、不錆化のための表面化学処理を施こした金属でもよ
い。また、セラミックス製としては、たとえばジルコニ
アやアルミナなどをシート状にして用いるとよい。
It may be plate-shaped, a complete plate, or made of wire mesh. The maximum porosity in the space varies depending on the shape of the insert, and for rod-shaped inserts, the porosity is preferably 40% or more and 99.0% or less.
In the case of a plate-shaped insert, it is preferably 50% or more and 99.0% or less. By adopting this range, clogging by solid matter in the insert layer is prevented, a preheating effect is achieved, and the reaction in the subsequent catalyst layer can be carried out smoothly. The material of these inserts is preferably a metal with high thermal conductivity, such as iron, nickel, aluminum, or alloys, particularly stainless steel, but metals whose surface has been chemically treated to make them rustproof may also be used. Further, as a material made of ceramic, for example, zirconia or alumina may be used in the form of a sheet.

実施例でもって本発明の効果を明らかにする前に、予備
実験として本発明で規定した挿入物によるガスの予熱効
果の実験をおこなった。内径30Mで肉厚2#の鋼管を
用いて熱源に溶融塩を使用した。そしてそこに供給する
ガスとして255℃に予熱した空気を用いた。ここでの
空気量は基準状態毎時1.9m3で流した。溶融塩の温
度290℃にした場合空気温度を280℃まで予熱する
に空筒部ではおよそ800”−900mの長さが必要で
あるが、ステンレス製の巾18履ではり90度の角度で
ジグザグ状に折り曲げた板を挿入する(空隙率98%)
と280℃まであげるに必要な挿入長は300a+で充
分であることがわかった。
Before clarifying the effects of the present invention through examples, an experiment was conducted as a preliminary experiment to examine the effect of preheating gas by the insert defined in the present invention. A steel pipe with an inner diameter of 30M and a wall thickness of 2# was used, and molten salt was used as the heat source. Air preheated to 255° C. was used as the gas supplied thereto. The air flow rate here was 1.9 m3 per hour under standard conditions. When the temperature of the molten salt is 290℃, the length of the hollow cylinder is approximately 800"-900m to preheat the air temperature to 280℃, but it is made of stainless steel with a width of 18 mm and the length is zigzag at a 90 degree angle. Insert a plate bent into a shape (porosity 98%)
It was found that an insertion length of 300a+ was sufficient to raise the temperature to 280°C.

本発明による方法の利点をあげれば後段反応器に導入す
るガス温度を無理に高める必要がないから自動酸化や爆
発の危険性の心配がないこと、後段触媒として低温でも
高活性な触媒を採用できること、無理に空筒部を長くし
てガス予熱層をもうける必要がないこと、後段触媒層入
口部での閉塞により不活性担体の抜き出し作業を必要と
しないこと、更にはプロピレンを高濃度にしても高沸点
化合物等による閉塞が避けられるばかりか収率の低下も
起らないことが判明し、工業的に有利な条件でアクリル
M製造の連続運転が可能となったことである。
The advantages of the method according to the present invention are that there is no need to forcibly raise the temperature of the gas introduced into the post-stage reactor, so there is no risk of autooxidation or explosion, and that a catalyst that is highly active even at low temperatures can be used as the post-stage catalyst. , there is no need to forcibly lengthen the hollow cylinder to create a gas preheating layer, there is no need to extract the inert carrier due to blockage at the inlet of the latter catalyst layer, and even when propylene is used at a high concentration. It has been found that not only can blockage caused by high-boiling compounds etc. be avoided, but also that there is no decrease in yield, making it possible to continuously operate the production of acrylic M under industrially advantageous conditions.

本発明を実施するにあたっての反応条件としてまずプロ
ピレンが1〜15容量%、分子状酸素1〜20容量%、
水蒸気1〜30容量%、その他窒素や炭酸ガスなどの不
活性ガスを含む原料ガスを反応温度(反応器熱媒温度)
200〜450℃、空間速度300〜10,0OOhr
−1(STP)T’主にアクロレ・インに変換せしめる
ビスマス−モリブデン−鉄含有多元系前段触媒に供給さ
れる。前段出口ガスは必要に応じて2次空気や水蒸気を
追加し、この混合ガスの温度を好ましくは150℃以上
に保って配管内に閉塞を起させない温度に保ちかつ自動
酸化や爆発範囲に入らない温度におさえて後段触媒に供
給される。
The reaction conditions for carrying out the present invention are as follows: propylene is 1 to 15% by volume, molecular oxygen is 1 to 20% by volume,
The raw material gas containing 1 to 30% by volume of water vapor and other inert gases such as nitrogen and carbon dioxide is heated to the reaction temperature (reactor heat medium temperature)
200~450℃, space velocity 300~10,000hr
-1(STP)T' is mainly supplied to a bismuth-molybdenum-iron-containing multicomponent catalyst for conversion into acroleine. Secondary air or water vapor is added to the pre-stage outlet gas as necessary, and the temperature of this mixed gas is preferably maintained at 150°C or higher so that it does not cause blockage in the piping and does not fall within the autooxidation or explosion range. It is kept at a low temperature and supplied to the downstream catalyst.

次に貝体例を示すことにより本発明の内容をより明確に
させる。
Next, the content of the present invention will be made clearer by showing an example of a shell.

実施例 1 前段触媒の調製 水151を加熱しつつモリブデン酸アンモニウム10.
3 K’J、パラタングステン酸アンモニウム3、2 
Kyを加えはげしく撹拌した。(これをA液とする)。
Example 1 Ammonium molybdate 10.
3 K'J, ammonium paratungstate 3,2
Ky was added and stirred vigorously. (This is called liquid A).

別に硝酸コバルト6、8 Kyを2j2の水に、硝酸第
2鉄2.4 Kgを21の水に、硝酸ビスマス2.9K
yを濃硝M0.6j!を加えて酸性とした水31に、そ
れぞれ溶解させ、この3種の硝酸塩溶液を混合した液を
上記A液に滴下した。ついで二酸化ケイ素換算で20重
量%を含有するシリカゾル2、4 K’Jおよび水酸化
カリウム20.20を1.51の水に溶解した液をそれ
ぞれ加え、かくして生じた懸濁液を加熱蒸発せしめた後
成型し、空気流通下450℃で6時間焼成して触媒を調
製した。この触媒の酸素以外の元素による組成は原子比
でCoaFe1Bi1W2Mo1oSi1.、+5Ko
、osであった。
Separately, add 6.8 Ky of cobalt nitrate to 2J2 of water, 2.4 Kg of ferric nitrate to 21 of water, and 2.9K of bismuth nitrate.
y is concentrated nitrate M0.6j! Each of these three types of nitrate solutions was dissolved in water 31 which had been made acidic by adding these three types of nitrate solutions, and a liquid mixture of these three types of nitrate solutions was added dropwise to the above liquid A. Next, silica sol 2,4 K'J containing 20% by weight in terms of silicon dioxide and a solution prepared by dissolving 20.20% potassium hydroxide in 1.51% water were added, and the resulting suspension was heated and evaporated. The catalyst was then molded and calcined at 450° C. for 6 hours under air circulation to prepare a catalyst. The composition of this catalyst with elements other than oxygen is CoaFe1Bi1W2Mo1oSi1. , +5Ko
, it was os.

後段触媒の調製 水601を加熱撹拌しつつその中にパラタングステン酸
アンモニウム1.3Ky、メタバナジン酸アンモニウム
1.1Kg、モリブデン酸アンモニウム4.3g、つい
で重クロム酸アンモニウム150Qをそれぞれ混入溶解
し、別に硝酸銅1.1/Cyを0、721の水に溶解さ
せた水溶液を作成し、両、汝を混合した。かくして得ら
れた混合溶液を蒸気加熱器付きのステンレス製蒸発器に
入れ、担体基材がα−アルミナからなり、表面積が1m
2/g以下、気孔率42%、75〜250ミクロンの孔
径を右する細孔の占める容積が全細孔容積の92%を占
める直径3〜5 mmの粒状担体12ノを加え撹拌しつ
つ蒸発乾固して担体に付着せしめたのち、400℃で5
時間焼成して触媒を調製した。この触媒の担体を除く酸
素以外の元素による組成は原子比でMo 12V4.6
 Cu 2.2 Cr O,6W2.4であった。
Preparation of second-stage catalyst While heating and stirring water 601, 1.3 Ky of ammonium paratungstate, 1.1 kg of ammonium metavanadate, 4.3 g of ammonium molybdate, and 150 Q of ammonium dichromate were respectively mixed and dissolved, and separately dissolved in nitric acid. An aqueous solution was prepared by dissolving copper 1.1/Cy in 0.721 water, and both were mixed. The thus obtained mixed solution was placed in a stainless steel evaporator equipped with a steam heater, and the carrier base material was made of α-alumina and the surface area was 1 m.
2/g or less, porosity 42%, pore size of 75 to 250 microns, and the volume occupied by pores is 92% of the total pore volume. Add 12 pieces of granular carrier with a diameter of 3 to 5 mm, and evaporate with stirring. After drying and adhering to the carrier, it was heated at 400℃ for 5 minutes.
A catalyst was prepared by calcination for a period of time. The composition of elements other than oxygen excluding the carrier of this catalyst is Mo 12V4.6 in atomic ratio.
It was Cu2.2CrO,6W2.4.

反応方法 上記前段触媒12.25 Jを内径25#、長さ3、 
OOOmmの鋼鉄製反応@10本からなり、シェル側は
溶融塩を循環することにより熱交換が可能な多管式反応
器に均等に充填し、330℃に加熱した。
Reaction method The above-mentioned pre-catalyst 12.25 J was prepared with an inner diameter of 25#, a length of 3,
A multitubular reactor consisting of 10 OOO mm steel reactors, whose shell side was capable of heat exchange by circulating molten salt, was evenly filled and heated to 330°C.

別に前記後段触媒21.8j!を内径25#、長さ7、
OOOInMの鋼鉄製反応管10本からなり、シェル側
は溶融塩を循環することにより熱交換が可能な多管式反
応器に均等に充填し、255℃に加熱した。
Separately, the latter stage catalyst 21.8j! Inner diameter 25#, length 7,
A multitubular reactor consisting of 10 OOOInM steel reaction tubes, whose shell side was capable of heat exchange by circulating molten salt, was evenly filled and heated to 255°C.

2つの反応器を分子状酸素含有ガスおよび水蒸気の添加
用ノズルを備え、且つ熱交換器を備えた導管で連結し、
前段触媒を含む反応器から出る反応生成ガスを後段触媒
を含む反応器へ導入されるようにした。この際後段反応
器内の後段反応管に入るまでのガス濡は220℃に保っ
た。更に、後段反応管触媒層の上部(反応ガス入口側)
には肉厚0.4 rm 、巾17#の5US304製板
をおよそ90度の角度でピッチ35mでジグザグ状に折
り曲げた長さ300面の金属板を反応管入口部から20
0mのところから、後段触媒の上端に乗るように挿入し
た。この時の金属板挿入部の空隙率は98%であった。
two reactors are connected by a conduit equipped with a nozzle for the addition of molecular oxygen-containing gas and water vapor and equipped with a heat exchanger,
The reaction product gas discharged from the reactor containing the front stage catalyst was introduced into the reactor containing the rear stage catalyst. At this time, the gas wetness was maintained at 220° C. until it entered the second stage reaction tube in the second stage reactor. Furthermore, the upper part of the catalyst layer of the latter reaction tube (reaction gas inlet side)
For this purpose, a 300-sided metal plate made by bending a 5US304 plate with a wall thickness of 0.4 rm and a width of 17# in a zigzag shape at an angle of about 90 degrees with a pitch of 35 m was inserted 20 mm from the inlet of the reaction tube.
It was inserted from 0 m so as to rest on the upper end of the latter stage catalyst. At this time, the porosity of the metal plate insertion portion was 98%.

プロピレン9容ω%、空気76容D%、水悪気15容け
%からなる混合ガスを前段触媒を含む反応器へ19,6
0ONJl/hrr導入し、サラニ前段反応器と第2反
応器を連結する導管の分子状酸素含有ガス導入ノズルよ
り2.70ONj!/hrの空気を、また水蒸気導入ノ
ズルより2.940 N J/hrの水蒸気を添加して
前段及び後段の反応を行った。この時の後段反応器人出
口での圧力差は270rMHgであった。更にこの反応
を4. OO0時間継続した。この間前後段反応器溶融
塩温度はそれぞれ10℃と5℃上昇させる必要があった
A mixed gas consisting of propylene 9 volume ω%, air 76 volume D%, and water 15 volume % is fed into the reactor containing the front stage catalyst 19,6
0ONJl/hrr is introduced, and 2.70ONJ! is introduced from the molecular oxygen-containing gas introduction nozzle of the conduit connecting the Sarani front reactor and the second reactor! /hr of air and 2.940 NJ/hr of steam from a steam introduction nozzle were added to carry out the reactions in the first and second stages. At this time, the pressure difference at the rear reactor outlet was 270 rMHg. Further repeat this reaction in 4. It continued for 00 hours. During this time, it was necessary to raise the molten salt temperatures in the front and rear reactors by 10°C and 5°C, respectively.

反応開始時と4. OO0時間後の反応結果を表1に示
す。
At the start of the reaction and 4. The reaction results after OO hours are shown in Table 1.

ここでプロピレン転化率は前段反応器入口部と後段反応
器出口部でのプロピレン消費量から計算されたものであ
り、アクリル酸単流収率とは後段反応器出口でのアクリ
ル酸生成量と前段反応器に供給されるプロピレンとの比
率を示す。
Here, the propylene conversion rate is calculated from the amount of propylene consumed at the inlet of the first reactor and the outlet of the second reactor, and the single flow acrylic acid yield is calculated from the amount of acrylic acid produced at the outlet of the second reactor and the amount of propylene consumed at the outlet of the second reactor. Shows the ratio of propylene fed to the reactor.

比較例 1 実施例1において後段反応器の後段触媒入口側に挿入物
を入れずに反応器入口側から500Ivnのところに触
媒上面が位置する様に後段触媒を実施例1の様に充填し
た。それ以外は実施例1の方法に従って反応を行った。
Comparative Example 1 The latter catalyst was packed in the same manner as in Example 1, without putting an insert into the latter catalyst inlet side of the latter reactor, so that the upper surface of the catalyst was located 500 Ivn from the reactor inlet side. Other than that, the reaction was carried out according to the method of Example 1.

この反応の開始時性能を表−1に示す。又この反応を長
期継続したが3、 OOO時間程度で後段反応器出入口
間の圧力は390mH(jにまで上昇したく比較例1−
1)。
The performance at the start of this reaction is shown in Table 1. Although this reaction was continued for a long period of time, the pressure between the inlet and outlet of the latter reactor rose to 390 mH (J) in about OOO hours.
1).

反応をとめて後段反応器を点検したところ、後段触媒入
口側触媒層は重合物等で閉塞されていることがわかった
。又、この閉塞を避けるために後段触媒層入口側の空筒
部の長さを1.500mにした。
When the reaction was stopped and the second stage reactor was inspected, it was found that the second stage catalyst inlet side catalyst layer was clogged with polymers and the like. Further, in order to avoid this blockage, the length of the hollow cylinder on the inlet side of the latter catalyst layer was set to 1.500 m.

その結果を反応開始時及び4. OOO時間反応継続後
の結果を表1に示す。反応方法はその他の点で実施例1
に従った(比較例1−2゜)この場合衣から明らかな様
に収率が低くなったのは空筒部の長さが長くなり自動酸
化が起っているため(−酸化炭素や酢酸が増大する)で
あり、且つ4. OOO時間後若干圧力損失も増大した
The results were reported at the start of the reaction and in 4. Table 1 shows the results after the reaction continued for OOO hours. The reaction method was otherwise the same as Example 1.
(Comparative Example 1-2゜) In this case, the reason why the yield was low as is clear from the batter is that the length of the hollow cylinder became long and autoxidation occurred (-carbon oxide and acetic acid (increases), and 4. After OOO time, the pressure loss also increased slightly.

実施例 2 実施例1で使用したのと同じ材質および寸法の金属板を
、ら線状に巻いた構造の挿入物を使用した。この挿入物
の全長は300Mであった(空隙率97.5%)。反応
方法は実施例1に従った。この反応結果を表1に示す。
Example 2 An insert having a structure in which a metal plate of the same material and dimensions as used in Example 1 was wound in a spiral shape was used. The total length of this insert was 300M (porosity 97.5%). The reaction method was in accordance with Example 1. The reaction results are shown in Table 1.

実施例 3 実施例1で使用した挿入物の代わりに材質がステンレス
304の外径5Mの円柱状の金棒をほぼ90度角度ピッ
チおよそ35mmにジグザク状に折り曲げた挿入物30
0#長さを使用した。この時の空隙率はほぼ96%であ
った。反応方法は実施例1に従った。その結果を表1に
示す。  −比較例 2 実施例3に於て円柱状の棒の外径を細くし反応管内での
挿入部の空隙率を99.3%にした。棒状挿入および反
応は実施例3に従った(比較例2−1)。反応結果を表
1に示す。予熱効果が十分でなく反応と共に圧力損失が
増大して来た。
Example 3 Instead of the insert used in Example 1, an insert 30 was prepared by bending a cylindrical metal bar made of stainless steel 304 and having an outer diameter of 5M into a zigzag shape at an angle pitch of approximately 35 mm at approximately 90 degrees.
0# length was used. The porosity at this time was approximately 96%. The reaction method was in accordance with Example 1. The results are shown in Table 1. - Comparative Example 2 In Example 3, the outer diameter of the cylindrical rod was made thinner, and the porosity of the inserted portion within the reaction tube was made 99.3%. Rod insertion and reaction were conducted according to Example 3 (Comparative Example 2-1). The reaction results are shown in Table 1. The preheating effect was insufficient and the pressure loss increased with the reaction.

他方、実施例3に於て円柱状の棒の外径を大きくし空隙
率を36%となる様にした。棒状挿入および反応方法は
実施例3に従った(比較例2−2)。その結果を表1に
示す。その結果太い棒を挿入したため圧力損失が反応開
始時にも大きくなったが、更に反応継続と共に圧力損失
が増大していった。反応を中止して後段反応器を点検し
たところ挿入物と反応管内壁の間に固形物が析出して閉
塞している部分が認められた。
On the other hand, in Example 3, the outer diameter of the cylindrical rod was increased so that the porosity was 36%. The rod insertion and reaction method were in accordance with Example 3 (Comparative Example 2-2). The results are shown in Table 1. As a result, the pressure loss increased even at the start of the reaction due to the insertion of a thick rod, but the pressure loss further increased as the reaction continued. When the reaction was stopped and the latter reactor was inspected, it was found that solid matter had precipitated between the insert and the inner wall of the reaction tube, causing a blockage.

比較例 3 実施例1の挿入物の代わりに肉厚0.4 mm 、ステ
ンレス製ラシヒリング10mφX10sLのものを後段
反応器の反応器に充填した。充填方法は反応器入口側空
筒部が200 mmとなる様に且つその下に上記ラシヒ
リング挿入物の層高が300M、その下に後段触媒が充
填される様な充填方法を採った。ラシヒリング充1a1
Mの空隙率は91%であった。反応方法は実施例1に従
った。結果を表1に示す。
Comparative Example 3 Instead of the insert in Example 1, a stainless steel Raschig ring with a wall thickness of 0.4 mm and a diameter of 10 mφ x 10 sL was filled into the reactor of the latter stage reactor. The filling method was such that the cavity on the inlet side of the reactor was 200 mm, the layer height of the Raschig ring insert was 300 M, and the latter stage catalyst was packed below that. Raschig ring full 1a1
The porosity of M was 91%. The reaction method was in accordance with Example 1. The results are shown in Table 1.

反応と共に後段反応器出入口での圧力損失は上昇した。As the reaction progressed, the pressure loss at the inlet and outlet of the second stage reactor increased.

3. OO0時間後に反応をとめて後段反応器を点検し
たところ、ラシヒリング充11iWでがなりの重合物等
の固形物が閉塞状態で析出している事が認められた。空
隙率が大きいにもかかわらず充填物の形状により閉塞状
態が大きく左右されることがわかった。
3. When the reaction was stopped after 00 hours and the latter stage reactor was inspected, it was found that solid substances such as polymers were precipitated in a blocked state with a Raschig ring filling of 11 iW. It was found that although the porosity was large, the state of occlusion was greatly influenced by the shape of the filling.

実施例 4 アルミナ製のシートで肉厚0.4#、巾17mm。Example 4 Alumina sheet with wall thickness of 0.4# and width of 17mm.

長さ300mの板を実施例1の方法に従って挿入した。A 300 m long plate was inserted according to the method of Example 1.

この時のアルミナシート挿入部での空隙率は98.3%
であった。反応方法および触媒充填法は実施例1と同様
にして表1に示す結果をえた。
At this time, the porosity at the alumina sheet insertion part was 98.3%.
Met. The reaction method and catalyst loading method were the same as in Example 1, and the results shown in Table 1 were obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)ビスマス、モリブデンおよび鉄を含有してなる触
媒酸化物を充填した第1反応器にてプロピレンを接触気
相酸化して主としてアクロレインを生成せしめ、ついで
えられる反応生成ガスをそのまま、第1反応器から分離
され、配管にて直結されたモリブデンおよびバナジウム
を含有してなる触媒酸化物を充填した熱交換型多管式第
2反応器に供給し、もつてアクロレインを接触気相酸化
しアクリル酸を生成せしめるに際し、第2反応器触媒充
填管のガス入口部空間に棒状または板状の挿入物を挿入
しかつ該挿入物による管内空隙率が40〜99%とせし
められてなることを特徴とする2段酸化法によるアクリ
ル酸の製造方法。
(1) In a first reactor filled with a catalyst oxide containing bismuth, molybdenum, and iron, propylene is catalytically oxidized in a gas phase to mainly produce acrolein, and the resulting reaction product gas is directly transferred to the first reactor. The second reactor is separated from the reactor and directly connected to the heat exchange type multi-tubular reactor filled with a catalyst oxide containing molybdenum and vanadium, where the acrolein is catalytically oxidized in vapor phase and converted into acrylic. When producing acid, a rod-shaped or plate-shaped insert is inserted into the gas inlet space of the second reactor catalyst-filled tube, and the porosity in the tube is made to be 40 to 99% by the insert. A method for producing acrylic acid using a two-stage oxidation method.
JP62322690A 1987-12-22 1987-12-22 Method for producing acrylic acid Expired - Fee Related JPH07107016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62322690A JPH07107016B2 (en) 1987-12-22 1987-12-22 Method for producing acrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62322690A JPH07107016B2 (en) 1987-12-22 1987-12-22 Method for producing acrylic acid

Publications (2)

Publication Number Publication Date
JPH01165543A true JPH01165543A (en) 1989-06-29
JPH07107016B2 JPH07107016B2 (en) 1995-11-15

Family

ID=18146531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62322690A Expired - Fee Related JPH07107016B2 (en) 1987-12-22 1987-12-22 Method for producing acrylic acid

Country Status (1)

Country Link
JP (1) JPH07107016B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259488A (en) * 1995-03-23 1996-10-08 Mitsubishi Chem Corp Collection of reaction product gas
JPH09301912A (en) * 1996-05-09 1997-11-25 Mitsubishi Rayon Co Ltd Packing of catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
US6441227B1 (en) 2000-06-23 2002-08-27 Saudi Basic Industries Corporation Two stage process for the production of unsaturated carboxylic acids by oxidation of lower unsaturated hydrocarbons
JP2009256238A (en) * 2008-04-16 2009-11-05 Nippon Kayaku Co Ltd Method for starting gas phase-solid phase contact reaction
WO2010032665A1 (en) 2008-09-22 2010-03-25 株式会社日本触媒 Fixed bed reactor and method for producing acrylic acid using the same
JP2011106728A (en) * 2009-11-17 2011-06-02 Sumitomo Chemical Co Ltd Heat transfer tube for multitubular reactor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259488A (en) * 1995-03-23 1996-10-08 Mitsubishi Chem Corp Collection of reaction product gas
JPH09301912A (en) * 1996-05-09 1997-11-25 Mitsubishi Rayon Co Ltd Packing of catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
US6441227B1 (en) 2000-06-23 2002-08-27 Saudi Basic Industries Corporation Two stage process for the production of unsaturated carboxylic acids by oxidation of lower unsaturated hydrocarbons
JP2009256238A (en) * 2008-04-16 2009-11-05 Nippon Kayaku Co Ltd Method for starting gas phase-solid phase contact reaction
WO2010032665A1 (en) 2008-09-22 2010-03-25 株式会社日本触媒 Fixed bed reactor and method for producing acrylic acid using the same
JPWO2010032665A1 (en) * 2008-09-22 2012-02-09 株式会社日本触媒 Fixed bed reactor and method for producing acrylic acid using the same
US8673245B2 (en) 2008-09-22 2014-03-18 Nippon Shokubai Co., Ltd. Fixed-bed reactor and process for producing acrylic acid using the reactor
JP5559692B2 (en) * 2008-09-22 2014-07-23 株式会社日本触媒 Fixed bed reactor and method for producing acrylic acid using the same
JP2011106728A (en) * 2009-11-17 2011-06-02 Sumitomo Chemical Co Ltd Heat transfer tube for multitubular reactor

Also Published As

Publication number Publication date
JPH07107016B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
JPH0222242A (en) Production of methacrylic acid
KR100419705B1 (en) Catalyst And Process for Producing Unsaturated Aldehyde And Unsaturated Acid
JPH11130722A (en) Production of acrylic acid
TWI292755B (en) Method of producing unsaturated aldehyde and/or unsaturated fatty acid
JP4813758B2 (en) Composite oxide catalyst and method for producing acrylic acid using the same
US20040192963A1 (en) Heterogeneously catalyzed partial gas phase oxidation of acrolein to acrylic acid
WO2009017074A1 (en) Process for producing acrylic acid by two-stage catalytic vapor-phase oxidation
JP5450591B2 (en) Method for producing oxidized organic compound
WO2003055835A1 (en) Process for vapor-phase catalytic oxidation and process for production of (meth)acrolein or (meth)acrylic acid
TWI383971B (en) Process for preparing at least one organic target compound by heterogeneously catalyzed gas phase partial oxidation
JP2509049B2 (en) Method for producing methacrylic acid
JP3972718B2 (en) Method for regenerating catalyst for methacrylic acid production
JP5579053B2 (en) Method of charging the longitudinal part of the contact pipe
JP2005289919A (en) Method for producing (meth)acrylic acid or (meth)acrolein
JPH01165543A (en) Production of acrylic acid
TWI324994B (en) Heterogeneously catalyzed partial gas phase oxidation of acrolein to acrylic acid
TWI324148B (en) Heterogeneously catalyzed partial gas phase oxidation of acrolein to acrylic acid
JPH0116816B2 (en)
CN112642453A (en) Catalyst for preparing phthalic anhydride by naphthalene oxidation and preparation method thereof
JPH05125010A (en) Reactor for producing unsaturated aldehyde or unsaturated acid
JP6762370B2 (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2638241B2 (en) Method for producing methacrolein and methacrylic acid
WO2005115951A1 (en) Process for producing (meth)acrylic acid or (meth)acrolein
WO2005105714A1 (en) Process for producing (meth)acrylic acid or (meth)acrolein
JP5171031B2 (en) Reactor for catalytic gas phase oxidation and method for producing acrylic acid using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees