JPH0757730A - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JPH0757730A
JPH0757730A JP5225068A JP22506893A JPH0757730A JP H0757730 A JPH0757730 A JP H0757730A JP 5225068 A JP5225068 A JP 5225068A JP 22506893 A JP22506893 A JP 22506893A JP H0757730 A JPH0757730 A JP H0757730A
Authority
JP
Japan
Prior art keywords
nickel hydroxide
nickel
storage battery
alkaline storage
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5225068A
Other languages
Japanese (ja)
Other versions
JP3151340B2 (en
Inventor
Kunihiko Miyamoto
邦彦 宮本
Takeshi Fukuju
剛 福寿
Takeshi Sugimoto
健 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16823536&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0757730(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP22506893A priority Critical patent/JP3151340B2/en
Priority to TW083107384A priority patent/TW267262B/zh
Priority to DE4429273A priority patent/DE4429273B4/en
Publication of JPH0757730A publication Critical patent/JPH0757730A/en
Application granted granted Critical
Publication of JP3151340B2 publication Critical patent/JP3151340B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an alkaline storage battery having excellent charge and discharge efficiency by restraining swelling of an electrode at overcharge time of a cadmium unadded nickel positive electrode. CONSTITUTION:An alkaline storage battery is formed by using a nickel positive electrode obtained by adding/filling a conductive agent and a binding agent to/in an alkaline resistant metallic porous body by using nickel hydroxide powder as a main component. The alkaline storage battery is characterized in that in metal conversion, zinc of 1.0 to 2.5 weight % and cobalt of 1.5 to 5.0 weight % are contained inside of the nickel hydroxide powder together with nickel in a coprecipitation condition. An average particle diameter of nickel hydroxide may be 5 to 30mum, and tap density mad be not less than 1.8g/cm<2>, and the specific surface area is preferable to be 8 to 25m<2>/g, and a half value width of a (101) surface by an X-ray diffraction method is preferable to be not less than 0.8 deg./2theta, a thermal decomposition temperature is preferable to be not more than 270 deg.C, and a shape is perferable to be spherical.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はニッケル正極を用いたア
ルカリ蓄電池に関するものである。
FIELD OF THE INVENTION The present invention relates to an alkaline storage battery using a nickel positive electrode.

【0002】[0002]

【従来の技術】アルカリ蓄電池の正極としては、従来、
焼結式正極が用いられており、この焼結式正極は穿孔綱
板或いはニッケル・ネット等の芯金にニッケル粉末を焼
結して得た10数μmの孔に、ニッケル塩水溶液を含浸
し、ついでこれをアルカリ処理する事によって、前記含
浸ニッケル塩を水酸化ニッケルに変化させて正極とす
る。しかし、この焼結式正極は製造の際のニッケル塩の
含浸及びアルカリ処理といった複雑な活物質含浸操作が
必要で、又、所定量の活物質を含浸するためには、上記
操作を通常4〜10回程度繰り返し行わなければならな
いため製造コストが高くなってしまうという問題点があ
った。更に、ニッケル粉末焼結体の機械的強度を維持で
きる多孔度が80%程度で限界となるため活物質の充填
絶対量そのものに限界があるといった問題点も持ち合わ
せていた。
2. Description of the Related Art Conventionally, as a positive electrode of an alkaline storage battery,
A sintering type positive electrode is used. This sintering type positive electrode is obtained by impregnating a nickel salt aqueous solution into holes of 10 and several μm obtained by sintering nickel powder on a core metal such as a perforated steel plate or a nickel net. Then, by subjecting this to an alkali treatment, the impregnated nickel salt is converted into nickel hydroxide to obtain a positive electrode. However, this sintered positive electrode requires a complicated operation of impregnating the active material such as impregnation of nickel salt and alkali treatment at the time of production, and in order to impregnate a predetermined amount of the active material, the above-mentioned operation is usually performed by Since it has to be repeated about 10 times, there is a problem that the manufacturing cost becomes high. Furthermore, the porosity that can maintain the mechanical strength of the nickel powder sintered body is limited to about 80%, so that there is a problem that the absolute amount of the active material to be filled is limited.

【0003】[0003]

【発明が解決しようとする問題点】このため、水酸化ニ
ッケル粉末に導電粉末、結着剤及び水を混合してこれを
ペースト状となし、平均多孔度95%以上、平均孔径が
数10〜数100μmの3次元スポンジ状金属多孔体や
金属繊維マット等に、直接これを、充填して製造される
正極が検討されている。この方法は、通常、焼結式に対
して非焼結式或いはペースト式と呼ばれている。このペ
ースト式は、発明の出発点の通り、焼結式に対して、金
属多孔体の多孔度及び平均孔径が大きいことにより、活
物質充填工程が容易に済み、充填絶対量を大きくできる
という点では非常に優れている。しかし、ペーストを充
填する金属多孔体の細孔が焼結式ニッケル細孔に対し
て、大きい為に、活物質と集電体バルクまでの距離が集
電性を悪くしていることや、活物質の絶対量そのものを
増やしていること等が、(1)導電性の低下はもとよ
り、(2)特に、過充電時に於ける電極膨潤率増大をも
たらし、ひいては、(3)充放電効率を含めた正極の利
用率低下を招いていた為に焼結式に対して劣るものであ
った。
For this reason, the nickel hydroxide powder is mixed with a conductive powder, a binder and water to form a paste, which has an average porosity of 95% or more and an average pore size of several tens. A positive electrode produced by directly filling a three-dimensional sponge-like metal porous body having a size of several 100 μm, a metal fiber mat, or the like with this is being studied. This method is generally called a non-sintering type or a paste type as opposed to a sintering type. According to the paste method, the porosity and average pore size of the metal porous body are larger than those of the sintering method, so that the active material filling process is easy and the absolute filling amount can be increased. Is very good at. However, since the pores of the metal porous body filling the paste are larger than the sintered nickel pores, the distance between the active material and the bulk of the current collector deteriorates the current collection performance, and Increasing the absolute amount of the substance itself leads to (1) decrease in conductivity, but also (2) increase in electrode swelling rate especially during overcharge, and (3) charge and discharge efficiency is included. In addition, it was inferior to the sintering type because the utilization rate of the positive electrode was lowered.

【0004】即ち、ペースト式は焼結式に対して、容量
アップというメリットをベースに(1)導電性の向上、
(2)電極膨潤率抑制、(3)充放電効率向上の3つの
問題点を改善していくことが課題であった。
That is, the paste type is based on the advantage that the capacity is increased as compared with the sintering type.
The problems were to improve the three problems of (2) suppression of electrode swelling ratio and (3) improvement of charge / discharge efficiency.

【0005】(1)の導電性向上は、充放電中に於ける
ニッケル極の平均充放電分極電位を下げる意味で非常に
重要であり、(2)の電極膨潤率抑制、(3)の充放電
効率向上の必要条件となる。(十分条件では無い。)こ
の導電性向上の為には、コバルト化合物(コバルト酸化
物、コバルト水酸化物、m−コバルト等)を添加する事
が一般的となっている。しかし、コバルト化合物添加の
効果(即ち導電性向上)を最大限に生かす為には、その
製法はもとより、混合分散性、アルカリ電解液溶解性、
保存安定性についてのファクターを押さえることが重要
であり、著者らは、これらに付いて、特願平03−00
6953、03−006954、03−130222、
03−130337で、数多くあるコバルト化合物の中
から一酸化コバルト(CoO)、三酸化二コバルト(C
23 )の少なくとも一種類以上を用いることが有効
である事に着目し、これらに付いて出願する事に依り、
一応の解決をみた。問題は、残りの2つであり、(2)
の電極膨潤率抑制に付いては、特に過充電時に対するも
のが課題で、(3)については、特に、高温時の充電効
率が課題である。前者については、過充電時に、高次酸
化物で且つ低密度のγ−オキシ水酸化ニッケル(γ−N
iOOH)を、出来るだけ作らないようにすることが重
要で、後者については、高温時に於けるニッケル極の酸
素過電圧を大きくしてやり、充電電気エネルギーの一部
を酸素ガス発生に消費されないようにすることが重要で
ある。これら(2)、(3)については、遷移金属、遷
移金属化合物を添加することが焼結式の頃から一般的と
なっているので、これが一つの指針となる。
The improvement in conductivity (1) is very important in the sense that the average charge / discharge polarization potential of the nickel electrode during charge / discharge is lowered, and (2) suppression of electrode swelling ratio and (3) charge. This is a necessary condition for improving discharge efficiency. (It is not a sufficient condition.) In order to improve the conductivity, it is general to add a cobalt compound (cobalt oxide, cobalt hydroxide, m-cobalt, etc.). However, in order to maximize the effect of adding a cobalt compound (that is, improve conductivity), not only the manufacturing method but also mixing and dispersibility, alkali electrolyte solution solubility,
It is important to suppress the factor for storage stability, and the authors have been able to address these issues in Japanese Patent Application No. 03-00.
6953, 03-006954, 03-130222,
03-130337, cobalt monoxide (CoO), dicobalt trioxide (C
focusing on the fact that it is effective to use at least one of O 2 O 3 ) and applying for these
I saw a tentative solution. The problem is the remaining two, (2)
Regarding the suppression of the electrode swelling rate, the problem is particularly that at the time of overcharging, and regarding (3), the charging efficiency at a high temperature is particularly a problem. Regarding the former, when overcharged, γ-nickel oxyhydroxide (γ-N) which is a high-order oxide and has a low density is used.
It is important to make as little iOOH) as possible. For the latter, increase the oxygen overvoltage of the nickel electrode at high temperature so that part of the charging electrical energy is not consumed for oxygen gas generation. is important. Regarding these (2) and (3), it is common to add a transition metal or a transition metal compound from the time of the sintering formula, and this is one guideline.

【0006】添加する遷移金属元素としては、一般に、
カドミウム(Cd)、コバルト(Co)が広く知られて
おり、その添加形態としては水酸化ニッケル(Ni(O
H)2 )粒子の内部にニッケル原子(Ni)と共に固溶
化させてしまう方法(=共沈添加法)とNi(OH)2
粒子と共に遷移金属或いは遷移金属化合物(主として酸
化物或いは水酸化物)粒子をペースト混練時に混ぜ込ん
でしまう方法(=混合添加法)の2種類がある。
As the transition metal element to be added, generally,
Cadmium (Cd) and cobalt (Co) are widely known, and nickel hydroxide (Ni (O
H) 2 ) A method of forming a solid solution with nickel atoms (Ni) inside the particles (= coprecipitation addition method) and Ni (OH) 2
There are two types: a method of mixing transition metal or transition metal compound (mainly oxide or hydroxide) particles together with particles during paste kneading (= mixing and adding method).

【0007】しかしながら、最近になって、環境面から
の電池に対する意識が高くなり、例えばニッケル・水素
電池のニッケル極に含まれる非常にわずかなカドミウム
に付いても、規制強化を意識して完全除去する傾向が一
般的になりつつある。
However, recently, the awareness of the battery from the environmental aspect has increased, and even if a very small amount of cadmium contained in the nickel electrode of a nickel-hydrogen battery is attached, it is completely removed in consideration of the stricter regulation. The tendency to do so is becoming more common.

【0008】そこで、カドミウムに代えて亜鉛又は亜鉛
化合物を添加する方法が、例えば、特開平2−3006
1、特開平3−77273に提案されている。前者は、
共沈添加法で後者が混合添加法に依るものである。これ
らの内、後者の混合添加法に付いては上述(2)の電極
膨潤率、上述(3)の高温、低レートの充電高率何れも
無添加のそれに比べて明確な差異を生じない事が認めら
れた。前者の共沈添加法に付いては、その添加量まで規
定したものは亜鉛のみで、3〜10wt%の範囲であ
り、その効果は上述(2)の電極膨潤率の低減のみに終
始している。即ち、それは亜鉛、コバルトの組み合わせ
に依る共沈添加量の適正化やその粒径、タップ密度、比
表面積、結晶歪、結合エネルギーの適正化のバランスを
考慮していない為、カドミウム同量添加のそれに比べて
高温低レートの充電効率が約15〜20%程度劣ってい
るもので、アルカリ電池のニッケル極中のカドミウム・
フリー化は達成されたものの上述(3)の充電効率に付
いては根本解決に至っていないのが実状である。
Therefore, a method of adding zinc or a zinc compound in place of cadmium is disclosed in, for example, JP-A-2-3006.
1, proposed in JP-A-3-77273. The former is
The latter is the co-precipitation addition method, which is based on the mixed addition method. Among these, the latter mixed addition method does not cause any clear difference in the electrode swelling rate of (2) above, the high temperature and low charging rate of (3) above compared to the case of no addition. Was recognized. Regarding the former coprecipitation addition method, only zinc was specified up to the addition amount, and the range was from 3 to 10 wt%, and the effect was limited to the reduction of the electrode swelling rate in (2) above. There is. That is, it does not consider the balance of optimization of coprecipitation addition amount depending on the combination of zinc and cobalt, and its particle size, tap density, specific surface area, crystal strain, and optimization of binding energy. Compared to that, the charging efficiency at high temperature and low rate is inferior by about 15 to 20%. Cadmium in the nickel electrode of alkaline batteries
The actual situation is that although a free charge has been achieved, the charging efficiency of (3) above has not been fundamentally resolved.

【0009】[0009]

【問題点を解決するための手段】本発明は、アルカリ蓄
電池用ニッケル極に用いる水酸化ニッケル粉末内部に金
属換算で亜鉛を1.0〜2.5wt%、コバルトを1.
5〜5.0wt%、ニッケルと共に、共沈状態で含ま
せ、且つ、前記水酸化ニッケル粉末を平均粒径5〜30
μm、比表面積を8〜25m2 /g、タップ密度を1.
8g/cm3 以上の球状とし、そのX線粉末回折法に依
る(101)面ピーク半価幅を0.8°/2θ以上、T
Gに於ける熱分解温度を270℃以下にする事に依っ
て、カドミウム・フリーのニッケル極作製を可能とし、
特に、上記2つの課題、即ち過充電時の電極膨潤抑制の
みならず高温時の充電効率に優れたアルカリ蓄電池を提
供することができる。
According to the present invention, zinc of 1.0 to 2.5 wt% and cobalt of 1. to 2.5 wt% in terms of metal are contained in a nickel hydroxide powder used in a nickel electrode for an alkaline storage battery.
5 to 5.0 wt% together with nickel in a coprecipitated state, and the nickel hydroxide powder has an average particle size of 5 to 30.
μm, specific surface area 8 to 25 m 2 / g, tap density 1.
A spherical shape of 8 g / cm 3 or more and a (101) plane peak half-value width of 0.8 ° / 2θ or more according to an X-ray powder diffraction method, T
By making the thermal decomposition temperature in G below 270 ° C, it is possible to produce a cadmium-free nickel electrode,
In particular, it is possible to provide an alkaline storage battery which is excellent not only in the above two problems, namely, in the suppression of electrode swelling during overcharge but also in charging efficiency at high temperature.

【0010】[0010]

【作用】本発明の通り、アルカリ蓄電池用ニッケル極に
用いる水酸化ニッケル粉末内部に金属換算で亜鉛を1.
0〜2.5wt%、コバルトを1.5〜5.0wt%、
ニッケルと共に、共沈状態で含ませ、且つ、前記水酸化
ニッケル粉末を平均粒径5〜30μm、比表面積を8〜
25m2 /gの球状とし、そのX線粉末回折法に依る
(101)面ピーク半価幅を0.8%/2θ以上、TG
に於ける熱分解温度を270℃以下にする事に依って、
カドミウム・フリーのニッケル極作製を可能とし、特
に、過充電時の電極膨潤抑制のみならず高温時の充電効
率に優れたアルカリ蓄電池を提供することができる。
As described above, according to the present invention, 1.
0-2.5 wt%, cobalt 1.5-5.0 wt%,
It is contained together with nickel in a coprecipitated state, and the nickel hydroxide powder has an average particle size of 5 to 30 μm and a specific surface area of 8 to
25 m 2 / g spherical shape, the (101) plane peak half-value width by the X-ray powder diffraction method is 0.8% / 2θ or more, TG
By setting the thermal decomposition temperature at 270 ° C or lower,
It is possible to provide a cadmium-free nickel electrode, and in particular, it is possible to provide an alkaline storage battery which is excellent not only in suppressing electrode swelling during overcharging but also in charging efficiency at high temperatures.

【0011】こうする事の理由は、以下の(a)〜
(d)の4つに集約される。
The reason for doing this is as follows (a)-
They are summarized in 4 of (d).

【0012】(a)水酸化ニッケルに亜鉛やカドミウム
といった遷移金属を共沈添加すると何も添加しない場合
に比べて過充電時に於ける電極膨潤を抑制出来る事が認
められている。勿論、その効果の度合いは、共沈する遷
移金属種類に依っても、その共沈量に依っても変わって
くることは言うまでもない。その膨潤のメカニズムは、
大局的には水酸化ニッケルがヨウ化カドミウム形の層状
結晶構造をとっており、充放電毎にプロトンやカチオン
がこの層間を出入りする為に、歪んで層と層の間隔が広
がっていく事に起因するとされている。(特に、過充電
時には、これがγ−オキシ水酸化ニッケル(γ−NiO
OH)となる。)
(A) It has been recognized that when a transition metal such as zinc or cadmium is added to nickel hydroxide by coprecipitation, electrode swelling during overcharge can be suppressed as compared with the case where nothing is added. Needless to say, the degree of the effect varies depending on the type of transition metal that coprecipitates and the amount of coprecipitation. The swelling mechanism is
In general, nickel hydroxide has a layered crystal structure of cadmium iodide, and since protons and cations move in and out of this layer at each charge / discharge, it is distorted and the space between layers widens. It is said to be due. (Especially during overcharge, this is γ-nickel oxyhydroxide (γ-NiO
OH). )

【0013】特に、遷移金属を適量共沈添加する事によ
って、特に、プロトンの拡散に支障を与えず、この層と
層の結合力を高める効果を引き起こす為、利用率を損な
う事無く、膨潤を抑制できるものと推測される。この層
間の結合力(=結合エネルギー)そのものを直接、測定
する術は今の所、出来ないが、著者らは検討に依り、例
えば熱分析に依って定性判断が出来ることが判った。熱
分析法には、例えば、熱重量測定(Thermogra
vimetry;TG)や示差熱分析(Differe
ntial Thermal Analysis;DT
A)がある。例えば、既に良く知られている無添加の水
酸化ニッケルよりもカドミウム共沈添加の水酸化ニッケ
ルの方が、そしてカドミウム共沈添加の水酸化ニッケル
依りも亜鉛共沈添加の水酸化ニッケルの方が定性的では
あるが、TGに依る熱分解温度が大きい事が認められ
る。更に、カドミウム、亜鉛に関して言うならば、金属
換算にして上限10wt%程度迄ならば、添加量が多い
程、この熱分解温度は大きい事が認められる。この熱分
解温度には、電池特性上、適正領域がある。大き過ぎる
場合は、プロトン拡散に支障を来し、ニッケル極の利用
率が下がり、小さ過ぎる場合は、直接、電極膨潤増大に
つながるので好ましくない。水酸化ニッケルのTGに於
ける熱分解温度の上限値は、270℃程度で、下限値
は、著者らは厳密には明らかにしていないが、恐らく2
00℃前後であるものと思われる。尚、遷移金属を共沈
添加した高密度球状水酸化ニッケルの場合、通例、27
0℃を越えるTGをもつのが一般的である。
In particular, the addition of an appropriate amount of transition metal by coprecipitation does not particularly hinder the diffusion of protons and causes the effect of increasing the bond strength between the layers, so that the swelling can be performed without impairing the utilization rate. It is speculated that it can be suppressed. Although it is not possible at this time to directly measure the bond strength (= bond energy) itself between the layers, the authors have found that qualitative judgment can be made by study, for example, by thermal analysis. Thermal analysis methods include, for example, thermogravimetric measurement (Thermogra
vimetry; TG) and differential thermal analysis (Differe)
ntial Thermal Analysis; DT
There is A). For example, nickel hydroxide with cadmium coprecipitation is better than nickel hydroxide without addition, which is already well known, and nickel hydroxide with zinc coprecipitation is more dependent on nickel hydroxide with cadmium coprecipitation. Although qualitative, it is recognized that the thermal decomposition temperature due to TG is high. Further, regarding cadmium and zinc, it is recognized that the higher the addition amount is, the higher the thermal decomposition temperature is up to about 10 wt% in terms of metal. This thermal decomposition temperature has an appropriate range in terms of battery characteristics. If it is too large, it will hinder proton diffusion and the utilization rate of the nickel electrode will decrease, and if it is too small, it will directly lead to an increase in electrode swelling, which is not preferable. The upper limit of the thermal decomposition temperature in TG of nickel hydroxide is about 270 ° C, and the lower limit is not clarified by the authors, but probably 2
It seems to be around 00 ° C. In the case of high density spherical nickel hydroxide to which a transition metal is coprecipitated, it is usually 27
It is common to have a TG above 0 ° C.

【0014】(b)水酸化ニッケルに亜鉛、カドミウム
といった遷移金属元素を共沈させると、充電時に於ける
その酸素過電圧が大きくなる事が認められている。酸素
過電圧とは、通常、下記2つの反応が起こる電位の差を
指す。
(B) It has been recognized that when a transition metal element such as zinc or cadmium is coprecipitated with nickel hydroxide, the oxygen overvoltage during charging increases. Oxygen overvoltage usually refers to the difference in potential between the following two reactions.

【0015】 Ni(OH)2 +OH- →NiOOH+H2 O+e- (1) OH- → 1/2 H2 O+ 1/402 ↑+e- (2) 同じレート、同じ深度で充電する時、充電効率を上げる
為には、上式(1)の反応電位を出来るだけ下げて、上
式(2)の反応電位を出来るだけ上げて(1)式の反応
に出来るだけ充電電気エネルギーが使われる様にしてや
れば良い。即ち酸素過電圧を大きくしてやれば良い。
Ni (OH) 2 + OH → NiOOH + H 2 O + e (1) OH → 1/2 H 2 O + 1/40 2 ↑ + e (2) Charge efficiency when charging at the same rate and the same depth To raise it, lower the reaction potential of the above formula (1) as much as possible, raise the reaction potential of the above formula (2) as much as possible, and use the charging electric energy as much as possible for the reaction of the formula (1). Good. That is, the oxygen overvoltage should be increased.

【0016】例えば、コバルト(Co)を水酸化ニッケ
ルに共沈させてやると充電時に於ける水酸化ニッケルの
充電電位(上式(1)の反応が起こっている時の電位)
を無添加の場合に比べて下げる事が出来る。カドミウム
(Cd)や亜鉛(Zn)を共沈すると無添加の場合に比
べて酸素発生電位(上式(2)の反応が起こっている時
の電位)を上げる事が出来る。
For example, when cobalt (Co) is co-precipitated with nickel hydroxide, the charging potential of nickel hydroxide during charging (potential when the reaction of the above formula (1) occurs)
Can be lowered compared to the case of no addition. Co-precipitation of cadmium (Cd) or zinc (Zn) can raise the oxygen generation potential (potential when the reaction of the above formula (2) is occurring) as compared with the case of no addition.

【0017】この様に、添加する遷移元素の種類を選択
し、上式(1),(2)の反応電位調整を行う事に依っ
て、酸素過電圧を大きくしてやれば、その充電効率を、
無添加の場合に比べて飛躍的に向上させることが出来
る。
As described above, by selecting the type of transition element to be added and adjusting the reaction potentials of the above formulas (1) and (2), the oxygen overvoltage can be increased, and the charging efficiency can be increased.
It can be dramatically improved as compared with the case of no addition.

【0018】これ迄、ペースト式ニッケル極としてCo
とCdを共沈させた水酸化ニッケルが広く用いられた理
由の一つは、上述の様に酸素過電圧が大きくなって充電
効率が上がる事に負う所が大きい。
Until now, Co has been used as a paste-type nickel electrode.
One of the reasons why nickel hydroxide co-precipitated with Cd is widely used is that the oxygen overvoltage increases and the charging efficiency increases as described above.

【0019】(c)更に、出来上がりの水酸化ニッケル
には、その利用率(=充放電効率)の観点から、その結
晶歪と粒径、タップ密度、更に表面積が重要なポイント
となる。水酸化ニッケル粒子の結晶歪、粒径、タップ密
度、表面積を適正化する事は上述(b)項の(1)式の
反応電位(逆の方向の反応に付いても同様)を下げ、そ
の反応を起こし易くするのに役立つ。((b)項(2)
の反応式には直接的には関係ない。)一般的に、正極に
於ける充放電プロセスは、水酸化ニッケル粒子内部の層
間をプロトン(H+ )が拡散するプロセスと、このプロ
トンが外部回路から出入りする電子(e- )とニッケル
基板−導電剤を介して電気的に中和反応するプロセスの
2つに分けて考えられる。
(C) Further, in the finished nickel hydroxide, the crystal strain, the grain size, the tap density, and the surface area are important points from the viewpoint of the utilization rate (= charging / discharging efficiency). To optimize the crystal strain, particle size, tap density, and surface area of nickel hydroxide particles, lower the reaction potential of equation (1) of item (b) (the same applies to reactions in the opposite direction), and It helps to make the reaction easier. ((B) Item (2)
Is not directly related to the reaction formula of. ) Generally, the charging / discharging process in the positive electrode is a process in which protons (H + ) are diffused between the layers inside the nickel hydroxide particles, and the electrons (e ) in which the protons enter and leave the external circuit and the nickel substrate − It can be considered as being divided into two processes of electrically neutralizing via a conductive agent.

【0020】前者の水酸化ニッケル粒子内部のプロトン
拡散をスムーズにするには結晶歪を或る程度大きくして
やらなければならない。結晶歪を判断する尺度として
は、X線粉末回折法(X−Ray Powder Di
ffraction method;XRD法)に於け
る、例えば(101)面のピーク半価幅に依っても可能
である。((101)面に限らず、(001)面,(1
00)面の半価幅で結晶歪の尺度に対する知見を得ても
考え方は全く同様である。)ピーク半価幅が大きければ
大きい程、結晶は歪んでいるといえる。又、結晶を歪ま
せたものは、一般的に、水酸化ニッケルの結合エネルギ
ー(O−H,Ni−O)が小さくなるので、既に述べた
TGやDTA等に代表される熱分析法に依ってその結合
エネルギーを測定しても、結晶歪の判断基準を得る事が
出来る。しかし本来、結晶歪と結合エネルギーとは水酸
化ニッケルの電池特性に与える指標としては全く別のも
のである。これらに付いて著者等は、類似特許として特
開平4−328255、特開平4−328257にて既
に出願済みである。
To smooth the diffusion of protons inside the nickel hydroxide particles, the crystal strain must be increased to some extent. An X-ray powder diffraction method (X-Ray Powder Di
It is also possible depending on, for example, the peak half width of the (101) plane in the fraction method (XRD method). ((101) plane, (001) plane, (1
The idea is exactly the same even if the knowledge about the scale of crystal strain is obtained by the half width of the (00) plane. ) It can be said that the larger the peak half width is, the more the crystal is distorted. Moreover, since the binding energy (O—H, Ni—O) of nickel hydroxide is generally small in a strained crystal, it depends on the thermal analysis method typified by TG and DTA already described. Even if the binding energy is measured, the criterion for crystal strain can be obtained. However, originally, the crystal strain and the binding energy are completely different from each other as an index given to the battery characteristics of nickel hydroxide. The authors have already applied for similar patents in Japanese Patent Laid-Open Nos. 4-328255 and 4-328257.

【0021】後者のプロトン(H+ )と電子(e- )の
中和プロセスには、既に述べた様にニッケル極としての
導電性が寄与している。これは、ペースト調製時に於け
る水酸化ニッケル粒子と導電剤粒子との混合分散性とそ
れ等が充填されるニッケル基板の集電体バルク迄の距離
といった物理的な問題と水酸化ニッケル粒子表面の反応
面積といった化学的な問題に分けられる。基板、導電剤
限定下では、これらの問題に付いては、水酸化ニッケル
粒子の粒径(これは平均粒径で代用できる)及びタップ
密度と水酸化ニッケルの表面積(これは比表面積で代用
できる)が重要である。粒径、タップ密度、表面積いず
れも適正下におかないとニッケル極としての導電性、反
応速度の点で利用率を落とす事になってしまう。
As described above, the conductivity of the nickel electrode contributes to the latter process of neutralizing protons (H + ) and electrons (e ). This is due to physical problems such as the mixing and dispersibility of the nickel hydroxide particles and the conductive agent particles when preparing the paste and the distance to the current collector bulk of the nickel substrate filled with them and the surface of the nickel hydroxide particles. It can be divided into chemical problems such as reaction area. Under the limitation of the substrate and the conductive agent, regarding these problems, the particle size of nickel hydroxide particles (which can be replaced by the average particle size) and the tap density and the surface area of nickel hydroxide (which can be replaced by the specific surface area) can be used. )is important. If the particle size, tap density, and surface area are not all properly controlled, the utilization factor will drop in terms of conductivity as a nickel electrode and reaction rate.

【0022】(d)水酸化ニッケル粒子は球状もしくは
これに類似した形状のものが好ましい。そもそも水酸化
ニッケルの結晶形態は、前述の通りニッケルの硫酸錯イ
オンを水酸化ナトリウムで中和していく過程で、対流さ
え起こさなければ六方晶系をとるはずである。更に、こ
の場合PH管理や温度管理を行っても、大バッチ・スケ
ールで中和する場合、対流を起こさずして、中和槽の濃
度勾配を無くすのは非常に難しいか、或いは、非効率的
である。この様な中で水酸化ニッケル粒子の結晶核数、
結晶成長の管理、引いては結晶粒径を規定するのは、か
なり難しい。この場合、結晶粒子を作製した後、粒度調
整の為、粒子破砕、ふるいの工程を設けざるを得ない。
これは、工数を増やす方向なので非常に非効率的であ
る。もし粒径規定をしなければ、先ず、ニッケル極とし
ての充填量が異なってしまい、電池間の容量バラツキが
大きくなってしまう。更に、1つの電池の中のニッケル
極に極端な粒径差をもつものがあると、充放電中に電流
密度差を生じてしまい、一枚のニッケル極の中で分極の
度合いが、異なってくる為に、実際に充放電に寄与して
いる部分への電流集中を招くことになるから、サイクル
劣化を促進する事になる。更に、安定に結晶粒径を規定
する為の、結晶核及び結晶成長を規定する為には、“徐
々に生成、成長させる”といった立場から、中和過程で
対流を起こさせることが必要で、又、対流を起こすと必
然的に、程度の差こそあれ粒子が球状になってしまう。
(D) The nickel hydroxide particles are preferably spherical or have a similar shape. In the first place, the crystal form of nickel hydroxide should be a hexagonal system as long as convection does not occur in the process of neutralizing the sulfuric acid complex ion of nickel with sodium hydroxide as described above. Furthermore, in this case, even if pH control and temperature control are performed, it is very difficult to eliminate the concentration gradient in the neutralization tank without causing convection when neutralizing on a large batch scale, or it is inefficient. Target. In such a state, the number of crystal nuclei of nickel hydroxide particles,
It is quite difficult to control the crystal growth, and thus to define the crystal grain size. In this case, after the crystal particles are produced, in order to adjust the particle size, there is no choice but to provide the steps of particle crushing and sieving.
This is very inefficient because it increases man-hours. If the particle size is not specified, first, the filling amount as a nickel electrode will be different, and the capacity variation between batteries will become large. Furthermore, if there is an extreme difference in particle size among the nickel electrodes in one battery, a difference in current density will occur during charging and discharging, and the degree of polarization will differ within a single nickel electrode. As a result, current concentration will occur in the portion that actually contributes to charge and discharge, which promotes cycle deterioration. Furthermore, in order to stably regulate the crystal grain size, in order to regulate the crystal nuclei and crystal growth, it is necessary to cause convection in the neutralization process from the standpoint of "gradual generation and growth". Also, when convection occurs, the particles inevitably become spherical to some extent.

【0023】以上の理由により、最初から、水酸化ニッ
ケル粒子は球状にするのが好ましいと判断される。
From the above reasons, it is judged from the beginning that the nickel hydroxide particles are preferably spherical.

【0024】以上、電極膨潤の抑制、利用率特に高温低
レートの充電効率向上の2つの為に、必要なファクター
を水酸化ニッケル粒子に付いて(a)〜(d)の4つに
しぼって詳述して来た。大切な事は、これら4つのファ
クターのバランスである。以下、これ等5つのファクタ
ーの観点から、主として電極膨潤の抑制、利用率特に高
温低レートの充電効率等がどの様になるのかを実施例に
て具体的に述べていく。
As described above, in order to suppress the swelling of the electrode and to improve the charge efficiency at the utilization rate, especially at a high temperature and a low rate, the necessary factors are attached to the nickel hydroxide particles to limit them to (a) to (d). I have detailed it. What is important is the balance of these four factors. In the following, from the viewpoint of these five factors, mainly the suppression of electrode swelling, the utilization efficiency, in particular, the charging efficiency at a high temperature and a low rate will be specifically described in Examples.

【0025】[0025]

【実施例】以下、発明の詳細を実施例により説明する。 (実験1)ここでは、水酸化ニッケルに亜鉛を金属換算
で2wt%、コバルトを2wt%添加し球状となし、X
RDに於ける(101)面のピーク半価幅を0.95°
/2θ、TGに依る熱分解温度を260℃と限定した時
のその平均粒径、タップ密度、比表面積の電極膨潤率及
びニッケル極利用率に与える影響に付いて述べる。
The details of the present invention will be described below with reference to examples. (Experiment 1) Here, 2 wt% of zinc and 2 wt% of cobalt are added to nickel hydroxide in terms of metal to form a spherical shape, and X
The peak half width of the (101) plane in RD is 0.95 °
The effect of the average particle size, tap density and specific surface area on the electrode swelling rate and the nickel electrode utilization rate when the thermal decomposition temperature due to / 2θ and TG is limited to 260 ° C will be described.

【0026】先ず、金属ニッケル(Ni)及び金属亜鉛
(Zn)、金属コバルト(Co)を硫酸水溶液に溶解さ
せ、ニッケル錯イオン及び亜鉛錯イオン、コバルト錯イ
オンを形成させ、これを対流を起こさせた水酸化ナトリ
ウム水溶液に滴下し、徐々に亜鉛とコバルトを固溶化さ
せた水酸化ニッケル粒子を成長させる。対流水溶液の中
で結晶化させることによって、出来上がりの水酸化ニッ
ケル粒子を球状にし、且つ結晶成長そのものを緩やかに
出来るのでポアの少ない高密度のものとすることが出来
る。亜鉛を共沈した水酸化ニッケル結晶の大きさは、硫
酸水溶液中のニッケル及び亜鉛、コバルトの錯イオンを
水酸化ナトリウム水溶液で中和する時に、亜鉛、コバル
トを固溶化した水酸化ニッケルの結晶核をあまり作らな
いようにして結晶成長にその成分が使われる様に温度及
びPHコントロールする事によって大きくすることが出
来る。平たく言えば、大きな結晶を作るには、温度コン
トロールは転移温度に近い所(この場合40℃付近)、
PHコントロールは、弱塩基等を用いて、出来る限り中
和に近い所で準安定領域(この場合PH11付近)を作
ってやることが重要である。小さな結晶を作るには、大
きな結晶に成長する前に適当に反応をストップさせれば
良い。そうする事に依ってXRD、(101)面ピーク
半価幅やTGの分解温度を一定にしつつ水酸化ニッケル
粒子の粒径コントロールが可能となる。この様にして、
表1に示す様なA〜Fの6種類の2wt%亜鉛、2wt
%コバルト共沈水酸化ニッケルの結晶を作った。粒径に
付いての確認は、出来上がりの水酸化ニッケル粒子を公
知のレーザー法に依り粒度分布を取り、その累積50%
の値をもって平均粒径とし、タップ密度に付いては、2
0cm3 の容器を用い、200回のタッピングを行な
い、公知の方法にて算出した。(使用機器;SEISH
IN TAPDENSER KYT300)。比表面積
に付いては、公知の窒素BET吸着法に依って測定し
た。又、A〜Fの任意の水酸化ニッケル粒子を塩酸に溶
解させて公知の原子吸光分析法にて定量するとともに、
公知のX線粉末回折法に依って亜鉛及びコバルト単独の
ピークが出ない事を確認し、2wt%亜鉛2wt%コバ
ルト共沈水酸化ニッケルである事を確認した。同時に、
その時の(101)面のXRD回折ピークの半価幅を
0.95°/2θである事を確認した。水酸化ニッケル
粒子形状に付いては全て、球状である事を電子顕微鏡に
て確認した。
First, metallic nickel (Ni), metallic zinc (Zn), and metallic cobalt (Co) are dissolved in a sulfuric acid aqueous solution to form nickel complex ions, zinc complex ions, and cobalt complex ions, and convection is caused. Then, the solution is dropped into an aqueous sodium hydroxide solution to gradually grow nickel hydroxide particles in which zinc and cobalt are solid-solved. By crystallization in a convection aqueous solution, the finished nickel hydroxide particles can be made spherical and the crystal growth itself can be moderated, so that a high density with few pores can be obtained. The size of nickel hydroxide crystal co-precipitated with zinc is the crystal nucleus of nickel hydroxide in which zinc and cobalt are solid-solved when the complex ions of nickel, zinc and cobalt in the sulfuric acid solution are neutralized with the sodium hydroxide solution. Can be increased by controlling the temperature and pH so that the component is used for crystal growth without making too much. To put it plainly, in order to make a large crystal, the temperature control is near the transition temperature (in this case, around 40 ° C),
For PH control, it is important to create a metastable region (near PH11 in this case) at a position as close to neutralization as possible by using a weak base or the like. To make small crystals, the reaction should be stopped appropriately before growing into large crystals. By doing so, it becomes possible to control the particle size of the nickel hydroxide particles while keeping the XRD, the (101) plane peak half width and the decomposition temperature of TG constant. In this way
As shown in Table 1, 2 kinds of 2 wt% zinc of A to F, 2 wt
Crystals of% cobalt co-precipitated nickel hydroxide were made. To confirm the particle size, the finished nickel hydroxide particles are subjected to particle size distribution by a known laser method, and the cumulative 50%
The value of is the average particle size, and the tap density is 2
Using a 0 cm 3 container, tapping was performed 200 times, and calculation was performed by a known method. (Equipment used: SEISH
IN TAPDENSER KYT300). The specific surface area was measured by a known nitrogen BET adsorption method. Further, any nickel hydroxide particles A to F are dissolved in hydrochloric acid and quantified by a known atomic absorption spectrometry,
It was confirmed by a known X-ray powder diffraction method that peaks of zinc and cobalt alone did not appear, and it was confirmed that it was 2 wt% zinc 2 wt% cobalt coprecipitated nickel hydroxide. at the same time,
It was confirmed that the full width at half maximum of the XRD diffraction peak on the (101) plane at that time was 0.95 ° / 2θ. It was confirmed with an electron microscope that all the nickel hydroxide particle shapes were spherical.

【0027】[0027]

【表1】 [Table 1]

【0028】しかして、この様にして得られた種々の平
均粒径、比表面積、タップ密度を有する亜鉛、コバルト
共沈水酸化ニッケル粉末100wt%に対して、特願平
03−006953、03−006954等に示す一酸
化コバルト(CoO)10wt%を加えて、公知のカル
ボキシメチルセルロース等の増粘剤、水と共に混練しペ
ースト状として、これを多孔度95%、平均孔径200
μmのニッケル・メッキ金属多孔体に充填し、乾燥、成
形する事によって、任意のニッケル正極板とした。
Accordingly, Japanese Patent Application Nos. 03-006953 and 03-006954 are applied to 100 wt% of zinc and cobalt coprecipitated nickel hydroxide powders having various average particle diameters, specific surface areas and tap densities thus obtained. Cobalt monoxide (CoO) 10 wt% shown in the above, and kneaded with a known thickener such as carboxymethyl cellulose and water to form a paste, which has a porosity of 95% and an average pore diameter of 200.
An arbitrary nickel positive electrode plate was obtained by filling a porous nickel-plated metal body of μm, drying and molding.

【0029】一方、これと並行して、市販のMm(ミッ
シュ・メタル:希土類元素の混合物),Ni,Co,M
n,Alを元素比で4.0:0.4:0.3:0.3の
割合になるようにひょう量した後、高周波溶解炉で溶解
し、その溶湯を冷却する事に依ってMmNi4.0 Co
0.4 Mn0.3 Al0.3 で示される合金のインゴットを作
製した。次に、このインゴットを機械粉砕し、シーブ・
カットにて粒径50μm以下とし、水素吸蔵合金粉末と
した。この水素吸蔵合金粉末にカルボキシメチルセルロ
ース等の増粘剤、水、カーボンを加えてペースト状とし
これを公知のパンチド・メタルに塗工、乾燥、成形する
事に依って、負極とした。
On the other hand, in parallel with this, commercially available Mm (Misch metal: mixture of rare earth elements), Ni, Co, M
Nm and Al are weighed so that the ratio of the elements is 4.0: 0.4: 0.3: 0.3, melted in a high-frequency melting furnace, and the melt is cooled to obtain MmNi. 4.0 Co
An alloy ingot represented by 0.4 Mn 0.3 Al 0.3 was prepared. Next, mechanically crush this ingot,
The particle size was cut to 50 μm or less to obtain a hydrogen storage alloy powder. A thickener such as carboxymethyl cellulose, water, and carbon were added to the hydrogen-absorbing alloy powder to form a paste, which was applied to a known punched metal, dried, and molded to obtain a negative electrode.

【0030】しかして、この様にして得られた正、負極
板に親水処理したポリオレフィン系不織布セパレータ、
水酸化カリウムを主体とする電解液、金属電池容器及び
金属蓋等の各パーツと組み合わせてニッケル水素電池を
作製した。そして、25℃下15時間のエージングを経
た後、0.1CmAの電気量で15h充電し、30分の
休止をおいた後、1.0CmA/1.0V cutの放
電を行なった。(これを初充放電とする。)。この電池
を2種類に分け、1つ目を0.3CmAの電気量で15
0%の深度まで充電し、1.0CmA/1.0V cu
t放電する事を300サイクル迄繰り返し、そのニッケ
ル極利用率推移を測定し、2つ目を、0.3CmAの電
気量で150%の深度迄充電し、1.0CmA/1.0
V cut迄放電する事を20サイクル繰り返した後、
0℃下で0.1CmAの電流で30日充電し、25℃下
で1.0CmA/1.0V cut放電した後、電池を
分解し、ニッケル極の厚みをマイクロ・メーターで測定
し、最初のニッケル極の厚みとの比率をもって、0℃、
0.1CmA過充電に於ける電極膨潤率とした。前者を
図1に、後者を図2に示した。
The positive and negative electrode plates thus obtained are hydrophilically treated with a polyolefin-based nonwoven fabric separator,
A nickel-hydrogen battery was produced by combining with an electrolytic solution containing potassium hydroxide as a main component, a metal battery container, a metal lid, and other parts. Then, after aging at 25 ° C. for 15 hours, the battery was charged for 15 hours with a quantity of electricity of 0.1 CmA, left for 30 minutes, and then discharged at 1.0 CmA / 1.0 V cut. (This is the first charge and discharge.). This battery is divided into two types, the first is 15C with electricity of 0.3CmA.
Charge to 0% depth, 1.0CmA / 1.0V cu
The t discharge is repeated up to 300 cycles, the nickel electrode utilization rate transition is measured, and the second is charged to a depth of 150% with an electricity amount of 0.3 CmA, 1.0 CmA / 1.0
After repeating 20 cycles of discharging to V cut,
After charging at 0 ° C. with a current of 0.1 CmA for 30 days and discharging at 25 ° C. with 1.0 CmA / 1.0 V cut, the battery was disassembled and the thickness of the nickel electrode was measured with a micrometer. The ratio with the thickness of the nickel electrode is 0 ° C,
The electrode swelling ratio was 0.1 CmA overcharge. The former is shown in FIG. 1 and the latter is shown in FIG.

【0031】図1から、B,C,D,Eの水酸化ニッケ
ル粒子を用いたものが、適切である事がわかる。
From FIG. 1, it is understood that the one using B, C, D and E nickel hydroxide particles is suitable.

【0032】F粒子が、その利用率低下を招く主因は、
平均粒径(50.0μm)が大き過ぎる事とタップ密度
(1.3g/cm3 )が小さ過ぎる事が主因であるもの
と思われる。比表面積に付いては、比表面積の差が比較
的少ないE粒子とF粒子を比較する事に依って、その影
響の少ない事が判る。事実、Fの水酸化ニッケル粒子を
用いたニッケル・ペーストをニッケル・メッキ金属多孔
体に充填、乾燥、成形した時点での電極の状態を観察す
ると、充填ムラに依る緑色(水酸化ニッケルの色は緑
色)の濃淡差が、B,C,D,Eの水酸化ニッケルを用
いたそれに比べて著しいものであった。水酸化ニッケル
粒子の充電ムラは、その電極に於ける電解液分布に影響
を与える為、必然的に、上記のエージング、初充放電と
いった電池を活性化するプロセスで、前記一酸化コバル
トに依る導電マトリックスの形成度合いに差を与える事
になる。1枚の電極に於いて導電マトリックス形成度合
いが場所に依って異なっていれば、当然、不均一反応を
起こし、導電性の高い部分に電流が集中してしまい、結
果的に容量低下を来すことになる。又、A粒子を用いた
ものが、F粒子を用いた程ではないが、比較的大きな利
用率の低下が見られる。これは、粒径(平均粒径1.3
μm)が小さくなり過ぎた事による、タップ密度の減少
(1.6g/cm3 )に伴い、上記一酸化コバルトとの
混合分散性が十分でない為と推測される。更に、図1か
らA粒子を用いたものは、特にサイクル初期から利用率
が他のものより劣っていることが判る。これは、粒径減
少→比表面積増大に伴い、活物質ペースト作製時に、粘
度安定の練り液を沢山加えなければならなかった事が起
因している。実際、A粒子を用いたものは、28.3m
2/gもの大きな比表面積を持ったものが得られてい
る。
The main cause of the decrease in the utilization rate of F particles is
It is considered that the main reason is that the average particle size (50.0 μm) is too large and the tap density (1.3 g / cm 3 ) is too small. Regarding the specific surface area, it can be seen that the influence is small by comparing the E particles and the F particles having a relatively small difference in specific surface area. In fact, when observing the state of the electrode at the time of filling, drying, and molding the nickel paste using the nickel hydroxide particles of F into the nickel-plated metal porous body, green due to uneven filling (the color of nickel hydroxide is The difference in shade of (green) was remarkable as compared with that using B, C, D and E nickel hydroxide. The charging unevenness of the nickel hydroxide particles affects the distribution of the electrolyte solution at the electrode, so inevitably the process of activating the battery such as the above-mentioned aging and initial charging / discharging causes the conductivity due to the cobalt monoxide. This will give a difference in the degree of matrix formation. If the degree of formation of the conductive matrix in one electrode is different depending on the location, a non-uniform reaction naturally occurs, and the current concentrates on the highly conductive portion, resulting in a decrease in capacity. It will be. Further, the use of A particles is not as great as the use of F particles, but a relatively large decrease in utilization rate is observed. This is the particle size (average particle size 1.3
It is presumed that the mixing dispersibility with the above-mentioned cobalt monoxide is not sufficient due to the decrease in tap density (1.6 g / cm 3 ) due to the excessively small (μm). Further, it can be seen from FIG. 1 that the utilization of the A particles is inferior to the others, especially from the beginning of the cycle. This is due to the fact that a large amount of viscosity-stabilizing kneading liquid had to be added at the time of preparing the active material paste as the particle size decreased and the specific surface area increased. Actually, the one using A particles is 28.3 m.
Those having a large specific surface area of 2 / g have been obtained.

【0033】図2に付いても、図1と同様な傾向が認め
られる。即ち、図1でサイクルに対する利用率低下の大
きいもの程、電極膨潤率が大きい事が判る。これは、既
に述べた様に、水酸化ニッケルの平均粒径が適正範囲に
ないと前述の一酸化コバルトに依る導電マトリックスが
不十分である為、導電性の高い部分に電流集中を起こし
てしまい、その為、その部分にγ−NiOOHが出来、
更に、このγ−NiOOHを放電すべき電解液がこの部
分に不足してしまう為に、γ−NiOOHが一旦生成す
ると、その生成に拍車がかかってしまう。γ−NiOO
H自体は、β−Ni(OH)2 及びβ−NiOOHに対
して導電性が劣るばかりか、低密度で体積が大きい為
に、電極膨潤を促進させているものと思われる。以上、
表1、図1、図2からB,C,D,Eの水酸化ニッケル
粒子を用いたものが適切であると言える。
Also in FIG. 2, the same tendency as in FIG. 1 is recognized. That is, it can be seen from FIG. 1 that the greater the decrease in the utilization rate with respect to the cycle, the greater the electrode swelling rate. This is because, as already mentioned, if the average particle size of nickel hydroxide is not within the proper range, the conductive matrix based on cobalt monoxide described above is insufficient, so current concentration occurs in the highly conductive portion. , Therefore, γ-NiOOH is formed in that part,
Further, since the electrolytic solution for discharging this γ-NiOOH is insufficient in this portion, once γ-NiOOH is generated, its generation is spurred. γ-NiOO
It is considered that H itself promotes electrode swelling due to its low conductivity and large volume as well as inferior conductivity to β-Ni (OH) 2 and β-NiOOH. that's all,
From Table 1, FIG. 1 and FIG. 2, it can be said that those using nickel hydroxide particles of B, C, D and E are suitable.

【0034】もう一度、製造条件を振り返る為に、表1
に付いて説明を加えておく。表1に於けるA〜Fの水酸
化ニッケル粒子は、その結晶歪の1つの尺度であるXR
Dに於ける(101)面のピーク半価幅を0.95°/
2θに限定し、亜鉛、コバルトを金属換算でそれぞれ2
wt%、2wt%共沈添加したものである。この条件下
に於いては一般的に、平均粒径、タップ密度、比表面積
の3つの内、どれか1つを大きくしたり、小さくしたり
制御する事は比較的難しい。
To review the manufacturing conditions once again, Table 1
I will add a description for. The nickel hydroxide particles of A to F in Table 1 are XR, which is one measure of the crystal strain.
The full width at half maximum of the (101) plane in D is 0.95 ° /
Limited to 2θ, 2 for zinc and 2 for cobalt
2 wt% coprecipitation was added. Under this condition, it is generally relatively difficult to increase or decrease any one of the average particle size, tap density, and specific surface area.

【0035】即ち、水酸化ニッケル粒子が球状で、その
内部空隙体積の影響を無視出来る領域に於けるものと仮
定すると、一般的に、平均粒径が小→大となれば、比表
面積は大→小となる。これは、次の式から容易に判断で
きる。
That is, assuming that the nickel hydroxide particles are spherical and are in a region in which the influence of the volume of the internal voids can be ignored, in general, if the average particle size is small → large, the specific surface area is large. → It becomes small. This can be easily determined from the following equation.

【0036】[0036]

【数1】 [Equation 1]

【0037】事実、表1上でA粒子からF粒子へと平均
粒径が大きくなるにつれて、その比表面積は小さくなっ
ている。更に、一般的に、或る領域に於いて粒径が小→
大となれば、タップ密度は小→大→小となる。表1上に
於いてもA粒子からF粒子へと平均粒径が大きい方へ移
っていくと、そのタップ密度は1.6g/m2 (A粒
子)から2.3g/m2 (C粒子)の極大値をとり、再
び1.3g/m2 (F粒子)へと下がっている事が確認
できる。これは、タップ密度そのものが、(a)粒子の
帯びる静電気力、(b)粒子の質量、(c)粒子と粒子
の隙間の3つを主なバランスとして成り立つものである
と推測すると判り易い。即ち、粒径が非常に小さいと
(a)の静電気を帯び易くなるとともに、(c)の質量
が軽くなるので粒子と粒子が互いの斥力で離れてしまう
為、粒子の最密充填が出来なくなってタップ密度が下が
ってしまう。全く逆に、粒径が非常に大きいと、(b)
の粒子の質量が大きいので(a)の静電気力の影響を受
け難くなるものの、(c)の粒子と粒子の隙間が大きく
なる為、最密充填されてもやはりタップ密度は下がって
しまう。即ち、粒径が小さ過ぎず、大き過ぎない領域に
タップ密度が高い値をとるところが存在する。
In fact, in Table 1, as the average particle size increases from A particles to F particles, the specific surface area decreases. Furthermore, in general, the particle size is small in a certain area →
When it becomes large, the tap density becomes small → large → small. As shown in Table 1, when the average particle size shifts from A particles to F particles, the tap density changes from 1.6 g / m 2 (A particles) to 2.3 g / m 2 (C particles). It can be confirmed that the maximum value of (1) is reached and the value again falls to 1.3 g / m 2 (F particles). It is easy to understand that it is presumed that the tap density itself has three main balances: (a) electrostatic force of particles, (b) particle mass, and (c) particle-particle gap. That is, if the particle size is very small, (a) tends to be charged with static electricity, and (c) becomes lighter in weight, so that the particles are separated from each other by the repulsive force, so that the closest packing of particles cannot be performed. The tap density will decrease. On the contrary, if the particle size is very large, (b)
Since the mass of the particles of (a) is large, it is less likely to be affected by the electrostatic force of (a), but since the gap between the particles of (c) becomes large, the tap density will decrease even after the closest packing. That is, there is a place where the tap density takes a high value in a region where the particle size is not too small and not too large.

【0038】以上、平均粒径、タップ密度、比表面積の
3つは、ある程度の相関を有し、ある程度連動して動く
為、3つの内、どれか1つを大きくしたり、小さくした
りそれぞれ独立且つ厳密に制御する事は、比較的難し
い。しかし、これら3つは電池製造上或いは電池特性上
それぞれ独立ファクターとして寄与する為、既に述べた
範囲に属するものが良い。
As described above, the three average particle diameters, tap densities, and specific surface areas have a certain degree of correlation and move in conjunction with each other to some extent, so any one of the three can be increased or decreased. It is relatively difficult to control independently and strictly. However, these three contribute to the manufacturing of the battery or the battery characteristics as independent factors, so those belonging to the above-mentioned range are preferable.

【0039】本実験に付いて総括すると、水酸化ニッケ
ルに亜鉛、コバルトを金属換算でそれぞれ2wt%,2
wt%添加し、XRDに於ける(101)面のピーク半
価幅を0.95°/2θ、TGに於ける熱分解温度を2
60℃と限定した時は平均粒径5〜30μm、タップ密
度1.8g/m2 以上、比表面積8〜25m2 /gが、
特に、特願平03−006953、03−006954
等に示す一酸化コバルトとの相性が良く、又、練り液も
従来通りで、多くを必要とせず、均一充填性も高く、利
用率も十分である事から適切な範囲といえる。
To summarize the present experiment, nickel hydroxide and zinc and cobalt are 2 wt% and 2% respectively in terms of metal.
wt% is added, the peak half width of the (101) plane in XRD is 0.95 ° / 2θ, and the thermal decomposition temperature in TG is 2
When limited to 60 ° C., the average particle size is 5 to 30 μm, the tap density is 1.8 g / m 2 or more, and the specific surface area is 8 to 25 m 2 / g.
In particular, Japanese Patent Application Nos. 03-006953 and 03-006954
It has a good compatibility with cobalt monoxide as shown in the above, the conventional kneading liquid does not require much, the uniform filling property is high, and the utilization rate is sufficient.

【0040】(実験2)実験1では、亜鉛2wt%、コ
バルト2wt%、ニッケルとともに共沈し、そのXRD
に於ける(101)面の半価幅を0.95°/2θ、T
Gに於ける熱分解温度を260℃とした水酸化ニッケル
を用いた時は、平均粒径が、5〜50μm、タップ密度
が、1.8g/cm3 以上、比表面積が8〜25m2
gであるものが良い事を述べた。
(Experiment 2) In Experiment 1, 2 wt% zinc, 2 wt% cobalt, and nickel were co-precipitated, and the XRD
Half width of (101) plane at 0.95 ° / 2θ, T
When nickel hydroxide having a thermal decomposition temperature of 260 ° C. of G is used, the average particle size is 5 to 50 μm, the tap density is 1.8 g / cm 3 or more, and the specific surface area is 8 to 25 m 2 /
I said that what is g is good.

【0041】本実験では、遷移金属元素の添加量の規定
に付いて述べる。全ての組み合わせに付いて言及するに
は難があるので、コバルト共沈量を0,0.5,1,
1.5,3,5,8wt%の7種類に、亜鉛共沈量を
0,0.5,1,1.5,3,5,8,10wt%の8
種類としその組み合わせから生じる合計56種類の水酸
化ニッケル粒子を作製し、これを用いた時の充電効率と
過充電電極膨潤率の評価結果に付いて述べる。尚、上記
56種類の水酸化ニッケル粒子は、それぞれコバルト及
び亜鉛の共沈量が異なるのみで、粒子形状は球状、その
大きさは平均粒径10μm、タップ密度2.2g/cm
3 、比表面積18.0m2 /gのもので、水酸化ニッケ
ル粒子の作り方は勿論の事、電池構成パーツから組立方
法、初充電方法にいたる迄、実験1と同様な方法で行っ
た。
In this experiment, the definition of the addition amount of the transition metal element will be described. Since it is difficult to mention all the combinations, the cobalt coprecipitation amount was set to 0, 0.5, 1,
Zinc coprecipitation amount of 0, 0.5, 1, 1.5, 3, 5, 8, 10 wt% of 8 types of 1.5, 3, 5, 8 wt% of 8 types
A total of 56 types of nickel hydroxide particles produced from the combinations are prepared, and the evaluation results of the charging efficiency and the swelling ratio of the overcharged electrode when the particles are used will be described. The 56 types of nickel hydroxide particles differ only in the amount of cobalt and zinc coprecipitated, and the shape of the particles is spherical, the size is 10 μm in average particle diameter, and the tap density is 2.2 g / cm 2.
3. The specific surface area was 18.0 m 2 / g, and the method was the same as Experiment 1 from the method of making the nickel hydroxide particles to the battery component parts, assembling method, and initial charging method.

【0042】その後、0.3CmAの電流で150%の
深度まで充電し、1.0CmA/1.0V cut迄放
電する事を20℃以下で20サイクル繰り返し、放電容
量を安定させた後、これを2つに分け、1つ目を実験1
と同様な電極膨潤率の評価にまわし、2つ目を、先ず2
0℃下で0.1CmAの電流で150%の深度迄充電
し、20℃下で1.0CmA/1.0V cutの放電
を行ない、その放電容量を20℃下0.1CmA、15
0%充電時の充電量の基準値とし、その後、45℃下で
0.1CmAの電流で150%の深度迄、充電し、20
℃下で1.0CmA/1.0V cutの放電を行な
い、その放電容量の前記充電量基準値に対する比率をも
って、これを充電効果の評価とした。
After that, charging to a depth of 150% with a current of 0.3 CmA and discharging to 1.0 CmA / 1.0 V cut was repeated 20 cycles at 20 ° C. or lower to stabilize the discharge capacity, and then this was carried out. Divide into two, the first is Experiment 1
Similar to the above, the second swelling rate was evaluated using the second method.
It is charged to a depth of 150% at a current of 0.1 CmA at 0 ° C. and discharged at 1.0 CmA / 1.0 V cut at 20 ° C., and the discharge capacity is 0.1 CmA at 20 ° C., 15
As a reference value of the amount of charge at 0% charge, after that, charge at a current of 0.1 CmA to a depth of 150% at 45 ° C.
A discharge of 1.0 CmA / 1.0 V cut was performed at a temperature of 0 ° C., and the ratio of the discharge capacity to the charge amount reference value was used as the evaluation of the charge effect.

【0043】充電効率の結果を、図3、過充電電極膨潤
率の結果を図4に示す。何れも比較例として、従来のカ
ドミウム・フリー・タイプである5wt%亜鉛、1wt
%コバルト共沈水酸化ニッケルを用いた場合のものを図
中に実線で示しておく。
The results of charging efficiency are shown in FIG. 3, and the results of overcharge electrode swelling ratio are shown in FIG. As a comparative example, 5 wt% zinc, which is a conventional cadmium-free type, 1 wt
% Cobalt co-precipitated nickel hydroxide is used as shown by a solid line in the figure.

【0044】先ず、45℃の充電効率から説明してい
く。図3から、概括的に見て、何れの場合も亜鉛の共沈
量が増えるに従い、充電効率が上昇し、1.0〜1.5
wt%付近でクリティカル・ポイントをとり2.5wt
%以上で飽和に達しているのが認められる。特に、その
大小関係に付いて、充電効率がコバルト0〜1.0wt
%の群とコバルトが1.5〜8.0wt%の群にハッキ
リ分かれている事が判る。この事は、コバルト、亜鉛の
組み合わせに依る共沈添加の場合、充電効率に対するコ
バルト共沈量のクリティカル・ポイントが1.5wt%
付近にある事を意味している。即ち、平たく言えば、コ
バルト共沈添加は1wt%では足りず少なくとも5wt
%を越える領域では、充電効率向上の為には、非効率的
であると言える。その事は、ニッケル以外の遷移金属元
素を水酸化ニッケル粒子中に添加していく事は水酸化ニ
ッケルの純度を減らし、容量を損ねる方向であるから、
出来るだけ共沈添加量を抑える事が重要であるという考
えに基づく。
First, the charging efficiency at 45 ° C. will be described. From FIG. 3, generally, in any case, as the amount of zinc co-precipitated increases, the charging efficiency increases to 1.0 to 1.5.
2.5wt with a critical point around wt%
It is observed that saturation has been reached above%. Especially, the charging efficiency is 0 to 1.0 wt.
%, And cobalt is clearly divided into 1.5 to 8.0 wt% groups. This means that in the case of coprecipitation addition based on the combination of cobalt and zinc, the critical point of cobalt coprecipitation amount with respect to charging efficiency is 1.5 wt%.
It means that it is in the vicinity. That is, to put it plainly, 1 wt% of cobalt coprecipitation addition is not sufficient, and at least 5 wt%
It can be said that it is inefficient to improve the charging efficiency in the range exceeding%. That is, adding a transition metal element other than nickel to the nickel hydroxide particles tends to reduce the purity of nickel hydroxide and impair the capacity.
Based on the idea that it is important to suppress the amount of coprecipitation added as much as possible.

【0045】結局、従来の亜鉛5wt%、コバルト1w
t%共沈タイプの水酸化ニッケルを用いた時の充電効率
(65%)を、水酸化ニッケル純度とのバランスをとり
ながら上回る領域は、コバルトの共沈量が1.5〜5.
0wt%、亜鉛の共沈量が1.0〜2.5wt%である
と言える。
After all, conventional zinc 5 wt% and cobalt 1 w
In the region where the charging efficiency (65%) when using t% coprecipitation type nickel hydroxide is balanced with nickel hydroxide purity, the coprecipitation amount of cobalt is 1.5 to 5.
It can be said that 0 wt% and the coprecipitation amount of zinc are 1.0 to 2.5 wt%.

【0046】次に、過充電電極膨潤率に付いて説明す
る。図4から概括的に見て何れの場合も亜鉛の共沈量が
増えるに従い、電極膨潤率が減少し、1.0〜2.5w
t%でクリティカル・ポイントをとり、5wt%を越え
る領域に於いて、飽和に達しているのが認められる。そ
してその傾向が上記充電効率の様にコバルト共沈量の組
み合わせに於いて2つに分かれている。即ち、コバルト
0〜1.0wt%の群よりもコバルト1.5〜8.0w
t%の群の方が亜鉛との組み合わせによる共沈添加量が
0.5wt%未満では電極膨潤率が大きいもののその減
少率が大きく、0.5wt%以上では逆に電極膨潤率が
低くなっている事が判る。これは、コバルトと亜鉛の機
能が異なりコバルトは、(亜鉛に比べて)水酸化ニッケ
ルの充電反応(“作用”(b)項(1)式の反応)を起
き易くするのには効果的で、亜鉛は、(コバルトに比べ
て)電極膨潤抑制に効果的である事に起因するものと思
われる。即ち、電極膨潤率抑制効果のある亜鉛の共沈添
加量の少ない領域に於いて充電反応を起こし易くするコ
バルトが必要量添加されている場合(この場合、1.5
〜8.0wt%)、過充電に陥り、低密度、高次酸化物
であるγ−NiOOHを多量に生成する為、結果的に電
極膨潤を起こしてしまうが、これは亜鉛の共沈添加量の
増加と供に電極膨潤は抑制され、コバルト共沈添加
(1.5〜8.0wt%)が水酸化ニッケル粒子全体を
均一に反応させる様に寄与する為に、コバルト共沈量の
少ないもの(0〜1.0wt%)よりも電極膨潤率が少
なくなるものと思われる。
Next, the swelling ratio of the overcharge electrode will be described. As generally shown in FIG. 4, in any case, as the amount of zinc coprecipitated increased, the electrode swelling rate decreased to 1.0 to 2.5 w.
It is recognized that the critical point is taken at t% and the saturation is reached in the area exceeding 5 wt%. And the tendency is divided into two in the combination of the cobalt coprecipitation amount like the above charging efficiency. That is, cobalt 1.5-8.0w than the group of cobalt 0-1.0wt%
In the t% group, the electrode swelling rate was large when the coprecipitation addition amount due to the combination with zinc was less than 0.5 wt%, but the reduction rate was large, and conversely when the coprecipitation addition amount was 0.5 wt% or more, the electrode swelling rate was low. I know that there is. This is because the functions of cobalt and zinc are different, and cobalt is effective in facilitating the charging reaction of nickel hydroxide (compared to zinc) (the reaction of the "action" (b) item (1) equation). , Zinc seems to be effective in suppressing electrode swelling (compared to cobalt). That is, in the case where the required amount of cobalt that facilitates the charging reaction is added in the region where the amount of zinc coprecipitated, which has the effect of suppressing the electrode swelling ratio, is small (in this case, 1.5
〜8.0wt%), it falls into overcharge and produces a large amount of γ-NiOOH, which is a low-density, high-order oxide. As a result, electrode swelling occurs. The electrode swelling is suppressed together with the increase in the amount of cobalt, and the addition of cobalt coprecipitation (1.5 to 8.0 wt%) contributes to uniformly react the entire nickel hydroxide particles, so that the amount of cobalt coprecipitation is small. It is considered that the electrode swelling rate becomes smaller than (0 to 1.0 wt%).

【0047】周知の様に、電極膨潤率は出来るだけ、抑
制する事が好ましく、その事は、サイクル特性を向上さ
せることに貢献する。その目安は、例えば、(実験1)
の所から、約130%程度(E粒子を用いた場合)以下
という事が出来る。この事から判断すると、図4に於い
て亜鉛の共沈量が1.0wt%以上、コバルトが1.5
wt%以上であれば、何れの組み合わせでも、図1の
B,C,D,Eの様な良好なサイクル特性が得られる事
が予想される。
As is well known, it is preferable to suppress the electrode swelling rate as much as possible, which contributes to the improvement of cycle characteristics. The guideline is, for example, (Experiment 1)
From the above, it can be said that it is about 130% or less (when E particles are used) or less. Judging from this, the zinc coprecipitation amount is 1.0 wt% or more and the cobalt content is 1.5 in FIG.
It is expected that good cycle characteristics such as B, C, D and E in FIG. 1 can be obtained in any combination as long as the content is at least wt%.

【0048】一方、既に述べた様に、共沈添加元素の量
は多い方が、電極膨潤率を抑制出来るが、必要以上に添
加する事は水酸化ニッケル純度を損なうことになるから
好ましくない。即ち、電極膨潤率を130%以下に抑制
しつつ水酸化ニッケル純度とのバランスを考慮とする
と、図3(充電効率)の結果も含めて、コバルト共沈量
は1.5〜5.0wt%、亜鉛共沈量は1.0〜2.5
wt%が適正領域と言える。事実、この斜線部の領域の
ものは図1に示すB,C,D,E粒子の様な安定したサ
イクル・トレンドが得られた。
On the other hand, as described above, the larger the amount of the coprecipitating additive element is, the more the electrode swelling rate can be suppressed, but it is not preferable to add more than necessary because the purity of nickel hydroxide is impaired. That is, considering the balance with the nickel hydroxide purity while suppressing the electrode swelling ratio to 130% or less, the cobalt coprecipitation amount is 1.5 to 5.0 wt% including the result of FIG. 3 (charging efficiency). , Zinc coprecipitation amount is 1.0 to 2.5
It can be said that wt% is the proper range. In fact, a stable cycle trend such as B, C, D and E particles shown in FIG. 1 was obtained in the shaded area.

【0049】以上、充電効率、電極膨潤率の適正範囲
は、何れの場合も水酸化ニッケル粒子中の水酸化ニッケ
ル純度とのバランスから、亜鉛共沈量が1.0〜2.5
wt%、コバルト共沈量が1.5〜5.0wt%組み合
わせによる領域が適正であると言える。
In any of the above, the appropriate ranges of charging efficiency and electrode swelling ratio are 1.0 to 2.5 in terms of zinc coprecipitation amount, in view of the balance with the purity of nickel hydroxide in the nickel hydroxide particles.
It can be said that the region where the combination of the wt% and the cobalt coprecipitation amount is 1.5 to 5.0 wt% is appropriate.

【0050】以上は、水酸化ニッケル粒子形状を球状、
平均粒径10μm、タップ密度2.2g/cm3 、比表
面積18m2 /g、XRD,(101)面のピーク半価
幅0.95°/2θ、TGに於ける熱分解温度が260
℃と限定した場合に付いて述べてきたが、平均粒径5〜
30μm、タップ密度1.8g/cm2 以上、比表面積
8〜25m2 /g、XRDに於ける(101)面のピー
ク半価幅が0.8°/2θ以上、TGに於ける熱分解温
度が270℃以下であっても、同様な傾向が得られた。
即ち、亜鉛共沈量が1.0〜2.5wt%、コバルト共
沈量が1.5〜5.0wt%が適正領域である。
In the above, the shape of the nickel hydroxide particles is spherical,
Average particle size 10 μm, tap density 2.2 g / cm 3 , specific surface area 18 m 2 / g, XRD, peak half width of (101) plane 0.95 ° / 2θ, thermal decomposition temperature in TG 260
As mentioned above, the average particle size is limited to 5 ° C.
30 μm, tap density of 1.8 g / cm 2 or more, specific surface area of 8 to 25 m 2 / g, peak half width of (101) plane in XRD is 0.8 ° / 2θ or more, thermal decomposition temperature in TG The same tendency was obtained even when the temperature was 270 ° C. or lower.
That is, the proper range is a zinc coprecipitation amount of 1.0 to 2.5 wt% and a cobalt coprecipitation amount of 1.5 to 5.0 wt%.

【0051】(実験3)ここでは、水酸化ニッケル粒子
に金属換算で亜鉛を2wt%、コバルトを2wt%添加
して球状となし、その平均粒径を10μm、タップ密度
を2.2g/cm3 、比表面積を18m2 /gと限定し
た時のXRDの(101)面に於けるピーク半価幅及び
TGAに於ける水酸化ニッケルの熱分解温度のサイクル
特性に与える影響に付いて述べる。
(Experiment 3) Here, 2 wt% of zinc and 2 wt% of cobalt in terms of metal were added to nickel hydroxide particles to form a spherical shape, the average particle diameter of which was 10 μm, and the tap density was 2.2 g / cm 3. The influence of the peak half-value width on the (101) plane of XRD and the thermal decomposition temperature of nickel hydroxide in TGA on the cycle characteristics when the specific surface area is limited to 18 m 2 / g will be described.

【0052】水酸化ニッケル粒子の製造方法は、(実験
1)のところで述べたものと基本的に同様であるが、こ
こでは、XRDの(101)面ピーク半価幅及びTGA
の熱分解温度を意図的に振る為に、酸の中で錯イオン状
態にあるものを塩基で中和し塩とする際に、PH、錯イ
オン濃度、中和浴温度のコントールを行い、結晶成長速
度を種々に変えて作製した。尚、XRD測定装置には、
島津製作所(株)製XD−3A型(XR管球はCu・K
α)を用い、TGA測定装置には、セイコー電子工業
(株)製SSC−5200、TG、DTA−320型を
用いた。
The method for producing nickel hydroxide particles is basically the same as that described in (Experiment 1), but here, the XRD (101) plane peak half width and TGA are used.
In order to intentionally change the thermal decomposition temperature of the salt, when neutralizing the acid in the complex ion state with a base to form a salt, the pH, complex ion concentration and neutralization bath temperature are controlled to crystallize. The growth rate was changed variously. In addition, the XRD measuring device,
Shimadzu Corporation XD-3A type (XR tube is CuK
α) was used, and SSC-5200, TG, and DTA-320 manufactured by Seiko Instruments Inc. were used as the TGA measuring device.

【0053】しかしてこの様にしてXRDに於ける(1
01)面相当38.7°付近ピークの半価幅が0.4、
0.6、0.8、1.0°の水酸化ニッケル粒子G,
H,I,J及びTGに於けるNi(OH)2 →NiOへ
の熱分解温度が260,270,280,290℃の水
酸化ニッケル粒子K,L,M,Nを得た。XRDチャー
トの一例を図5に、TGAチャートの一例を図6に示
す。
In this way, in XRD (1
01) plane equivalent 38.7 ° Peak full width at half maximum is 0.4,
0.6, 0.8, 1.0 ° nickel hydroxide particles G,
Nickel hydroxide particles K, L, M and N having thermal decomposition temperatures of Ni (OH) 2 → NiO in H, I, J and TG of 260, 270, 280 and 290 ° C. were obtained. An example of the XRD chart is shown in FIG. 5 and an example of the TGA chart is shown in FIG.

【0054】更に、これらG,H,I,J,K,L,
M,Nの水酸化ニッケル粒子を用いる以外は、電池構成
パーツから組立方法、初充電方法、サイクル評価に至る
まで、既に述べた実験1と全く同様なものとした。
Further, these G, H, I, J, K, L,
Except that M and N nickel hydroxide particles were used, the same procedure as Experiment 1 described above was performed from the battery constituent parts to the assembling method, initial charging method, and cycle evaluation.

【0055】水酸化ニッケル粒子G,H,I,Jのサイ
クル評価の結果をそれぞれ図7に、水酸化ニッケル粒子
K,L,M,Nのサイクル評価の結果を図8に示す。
The results of the cycle evaluation of nickel hydroxide particles G, H, I and J are shown in FIG. 7, and the results of the cycle evaluation of nickel hydroxide particles K, L, M and N are shown in FIG.

【0056】図7から水酸化ニッケルのXRDに於ける
(101)面の半価幅は、0.8°以上のもの(I,J
粒子を用いたもの)がサイクルに対する水酸化ニッケル
利用率の劣化が少なく良好であり、図8から熱分解温度
は、270℃以下のもの(K,L粒子を用いたもの)が
サイクルに対する水酸化ニッケル利用率の劣化が少なく
良好である事が判る。これは、既に述べた様に水酸化ニ
ッケル粒子中のプロトン拡散の度合いに結び付けて考え
られる。XRDに依る半価幅は、水酸化ニッケルの結晶
歪に関するもので、TGに依る熱分解温度は結合エネル
ギーに関するものであり、全く別のものではあるが、結
晶構造を或は程度歪ませ、結合エネルギーを或る程度小
さくしたものでないと、プロトン拡散がスムーズに起こ
らないものと推測される。プロトン拡散がスムーズに起
こらないものは初期から利用率が低く、サイクル進行と
ともにこの現象はやや緩和され、利用率もやや上向く
が、分極も大きくなりがちなので、部分的に過充電現象
を招き易い為、サイクル劣化が比較的早く起こる。サイ
クル劣化のスピードの一因としてプロトン拡散のスムー
ズさと、充放電に伴う水酸化ニッケルの膨潤と収縮に対
する耐久性のバランスが挙げられる。
From FIG. 7, the full width at half maximum of the (101) plane in the XRD of nickel hydroxide is 0.8 ° or more (I, J
Particles) are good with little deterioration in the utilization rate of nickel hydroxide with respect to the cycle, and from FIG. 8, those having a thermal decomposition temperature of 270 ° C. or lower (using K and L particles) are hydroxylated with respect to the cycle. It can be seen that there is little deterioration in the nickel utilization rate, which is good. This is considered to be linked to the degree of proton diffusion in the nickel hydroxide particles as described above. The half-value width according to XRD relates to the crystal strain of nickel hydroxide, and the thermal decomposition temperature according to TG relates to the binding energy. It is presumed that proton diffusion does not occur smoothly unless the energy is reduced to some extent. If the proton diffusion does not occur smoothly, the utilization rate is low from the beginning, and this phenomenon is somewhat alleviated as the cycle progresses, and the utilization rate slightly increases, but the polarization tends to increase, so it is easy to cause partial overcharge phenomenon. , Cycle deterioration occurs relatively early. One of the factors contributing to the cycle deterioration speed is the balance between the smoothness of proton diffusion and the durability of nickel hydroxide to swelling and shrinking associated with charging and discharging.

【0057】以上、水酸化ニッケル粒子に金属換算で亜
鉛を2wt%、コバルトを2wt%添加して球状とな
し、その平均粒径を10μm、タップ密度を2.2g/
cm3、比表面積を18m2 /gと限定した時は、XR
Dに依る(101)面の半価幅が0.8°以上、TGA
に於ける熱分解温度が270℃以下のものが利用率、サ
イクル特性に優れている事が判った。又、平均粒径5〜
30μm、タップ密度1.8g/cm3 以上、比表面積
8〜25m2 /gのものに付いても同様な傾向が得られ
た。即ち、XRDに依る(101)面の半価幅は0.8
°以上、TGAに依る熱分解温度は270℃以下が適正
である。又、本発明の実施例に付いては、ニッケル水素
電池を例にとって説明してきたが、必ずしもこれに限定
されるものではなく、正極に水酸化ニッケルを用いるア
ルカリ蓄電池ならば基本的に全て同様な結果が得られ
る。
As described above, 2 wt% of zinc and 2 wt% of cobalt are added to the nickel hydroxide particles to form a spherical shape, the average particle diameter of which is 10 μm, and the tap density is 2.2 g /
cm 3 and specific surface area of 18 m 2 / g, XR
Half-value width of (101) plane depending on D is 0.8 ° or more, TGA
It was found that those having a thermal decomposition temperature of 270 ° C. or less had excellent utilization and cycle characteristics. Also, an average particle size of 5
A similar tendency was obtained even for those having a thickness of 30 μm, a tap density of 1.8 g / cm 3 or more and a specific surface area of 8 to 25 m 2 / g. That is, the full width at half maximum of the (101) plane according to XRD is 0.8.
It is appropriate that the thermal decomposition temperature according to TGA is 270 ° C. or less and 270 ° C. or less. Further, although the embodiments of the present invention have been described by taking the nickel-hydrogen battery as an example, the present invention is not necessarily limited to this, and basically any alkaline storage battery using nickel hydroxide for the positive electrode is similar. The result is obtained.

【0058】[0058]

【発明の効果】以上、本発明の通り、アルカリ蓄電池用
ニッケル極に用いる水酸化ニッケル粉末内部に亜鉛を
1.0〜2.5wt%、コバルトを1.5〜5.0wt
%ニッケルと共に共沈状態で含ませ、その平均粒径を5
〜30μm、タップ密度を1.8以上、比表面積を8〜
25m2 /g、XRDに於ける(101)面のピーク半
価幅を0.8°以上、TGに於ける熱分解温度を270
℃以下、そして球状とする事に依って、カドミウム・フ
リーで且つ従来の弱点であった過充電時の電極膨潤抑
制、充放電効率に優れたアルカリ蓄電池を提供すること
ができる。故にその工業的価値は極めて大である。
As described above, according to the present invention, 1.0 to 2.5 wt% of zinc and 1.5 to 5.0 wt% of cobalt are contained in the nickel hydroxide powder used in the nickel electrode for alkaline storage batteries.
% Nickel and co-precipitated and its average particle size is 5
~ 30 μm, tap density 1.8 or more, specific surface area 8 ~
25 m 2 / g, peak full width at half maximum of (101) plane in XRD is 0.8 ° or more, thermal decomposition temperature in TG is 270
By making the temperature below ℃ and spherical, it is possible to provide an alkaline storage battery which is cadmium-free and which is excellent in charge / discharge efficiency and suppression of electrode swelling during overcharge, which is a conventional weak point. Therefore, its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】水酸化ニッケルA〜Fを用いたニッケル水素電
池の正極活物質の利用率のサイクル特性図である。
FIG. 1 is a cycle characteristic diagram of the utilization rate of a positive electrode active material of a nickel hydrogen battery using nickel hydroxide A to F.

【図2】水酸化ニッケルA〜Fを用いたニッケル水素電
池のニッケル正極の厚さの膨潤率である。
FIG. 2 is a swelling ratio of the thickness of a nickel positive electrode of a nickel hydrogen battery using nickel hydroxide A to F.

【図3】コバルトの各共沈量においての亜鉛の共沈添加
量による充電効率特性図である。
FIG. 3 is a charging efficiency characteristic diagram according to the amount of zinc coprecipitated in each amount of cobalt coprecipitated.

【図4】コバルトの各共沈量においての亜鉛の共沈添加
量によりニッケル正極の厚さの膨潤率である。
FIG. 4 is a swelling ratio of the thickness of a nickel positive electrode depending on the amount of zinc coprecipitated in each amount of cobalt coprecipitated.

【図5】XRDチャート図である。FIG. 5 is an XRD chart.

【図6】TGAチャート図である。FIG. 6 is a TGA chart diagram.

【図7】半価幅別水酸化ニッケルG〜Jの利用率のサイ
クル特性図である。
FIG. 7 is a cycle characteristic diagram of utilization rates of nickel hydroxides G to J by half width.

【図8】熱分解温度別水酸化ニッケルK〜Nの利用率の
サイクル特性図である。
FIG. 8 is a cycle characteristic diagram of utilization rates of nickel hydroxide K to N according to thermal decomposition temperatures.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 耐アルカリ性金属多孔体に、水酸化ニッ
ケル粉末を主体とし、導電剤、結着剤を加えて充填して
なるニッケル正極を用いるアルカリ蓄電池において、該
水酸化ニッケル粉末の内部に、金属換算で亜鉛が1.0
〜2.5重量%、コバルトが1.5〜5.0重量%共沈
状態で含有していることを特徴とするアルカリ蓄電池。
1. An alkaline storage battery using a nickel positive electrode comprising an alkali-resistant metal porous body mainly composed of nickel hydroxide powder, and a conductive agent and a binder added thereto. Zinc is 1.0 in terms of metal
The alkaline storage battery is characterized in that the co-precipitation state contains cobalt in an amount of 2.5% by weight to 2.5% by weight.
【請求項2】 該水酸化ニッケル粉末の平均粒径が、5
〜30μm、タップ密度が1.8g/cm3 以上である
ことを特徴とする請求項1記載のアルカリ蓄電池。
2. The nickel hydroxide powder has an average particle size of 5
The alkaline storage battery according to claim 1, wherein the alkaline storage battery has a tap density of ˜30 μm and a tap density of 1.8 g / cm 3 or more.
【請求項3】 該水酸化ニッケル粉末の比表面積が、8
〜25m2 /gであることを特徴とする請求項1、2記
載のアルカリ蓄電池。
3. The specific surface area of the nickel hydroxide powder is 8
It is -25 m < 2 > / g, The alkaline storage battery of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 該水酸化ニッケル粉末のX線粉末回折法
による(101)面ピーク半価幅が、0.8°/2θ以
上であることを特徴とする請求項1、2、3項記載のア
ルカリ蓄電池。
4. The half width of the (101) plane peak by the X-ray powder diffraction method of the nickel hydroxide powder is 0.8 ° / 2θ or more, wherein the nickel hydroxide powder has a peak half width of 0.8 ° / 2θ or more. Alkaline storage battery.
【請求項5】 該水酸化ニッケル粉末の熱重量測定の熱
分解(Ni(OH)2 →NiO+H2 O)温度が、27
0℃以下であることを特徴とする請求項1、2、3、4
記載のアルカリ蓄電池。
5. The thermogravimetric thermolysis (Ni (OH) 2 → NiO + H 2 O) temperature of the nickel hydroxide powder is 27.
It is 0 degreeC or less, Claim 1, 2, 3, 4 characterized by the above-mentioned.
The alkaline storage battery described.
【請求項6】 該水酸化ニッケル粉末が、球状であるこ
とを特徴とする請求項1、2、3、4、5記載のアルカ
リ蓄電池。
6. The alkaline storage battery according to claim 1, wherein the nickel hydroxide powder has a spherical shape.
JP22506893A 1993-08-19 1993-08-19 Alkaline storage battery Expired - Lifetime JP3151340B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP22506893A JP3151340B2 (en) 1993-08-19 1993-08-19 Alkaline storage battery
TW083107384A TW267262B (en) 1993-08-19 1994-08-12
DE4429273A DE4429273B4 (en) 1993-08-19 1994-08-18 Alkali battery Senkundär

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22506893A JP3151340B2 (en) 1993-08-19 1993-08-19 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH0757730A true JPH0757730A (en) 1995-03-03
JP3151340B2 JP3151340B2 (en) 2001-04-03

Family

ID=16823536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22506893A Expired - Lifetime JP3151340B2 (en) 1993-08-19 1993-08-19 Alkaline storage battery

Country Status (3)

Country Link
JP (1) JP3151340B2 (en)
DE (1) DE4429273B4 (en)
TW (1) TW267262B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357845A (en) * 2000-06-16 2001-12-26 Canon Inc Nickel-based secondary battery and method of manufacturing for this secondary battery
JP2007265670A (en) * 2006-03-27 2007-10-11 Panasonic Ev Energy Co Ltd Battery
WO2012073933A1 (en) * 2010-11-30 2012-06-07 三洋電機株式会社 Alkaline storage battery
CN114864965A (en) * 2022-05-27 2022-08-05 四川华能氢能科技有限公司 Positive pole slurry pulling method for preparing hydrogen fuel cell

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2731297B1 (en) * 1995-03-03 1997-04-04 Accumulateurs Fixes NICKEL ELECTRODE FOR ALKALINE BATTERY
TW359904B (en) * 1996-12-17 1999-06-01 Toshiba Battery Electrodes, alkaline secondary battery, and method for manufacturing alkaline secondary battery
US7393612B2 (en) 1996-12-17 2008-07-01 Toshiba Battery Co., Ltd. Electrodes, alkaline secondary battery, and method for manufacturing alkaline secondary battery
US6528209B2 (en) * 1999-12-28 2003-03-04 Toshiba Battery Co., Ltd. Active material for positive electrode for alkaline secondary cell and method for producing the same, and alkaline secondary cell using the active material for positive electrode and method for producing the same
EP2346224A1 (en) 2010-01-13 2011-07-20 Panasonic Corporation Pilot Patterns for OFDM Systems with Four Transmit Antennas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328257A (en) * 1991-04-25 1992-11-17 Toshiba Battery Co Ltd Paste type nickel pole
JPH04328255A (en) * 1991-04-25 1992-11-17 Toshiba Battery Co Ltd Paste type nickel electrode
JPH0521064A (en) * 1991-07-08 1993-01-29 Matsushita Electric Ind Co Ltd Nickel hydroxide4 active material powder and nickel positive electrode and alkaline storage battery using this
JPH06140036A (en) * 1992-10-27 1994-05-20 Sanyo Electric Co Ltd Nickel positive electrode for alkaline storage battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217580A (en) * 1992-01-31 1993-08-27 Yuasa Corp Nickel electrode for alkaline storage battery
JPH05225971A (en) * 1992-02-13 1993-09-03 Hitachi Maxell Ltd Manufacture of nickel electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328257A (en) * 1991-04-25 1992-11-17 Toshiba Battery Co Ltd Paste type nickel pole
JPH04328255A (en) * 1991-04-25 1992-11-17 Toshiba Battery Co Ltd Paste type nickel electrode
JPH0521064A (en) * 1991-07-08 1993-01-29 Matsushita Electric Ind Co Ltd Nickel hydroxide4 active material powder and nickel positive electrode and alkaline storage battery using this
JPH06140036A (en) * 1992-10-27 1994-05-20 Sanyo Electric Co Ltd Nickel positive electrode for alkaline storage battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357845A (en) * 2000-06-16 2001-12-26 Canon Inc Nickel-based secondary battery and method of manufacturing for this secondary battery
JP2007265670A (en) * 2006-03-27 2007-10-11 Panasonic Ev Energy Co Ltd Battery
WO2012073933A1 (en) * 2010-11-30 2012-06-07 三洋電機株式会社 Alkaline storage battery
JP2012134134A (en) * 2010-11-30 2012-07-12 Sanyo Electric Co Ltd Alkaline storage battery
US9209457B2 (en) 2010-11-30 2015-12-08 Sanyo Electric Co., Ltd. Alkaline storage battery
CN114864965A (en) * 2022-05-27 2022-08-05 四川华能氢能科技有限公司 Positive pole slurry pulling method for preparing hydrogen fuel cell

Also Published As

Publication number Publication date
DE4429273A1 (en) 1995-02-23
TW267262B (en) 1996-01-01
JP3151340B2 (en) 2001-04-03
DE4429273B4 (en) 2005-09-08

Similar Documents

Publication Publication Date Title
US5506076A (en) Alkali secondary battery
EP0504949B1 (en) Hydrogen storage electrode
EP0716462B1 (en) Nickel electrode active material; a nickel electrode and a nickel alkali storage cell using such nickel electrode active material; and production methods of such material, electrode and cell
US8053114B2 (en) Hydrogen-absorbing alloy electrode, alkaline storage battery, and method of manufacturing the alkaline storage battery
US20100323243A1 (en) Hydrogen-absorbing alloy for alkaline storage battery and method for manufacturing the same
EP0881698B1 (en) Alkaline storage battery
US20050175896A1 (en) Hydrogen-absorbing alloy for alkaline storage batteries, alkaline storage battery, and method of manufacturing alkaline storage battery
JP4403594B2 (en) Cathode active material for alkaline storage battery and method for producing the same
JP3151340B2 (en) Alkaline storage battery
JP2002105563A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery using the same
EP1719195B1 (en) Positive electrode active material for a nickel electrode
EP1110259B1 (en) Nickel positive electrode having high-temperature capacity
JPH1140189A (en) Nickel-hydrogen storage battery
EP3439080B1 (en) Negative electrode for alkali secondary battery, alkali secondary battery including negative electrode and method for producing negative electrode
EP0739990A1 (en) Hydrogen storage alloy and electrode therefrom
CN114946051A (en) Hydrogen-absorbing alloy for alkaline storage battery
JP3130204B2 (en) Alkaline secondary battery
JP3554059B2 (en) Method for producing positive electrode for alkaline storage battery
JP5342499B2 (en) Hydrogen storage alloy
JPH09213325A (en) Alkaline secondary battery
JP2006236692A (en) Nickel hydrogen storage battery
KR100288472B1 (en) Nickel electrode active material, nickel electrode using same, nickel alkaline storage battery and manufacturing method thereof
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
KR100276798B1 (en) Manufacturing method of paste type positive electrode and alkali secondary battery for alkali secondary battery, alkali secondary battery
JPH08295970A (en) Hydrogen storage alloy and hidrogen storage alloy electrode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term