JPH0757534A - Molding method for insulating resin and insulating resin molding - Google Patents

Molding method for insulating resin and insulating resin molding

Info

Publication number
JPH0757534A
JPH0757534A JP19981793A JP19981793A JPH0757534A JP H0757534 A JPH0757534 A JP H0757534A JP 19981793 A JP19981793 A JP 19981793A JP 19981793 A JP19981793 A JP 19981793A JP H0757534 A JPH0757534 A JP H0757534A
Authority
JP
Japan
Prior art keywords
insulating resin
resin
electric field
carbon black
relaxation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19981793A
Other languages
Japanese (ja)
Inventor
Susumu Takahashi
享 高橋
Izumi Ishikawa
泉 石川
Satoshi Kaneko
智 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP19981793A priority Critical patent/JPH0757534A/en
Publication of JPH0757534A publication Critical patent/JPH0757534A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve dielectric breakdown resistance performance. CONSTITUTION:When a hardening resin containing carbon black of 0.1-5 pts.wt. against the total weight is poured and hardened to form an insulating resin unit 15, voltage is applied to the resin being hardened, and the carbon black is migrated to form a field relaxation layer 17 in the hardened resin. Since the carbon black is migrated to form the field relaxation layer 17, the field relaxation layer 17 having a high dielectric constant can be formed, and the dielectric breakdown resistance performance of a power cable can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電線、電力ケーブル
の端末、接続部等に使用される絶縁性樹脂の成形方法と
絶縁性樹脂成形品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of molding an insulating resin used for electric wires, terminals of power cables, connecting portions, etc., and an insulating resin molded article.

【0002】[0002]

【従来の技術】近年、エポキシ樹脂等の絶縁性樹脂成形
品は、ケーブルの端末、接続部等の電気機器に広く使用
されている。ここで、ケーブルの分野に使用される絶縁
性樹脂成形品としては、架橋ポリエチレン絶縁PVCシ
ースケーブル(CVケーブル)のプレハブ形接続部に使
用されている。このプレハブ形接続部は、275〜50
0kVの超高圧CVケーブルの中で、施工期間が短い等
の理由からモールド形接続部に替わって有望視されてい
る。
2. Description of the Related Art In recent years, insulating resin moldings such as epoxy resin have been widely used in electric equipment such as cable terminals and connecting portions. Here, as an insulating resin molded product used in the field of cables, a prefabricated type connecting portion of a crosslinked polyethylene insulated PVC sheath cable (CV cable) is used. This prefabricated connection is 275-50
Among the 0 kV ultra-high voltage CV cables, it is considered as a promising alternative to the mold type connection part because of the short construction period.

【0003】このプレハブ形接続部は、図2に示すよう
に、電力ケーブル1の端部外周に挿入されたプレモール
ド絶縁体2と、このプレモールド絶縁体2に押し込めら
れる絶縁性樹脂ユニット3とを有する。電力ケーブル1
は、内部導体4と、この内部導体4を覆う架橋ポリエチ
レン(XLPE)製のケーブル絶縁体5とを有し、この
ケーブル絶縁体5の端部から内部導体4が突出された構
造にされている。
As shown in FIG. 2, the prefabricated type connecting portion includes a premolded insulator 2 inserted into the outer periphery of an end portion of a power cable 1, and an insulating resin unit 3 which is pushed into the premolded insulator 2. Have. Power cable 1
Has an inner conductor 4 and a cable insulator 5 made of cross-linked polyethylene (XLPE) that covers the inner conductor 4, and has a structure in which the inner conductor 4 is projected from an end portion of the cable insulator 5. .

【0004】プレモールド絶縁体2は、ケーブル絶縁体
5の端部周囲を覆うとともに、電界緩和絶縁補強層をな
す絶縁ゴム6と、この絶縁ゴム6を絶縁性樹脂ユニット
3側に押し込む半導電ゴム7とを有する。絶縁ゴム6
は、エチレンプロピレンゴムやシリコーンゴム等で製作
されている。
The pre-molded insulator 2 covers the periphery of the end of the cable insulator 5, an insulating rubber 6 which forms an electric field relaxation insulating reinforcing layer, and a semiconductive rubber which pushes the insulating rubber 6 toward the insulating resin unit 3 side. 7 and. Insulating rubber 6
Is made of ethylene propylene rubber, silicone rubber, or the like.

【0005】絶縁性樹脂ユニット3は、その端部がプレ
モールド絶縁体2に押し込まれる略筒状に形成されてい
る。この絶縁性樹脂ユニット3には、内側に埋込電極8
が埋め込まれている。この埋込電極8は、ケーブル絶縁
体5から突出する内部導体4の周囲に配設され、電力ケ
ーブル1の内部導体4に電気的に接続されている。ここ
で、絶縁性樹脂ユニット3の材料として、厚肉の電気絶
縁用注型品であることに考慮し、残留歪みが小さくなる
ように、硬化熱が小さく、硬化速度の遅い主剤/硬化剤
の組み合わせであるビスフェノールA/酸無水物と、シ
リカ、アルミナ等の充填剤とが通常用いられる。
The insulating resin unit 3 is formed into a substantially cylindrical shape whose end is pushed into the premolded insulator 2. The insulating resin unit 3 has an embedded electrode 8 inside.
Is embedded. The embedded electrode 8 is arranged around the inner conductor 4 protruding from the cable insulator 5, and is electrically connected to the inner conductor 4 of the power cable 1. Here, considering that the material of the insulating resin unit 3 is a cast product for electrical insulation having a large thickness, the main heat / curing agent having a small hardening heat and a slow hardening speed is used so that the residual strain becomes small. A combination of bisphenol A / anhydride and fillers such as silica and alumina are usually used.

【0006】この絶縁性樹脂ユニット3の製造方法につ
いて説明する。まず、埋込電極8の周囲に型枠(図示
略)を配置し、この型枠内に主剤/硬化剤/充填剤を混
合させた樹脂を流し込み、該樹脂に所定の温度、時間を
かけ、該樹脂を硬化させて絶縁性樹脂ユニット3を形成
する。その後、この絶縁性樹脂ユニット3の両端部にプ
レモード絶縁体2を押し込み、プレハブ形接続部が製造
される。
A method of manufacturing the insulating resin unit 3 will be described. First, a mold (not shown) is arranged around the embedded electrode 8, and a resin containing a mixture of a main agent / curing agent / filler is poured into the mold, and the resin is subjected to a predetermined temperature and time, The resin is cured to form the insulating resin unit 3. After that, the pre-mode insulator 2 is pushed into both ends of the insulating resin unit 3 to manufacture the prefabricated type connection portion.

【0007】[0007]

【発明が解決しようとする課題】ところで、絶縁性樹脂
ユニット3で電気的に弱い部分は埋込電極8のエッジ部
8aであり、この埋込電極8のエッジ部8a付近の電界
強度が最も大きくなる。すなわち、絶縁破壊試験を行っ
た場合、埋込電極8のエッジ部8a付近が破壊される場
合が多い。このため、埋込電極8のエッジ部8a付近の
電界強度を低下させ、耐絶縁破壊性能を向上させた絶縁
性樹脂ユニット3が望まれていた。絶縁破壊性能は、埋
込電極8の表面平滑度にも左右され易い性質を有してい
る。
The electrically weak portion of the insulating resin unit 3 is the edge portion 8a of the embedded electrode 8, and the electric field strength near the edge portion 8a of the embedded electrode 8 is the largest. Become. That is, when the dielectric breakdown test is performed, the vicinity of the edge portion 8a of the embedded electrode 8 is often destroyed. For this reason, the insulating resin unit 3 in which the electric field strength near the edge portion 8a of the embedded electrode 8 is reduced and the dielectric breakdown resistance is improved has been desired. The dielectric breakdown performance has the property of being easily influenced by the surface smoothness of the embedded electrode 8.

【0008】さらに、エポキシ系樹脂を絶縁性樹脂ユニ
ット3に用いた場合、エポキシ系樹脂は架橋ポリエチレ
ンに比べ極性基を有するため、誘電損失(tanδ)が
大きく、このエポキシ系樹脂に充填剤を加えることによ
り、tanδは更に大きくなる。このため、超高圧のC
Vケーブル等にエポキシ系樹脂の注型品を用いる場合に
あは、tanδの上昇による熱破壊も問題となる。
Further, when the epoxy resin is used for the insulating resin unit 3, the epoxy resin has a polar group as compared with the cross-linked polyethylene, so that the dielectric loss (tan δ) is large and a filler is added to the epoxy resin. This further increases tan δ. Therefore, ultra high pressure C
When an epoxy resin cast product is used for a V cable or the like, thermal destruction due to an increase in tan δ also poses a problem.

【0009】本発明は前記課題を有効に解決するもの
で、絶縁破壊性能を向上可能な絶縁性樹脂成形方法と絶
縁性樹脂成形品を提供することを目的とする。
The present invention effectively solves the above problems, and an object of the present invention is to provide an insulating resin molding method and an insulating resin molded product capable of improving dielectric breakdown performance.

【0010】[0010]

【課題を解決するための手段】請求項1記載の絶縁性樹
脂成形方法は、カーボンブラックを全重量に対して0.
1〜5重量部含む硬化型樹脂を流し込んでその樹脂を硬
化させて絶縁性樹脂ユニットを形成する際に、該硬化中
の樹脂に電圧を課電することにより、前記カーボンブラ
ックを泳動させて硬化樹脂内に電界緩和層を形成させ
る。
A method for molding an insulating resin according to claim 1 is characterized in that carbon black is added in an amount of 0.
When a curable resin containing 1 to 5 parts by weight is poured and the resin is cured to form an insulating resin unit, a voltage is applied to the resin being cured to cause the carbon black to migrate and cure. An electric field relaxation layer is formed in the resin.

【0011】請求項2記載の絶縁性樹脂成形品は、カー
ボンブラックを全重量に対して0.1〜5重量部含む絶
縁性樹脂ユニットと、該絶縁性樹脂ユニット内に埋め込
まれ、該絶縁性樹脂ユニットに電圧を課電させる埋込電
極とを有する。該埋込電極の周囲に、電界緩和層を形成
する。
The insulating resin molded article according to claim 2 is an insulating resin unit containing 0.1 to 5 parts by weight of carbon black with respect to the total weight, and the insulating resin unit is embedded in the insulating resin unit. And an embedded electrode for applying a voltage to the resin unit. An electric field relaxation layer is formed around the buried electrode.

【0012】[0012]

【作用】本発明では、埋込電極で絶縁性樹脂ユニットを
成形する際に、硬化中の樹脂に電圧を課電することによ
り、この硬化中の樹脂内のカーボンブラックが泳動し、
高誘電率を有する電界緩和層が形成される。この電界緩
和層が形成されることにより、絶縁性樹脂ユニットに課
電される電界が緩和される。すなわち、埋込電極のエッ
ジ部付近に高い強度の電界が課電された場合にあって
も、この電界が電界緩和層で緩和される。
In the present invention, when the insulating resin unit is molded with the embedded electrode, by applying a voltage to the resin being cured, the carbon black in the resin being cured migrates,
An electric field relaxation layer having a high dielectric constant is formed. By forming this electric field relaxation layer, the electric field applied to the insulating resin unit is relaxed. That is, even when a high-strength electric field is applied near the edge of the buried electrode, this electric field is relaxed by the electric field relaxation layer.

【0013】[0013]

【実施例】以下、本発明の絶縁性樹脂成形方法と絶縁性
樹脂成形品の一実施例について、図1ないし図3を参照
しながら説明する。ここで、絶縁性樹脂成形品を用いる
例として、プレハブ形接続部を用いて説明し、従来例と
同一のものについては、同一符号を用いて説明する。図
1に示すように、符号10はプレハブ形接続部10であ
り、このプレハブ形接続部10は、電力ケーブル1に挿
入されたプレモールド絶縁体2と、このプレモールド絶
縁体2に押し込められる絶縁性樹脂ユニット15(絶縁
性樹脂成形品)とを有する構成にされている。
EXAMPLE An example of an insulating resin molding method and an insulating resin molded product of the present invention will be described below with reference to FIGS. 1 to 3. Here, as an example of using an insulating resin molded product, a prefabricated type connecting portion will be described, and the same components as those of the conventional example will be described using the same reference numerals. As shown in FIG. 1, reference numeral 10 is a prefabricated type connecting portion 10, and the prefabricated type connecting portion 10 includes a premolded insulator 2 inserted in a power cable 1 and an insulation that can be pressed into the premolded insulator 2. And a conductive resin unit 15 (insulating resin molded product).

【0014】電力ケーブル1では、ケーブル絶縁体5の
端部から内部導体4が突出されている。プレモールド絶
縁体2は、ケーブル絶縁体5の端部周囲を覆う絶縁ゴム
6と、この絶縁ゴム6を絶縁性樹脂ユニット3側に押し
込む半導電ゴム7とを有する。
In the power cable 1, the inner conductor 4 is projected from the end of the cable insulator 5. The premolded insulator 2 has an insulating rubber 6 that covers the periphery of the end of the cable insulator 5, and a semiconductive rubber 7 that pushes the insulating rubber 6 toward the insulating resin unit 3 side.

【0015】絶縁性樹脂ユニット15は、その端部がプ
レモールド絶縁体2に押し込まれる筒状部16と、この
筒状部16の内周面に形成された電界緩和層17と、こ
の電界緩和層17の内側に埋め込まれた埋込電極8とを
有する。ここで、筒状部16は、主剤と硬化剤とを混合
することで反応する二液混合型樹脂等の樹脂を主成分と
している。電界緩和層17は、筒状部16の樹脂内に分
散されたカーボンブラックと、シリカ、アルミナ等の充
填剤とを主成分とする。埋込電極8は、ケーブル絶縁体
5から突出する内部導体4の周囲に配設された筒状に形
成され、電力ケーブル1の内部導体4に電気的に接続さ
れる。
The insulating resin unit 15 has a tubular portion 16 whose end is pushed into the premolded insulator 2, an electric field relaxation layer 17 formed on the inner peripheral surface of the tubular portion 16, and the electric field relaxation. And a buried electrode 8 buried inside the layer 17. Here, the tubular portion 16 is mainly composed of a resin such as a two-liquid mixing type resin which reacts by mixing the main agent and the curing agent. The electric field relaxation layer 17 contains carbon black dispersed in the resin of the tubular portion 16 and a filler such as silica or alumina as main components. The embedded electrode 8 is formed in a cylindrical shape around the inner conductor 4 protruding from the cable insulator 5, and is electrically connected to the inner conductor 4 of the power cable 1.

【0016】ここで、電界緩和層17中のカーボンブラ
ックは、表面が活性であり、エポキシ系樹脂及び充填剤
中のイオン性不純物を吸着するため、絶縁性樹脂ユニッ
ト15の誘電損失(tanδ)を低減させる。このた
め、カーボンブラックは、二液混合型樹脂と充填剤との
混合物の重量部が100に対して0.1〜5重量部添加
されている。このカーボンブラックの添加量として、
0.1重量部以下では誘電損失(tanδ)が改善され
ず、5重量部以上では、カーボンブラックの粒子が連鎖
を形成し始め、誘電損失(tanδ)は悪くなる。ここ
で、カーボンブラックとしては、チャンネルブラック、
サーマルブラック、ファーネスブラック、アセチレンブ
ラック等が用いられている。チャンネルブラックは、低
いpHを示し、揮発性物質の含有率が高く、粒度が小さ
く形成される。サーマルブラックは、粒度が粗く形成さ
れる。ファーネスブラックは、天然ガスから作られたも
のは、粒度がチャンネルブラックとサーマルブラックと
の中間に位置し、石油から作られたものは、各種の粒度
に形成される。
Here, the surface of carbon black in the electric field relaxation layer 17 is active and adsorbs ionic impurities in the epoxy resin and the filler, so that the dielectric loss (tan δ) of the insulating resin unit 15 is reduced. Reduce. Therefore, the carbon black is added in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the mixture of the two-component mixed resin and the filler. As the addition amount of this carbon black,
If it is 0.1 parts by weight or less, the dielectric loss (tan δ) will not be improved, and if it is 5 parts by weight or more, carbon black particles will start to form chains, and the dielectric loss (tan δ) will be poor. Here, as carbon black, channel black,
Thermal black, furnace black, acetylene black, etc. are used. Channel black has a low pH, a high content of volatile substances, and a small particle size. Thermal black has a coarse grain size. The furnace black made from natural gas has a particle size intermediate between channel black and thermal black, and the one made from petroleum has various particle sizes.

【0017】次に、絶縁性樹脂ユニット15の製造方法
について説明する。まず、埋込電極8の表面を所定の粗
さに表面処理し、この埋込電極8の周囲に型枠(図示
略)を配置し、この型枠内にカーボンブラックを配合し
た樹脂を流し込み、該樹脂に所定の温度、時間をかけ、
該樹脂を硬化させて絶縁性樹脂ユニット15を形成す
る。ここで、樹脂を硬化させる際に、埋込電極8に電圧
を課電することにより、樹脂に電圧を課電する。
Next, a method of manufacturing the insulating resin unit 15 will be described. First, the surface of the embedded electrode 8 is surface-treated to have a predetermined roughness, a mold (not shown) is arranged around the buried electrode 8, and a resin containing carbon black is poured into the mold, Predetermined temperature and time for the resin,
The resin is cured to form the insulating resin unit 15. Here, when the resin is cured, a voltage is applied to the embedded electrode 8 to apply a voltage to the resin.

【0018】この樹脂に電圧が課電されることにより、
カーボンブラックは導電粒子であり、カーボンブラック
の誘電率は大きいため、樹脂中のカーボンブラックが誘
電泳動により埋込電極8に向かって移動する。このた
め、埋込電極8の周囲にカーボンブラックが配され、埋
込電極8の周囲に高い誘電率の電界緩和層17が形成さ
れる。ここで、カーボンブラクの誘電率が樹脂層の誘電
率より大きいため、樹脂層中の局所的な高電界部分であ
る埋込電極8のエッジ部分や埋込電極8表面の凹凸部分
等にカーボンブラックが誘電泳動により移動し、埋込電
極8の周囲に高誘電率の電界緩和層17が形成される。
さらに、カーボンブラックはイオン性不純物を吸着する
ので、電界緩和層17を誘電損失を小さくすることがで
きる。
By applying a voltage to this resin,
Since carbon black is conductive particles and has a large dielectric constant, carbon black in the resin moves toward the embedded electrode 8 by dielectrophoresis. Therefore, carbon black is arranged around the embedded electrode 8, and the electric field relaxation layer 17 having a high dielectric constant is formed around the embedded electrode 8. Here, since the dielectric constant of carbon black is higher than that of the resin layer, carbon black is applied to the edge portion of the embedded electrode 8 which is a local high electric field portion in the resin layer, the uneven portion of the surface of the embedded electrode 8, and the like. Move by dielectrophoresis, and an electric field relaxation layer 17 having a high dielectric constant is formed around the embedded electrode 8.
Furthermore, since carbon black adsorbs ionic impurities, it is possible to reduce the dielectric loss of the electric field relaxation layer 17.

【0019】このときに、液体中での課電による粒子の
移動速度は、次式で表される。 v=K・η・ε1・{(ε2−ε1)/(ε2+2ε1)}
・(dE2/dx) ここで、vは粒子の移動速度を示し、Kは比例定数を示
し、ηは液体の粘度を示し、ε1は液体の誘電率を示
し、ε2は粒子の誘電率を示し、xは移動距離を示し、
Eは電界を示す。
At this time, the moving speed of the particles due to the charge in the liquid is expressed by the following equation. v = K · η · ε 1 · {(ε 2 −ε 1 ) / (ε 2 + 2ε 1 )}
(DE 2 / dx) where v is the moving velocity of the particle, K is the proportional constant, η is the viscosity of the liquid, ε 1 is the dielectric constant of the liquid, and ε 2 is the dielectric constant of the particle. Rate, x is the distance traveled,
E indicates an electric field.

【0020】このように粒子の移動速度は、誘電率差、
液体粘度、dE2/dxに比例する。このため、粒子の
誘電率が大きい程、粒子の移動速度は大きくなり、ま
た、埋込電極8の局所的な欠陥部分のレベルに応じてd
2/dxに比例して電界緩和層17が形成される。さ
らに、dE2/dxに移動速度が比例するので、課電す
る電圧は交流でも直流でも良い。こうして、電界緩和層
17を形成し、樹脂を硬化させて絶縁性樹脂ユニット1
5を形成した後、この絶縁性樹脂ユニット15の両端部
にプレモード絶縁体2を押し込み、プレハブ形接続部1
0を製造する。
As described above, the moving speed of particles depends on the dielectric constant difference,
Liquid viscosity, proportional to dE 2 / dx. Therefore, as the dielectric constant of the particle is larger, the moving speed of the particle is higher, and d depends on the level of the local defective portion of the embedded electrode 8.
The electric field relaxation layer 17 is formed in proportion to E 2 / dx. Further, since the moving speed is proportional to dE 2 / dx, the voltage to be applied may be alternating current or direct current. In this way, the electric field relaxation layer 17 is formed, and the resin is cured so that the insulating resin unit 1 can be formed.
After forming 5, the pre-mode insulator 2 is pushed into both ends of the insulating resin unit 15 to form the pre-fabricated connecting portion 1
0 is produced.

【0021】このような絶縁性樹脂ユニット15の成形
方法によれば、電力ケーブル1のケーブル絶縁体5の外
周にカーボンブラックを含む硬化型樹脂を流し込んでそ
の樹脂を硬化させて絶縁性樹脂ユニットを形成する際
に、該硬化中の樹脂に電圧を課電することにより、カー
ボンブラックを泳動させて硬化樹脂内に電界緩和層17
を形成させるので、カーボンブラックがイオン性不純物
を吸着し、誘電損失の小さい電界緩和層17を形成で
き、高誘電率の電界緩和層17を形成できる。このた
め、絶縁性樹脂ユニット15に課電される電界が電界緩
和層17で緩和され、絶縁性樹脂ユニット15が破壊さ
れるのを防止できる。こうして得られた絶縁性樹脂ユニ
ット15は高い耐絶縁破壊性能を有する。
According to such a method of molding the insulating resin unit 15, a curable resin containing carbon black is poured around the cable insulator 5 of the power cable 1 and the resin is cured to form the insulating resin unit. At the time of forming, by applying a voltage to the resin being cured, the carbon black is caused to migrate so that the electric field relaxation layer 17 is formed in the cured resin.
Since carbon black adsorbs ionic impurities, the electric field relaxation layer 17 with a small dielectric loss can be formed, and the electric field relaxation layer 17 with a high dielectric constant can be formed. Therefore, it is possible to prevent the electric field applied to the insulating resin unit 15 from being relaxed by the electric field relaxation layer 17 and destroying the insulating resin unit 15. The insulating resin unit 15 thus obtained has high dielectric breakdown resistance.

【0022】すなわち、プレハブ形接続部10等の高い
電圧が課電される埋込電極8のエッジ部8aに絶縁性樹
脂ユニット15を硬化成形させることにより、埋込電極
8のエッジ部8aの耐絶縁破壊性能を向上させることが
でき、プレハブ形接続部10等の耐絶縁破壊性能を向上
させることができ、プレハブ形接続部の10安全性を向
上させることができる。
That is, by curing and molding the insulating resin unit 15 on the edge portion 8a of the embedded electrode 8 to which a high voltage is applied, such as the prefabricated type connection portion 10, the resistance of the edge portion 8a of the embedded electrode 8 is improved. The dielectric breakdown performance can be improved, the dielectric breakdown resistance performance of the prefabricated connection portion 10 and the like can be improved, and the safety of the prefabricated connection portion 10 can be improved.

【0023】さらに、埋込電極8の表面粗さに対しても
周囲に均一な厚みの電界緩和層17を形成することがで
きる。このため、絶縁性樹脂ユニット15が高い電界で
破壊されるのを防止でき、絶縁性樹脂ユニット15の耐
絶縁破壊性能をさらに向上させることができ、プレハブ
形接続部10の安全性をさらに向上させることができ
る。
Further, with respect to the surface roughness of the embedded electrode 8, the electric field relaxation layer 17 having a uniform thickness can be formed around the periphery. Therefore, it is possible to prevent the insulating resin unit 15 from being destroyed by a high electric field, further improve the dielectric breakdown resistance performance of the insulating resin unit 15, and further improve the safety of the prefabricated type connection portion 10. be able to.

【0024】一方、絶縁性樹脂ユニット15内に埋め込
まれる埋込電極8を設けることで、この埋込電極8に電
圧を課電することにより、硬化中の樹脂内にカーボンブ
ラックを泳動でき、この埋込電極8の周囲に高誘電率の
電界緩和層17を形成することができる。このため、埋
込電極8付近が高い電界で破壊されるのを防止でき、絶
縁性樹脂ユニット15の耐絶縁破壊性能を向上させるこ
とができ、埋込電極8付近の電気的安全性を向上させる
ことができる。
On the other hand, by providing the embedded electrode 8 embedded in the insulating resin unit 15, by applying a voltage to the embedded electrode 8, carbon black can be migrated in the resin being cured. The electric field relaxation layer 17 having a high dielectric constant can be formed around the embedded electrode 8. Therefore, it is possible to prevent the vicinity of the embedded electrode 8 from being destroyed by a high electric field, improve the dielectric breakdown resistance performance of the insulating resin unit 15, and improve the electrical safety in the vicinity of the embedded electrode 8. be able to.

【0025】(実験例1〜4)絶縁性樹脂ユニット15
の原料として、主剤にビスフェノールAを用い、硬化剤
に酸無水物を用い、これら主剤と硬化剤との混合物に対
して充填剤を2重量部混合した。この充填剤2として、
アルミナを用い(実験例1〜3)、又はシリカを用いた
(実験例4)。これら主剤と硬化剤と充填剤との混合物
にファーネスブラックを添加し、これらファーネスブラ
ックを含む混合物を125℃で12時間維持し、厚さ1
mmの板状の各サンプルを成形した。これら各サンプル
について、50Hz、1kVの条件で、ファーネスブラ
ックの添加量(CB重量部)を変化させ(実験例1〜
3)、誘電損失(tanδ)を測定した。
(Experimental Examples 1 to 4) Insulating resin unit 15
As a raw material, bisphenol A was used as the main component, an acid anhydride was used as the curing agent, and 2 parts by weight of the filler was mixed with the mixture of the main component and the curing agent. As this filler 2,
Alumina was used (Experimental Examples 1 to 3) or silica was used (Experimental Example 4). Furnace black was added to the mixture of the main agent, the curing agent and the filler, and the mixture containing these furnace blacks was maintained at 125 ° C. for 12 hours to give a thickness of 1
mm plate-shaped samples were molded. For each of these samples, the amount of furnace black added (CB parts by weight) was changed under the conditions of 50 Hz and 1 kV (Experimental Examples 1 to 1).
3), the dielectric loss (tan δ) was measured.

【0026】(比較例1〜4)比較例として、ファーネ
スブラックが添加されていない樹脂に各充填剤を混合
し、実験例1〜4と同一の条件で硬化させ、各サンプル
を成形した(比較例1、4)。さらに、充填剤としてア
ルミナを用い、ファーネスブラックを0.05重量部、
7重量部添加した樹脂を用い、実験例1〜4と同一の条
件で硬化させ、各サンプルを成形した(比較例2、
3)。これら比較例1〜4の誘電損失を、実験例1〜4
と同様に測定した。これら実験例1〜4と比較例1〜4
との測定結果を表1に示す。
(Comparative Examples 1 to 4) As a comparative example, each resin was mixed with a resin to which furnace black was not added and cured under the same conditions as in Experimental Examples 1 to 4 to mold each sample (comparative). Examples 1, 4). Further, using alumina as a filler, 0.05 parts by weight of furnace black,
Using 7 parts by weight of the resin added, the resin was cured under the same conditions as in Experimental Examples 1 to 4, and each sample was molded (Comparative Example 2,
3). The dielectric loss of these Comparative Examples 1 to 4 was calculated as Experimental Examples 1 to 4.
It measured similarly to. These Experimental Examples 1 to 4 and Comparative Examples 1 to 4
The measurement results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】表1に示す実験例2、4は、ファーネスブ
ラックを0.5重量部添加したとき、比較例1、4に示
すファーネスブラックを添加しないときに比べ、いずれ
も小さな誘電損失であった。ここでは、ファーネスブラ
ックを0.5重量部添加したときに、誘電損失が小さく
なることがわかる。さらに、実験例1〜3に示すよう
に、ファーネスブラックの添加量が0.1〜5重量部の
ときに、比較例2、3に比べ、誘電損失が著しく小さい
ことがわかる。
In Experimental Examples 2 and 4 shown in Table 1, when 0.5 parts by weight of the furnace black was added, the dielectric loss in each case was smaller than that when the furnace black shown in Comparative Examples 1 and 4 was not added. . Here, it is understood that the dielectric loss becomes small when 0.5 parts by weight of furnace black is added. Further, as shown in Experimental Examples 1 to 3, when the amount of furnace black added was 0.1 to 5 parts by weight, the dielectric loss was significantly smaller than that in Comparative Examples 2 and 3.

【0029】(実験例5)実験例5として、実験例2の
サンプルと同様の樹脂組成、混合物を用い、埋込電極8
に200kVの交流電圧を課電しながら、樹脂を硬化さ
せ、絶縁性樹脂ユニット15を得た。この絶縁性樹脂ユ
ニット15を用いてプレハブ型接続部10を製作した。
(Experimental Example 5) As Experimental Example 5, the same resin composition and mixture as the sample of Experimental Example 2 were used, and the embedded electrode 8 was used.
The resin was cured while an alternating voltage of 200 kV was applied to the insulating resin unit 15. The prefabricated type connection part 10 was manufactured using this insulating resin unit 15.

【0030】(比較例5)比較例例5として、比較例2
のサンプルと同様の樹脂組成、混合物を用い、樹脂を硬
化させる際に、該樹脂に電圧を課電しないで、該樹脂を
自然に硬化させ、絶縁性樹脂ユニットを得た。この絶縁
樹脂ユニットを用いてプレハブ型接続部を製作した。こ
れら実験例5と比較例5とにおけるプレハブ型接続部を
作製後、交流電圧を5kVづつ5分の間隔をあけて上昇
させ、AC破壊試験を行った。このAC破壊試験による
AC破壊電圧結果を表2に示す。
Comparative Example 5 As Comparative Example 5, Comparative Example 2
Using the same resin composition and mixture as in the sample, the resin was naturally cured without being applied with a voltage when the resin was cured to obtain an insulating resin unit. A prefabricated type connection part was manufactured using this insulating resin unit. After manufacturing the prefabricated type connection parts in Experimental Example 5 and Comparative Example 5, an AC breakdown test was performed by increasing the AC voltage by 5 kV at intervals of 5 minutes. Table 2 shows the AC breakdown voltage results of this AC breakdown test.

【0031】[0031]

【表2】 [Table 2]

【0032】表2に示すように、樹脂を課電させない場
合は、埋込電極のエッジ部分が破壊され、このAC破壊
電圧は960kVであるのに対して、樹脂を課電硬化さ
せた場合は、絶縁性樹脂ユニット以外の部分が破壊さ
れ、このAC破壊電圧は1300kVであった。この結
果から明らかなように、ファーネスブラックを含む樹脂
を課電硬化させた場合には、AC破壊電圧が高くなり、
樹脂の絶縁性能が向上することがわかる。
As shown in Table 2, when the resin is not charged, the edge portion of the embedded electrode is destroyed and the AC breakdown voltage is 960 kV. The parts other than the insulating resin unit were destroyed, and the AC breakdown voltage was 1300 kV. As is clear from this result, when the resin containing furnace black is electrically cured, the AC breakdown voltage increases,
It can be seen that the insulation performance of the resin is improved.

【0033】[0033]

【発明の効果】以上説明したように、本発明の絶縁性樹
脂成形方法と絶縁性樹脂成形品によれば、以下の効果を
奏することができる。本発明の方法によれば、カーボン
ブラックを全重量に対して0.1〜5重量部含む硬化型
樹脂を流し込んでその樹脂を硬化させて絶縁性樹脂ユニ
ットを形成する際に、該硬化中の樹脂に電圧を課電する
ことにより、前記カーボンブラックを泳動させて硬化樹
脂内に電界緩和層を形成させるので、高誘電率を有する
電界緩和層を形成することができる。このため、電界緩
和層で絶縁性樹脂ユニットに課電される電界が緩和さ
れ、絶縁性樹脂ユニットが高い電界で破壊されるのを防
止できる。したがって、電力ケーブル等の高い電圧が課
電される部分付近に高誘電率の電界緩和層を形成させる
ことで、電力ケーブル等が高い電界で破壊されるのを防
止でき、耐絶縁破壊性能を向上させることができる。
As described above, according to the insulating resin molding method and the insulating resin molded product of the present invention, the following effects can be obtained. According to the method of the present invention, when a curable resin containing 0.1 to 5 parts by weight of carbon black is poured into the insulating resin unit to cure the resin to form an insulating resin unit, By applying a voltage to the resin, the carbon black migrates to form the electric field relaxation layer in the cured resin, so that the electric field relaxation layer having a high dielectric constant can be formed. Therefore, it is possible to prevent the electric field applied to the insulating resin unit from being relaxed by the electric field relaxation layer and prevent the insulating resin unit from being destroyed by the high electric field. Therefore, by forming an electric field relaxation layer with a high dielectric constant in the vicinity of a portion where a high voltage is applied, such as a power cable, it is possible to prevent the power cable, etc. from being destroyed by a high electric field and improve the dielectric breakdown resistance performance. Can be made.

【0034】一方、絶縁性樹脂成形品によれば、絶縁性
樹脂ユニット内に埋め込まれ、該絶縁性樹脂ユニットに
電圧を課電させる埋込電極を有するので、この埋込電極
に電圧を課電することにより、カーボンブラックを泳動
させて高誘電率の電界緩和層が埋込電極の周囲に形成さ
れる。このため、埋込電極に高い電界が課電された場合
にあっても、この電界が電界緩和層で緩和されるから、
埋込電極付近が高い電界で破壊されるのを防止でき、埋
込電極付近の電気的安全性を向上させることができる。
On the other hand, according to the insulating resin molded product, since the insulating resin unit has an embedded electrode which is embedded in the insulating resin unit and applies a voltage to the insulating resin unit, a voltage is applied to the embedded electrode. By doing so, the carbon black is caused to migrate and an electric field relaxation layer having a high dielectric constant is formed around the buried electrode. Therefore, even when a high electric field is applied to the buried electrode, this electric field is relaxed by the electric field relaxation layer,
It is possible to prevent the vicinity of the embedded electrode from being destroyed by a high electric field and improve the electrical safety in the vicinity of the embedded electrode.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の絶縁性樹脂成形方法によって得られた
絶縁性樹脂成形品を示す断面図である。
FIG. 1 is a cross-sectional view showing an insulating resin molded product obtained by an insulating resin molding method of the present invention.

【図2】従来の絶縁性樹脂成形品を示す断面図である。FIG. 2 is a cross-sectional view showing a conventional insulating resin molded product.

【符号の説明】[Explanation of symbols]

1 電力ケーブル 8 埋込電極 15 絶縁性樹脂ユニット(絶縁性樹脂成形品) 17 電界緩和層 1 Power Cable 8 Embedded Electrode 15 Insulating Resin Unit (Insulating Resin Molded Product) 17 Electric Field Relaxation Layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 カーボンブラックを全重量に対して0.
1〜5重量部含む硬化型樹脂を流し込んでその樹脂を硬
化させて絶縁性樹脂ユニットを形成する際に、該硬化中
の樹脂に電圧を課電することにより、前記カーボンブラ
ックを泳動させて硬化樹脂内に電界緩和層を形成させる
ことを特徴とする絶縁性樹脂成形方法。
1. Carbon black in an amount of 0.
When a curable resin containing 1 to 5 parts by weight is poured and the resin is cured to form an insulating resin unit, a voltage is applied to the resin being cured to cause the carbon black to migrate and cure. An insulating resin molding method, characterized in that an electric field relaxation layer is formed in the resin.
【請求項2】 カーボンブラックを全重量に対して0.
1〜5重量部含む絶縁性樹脂ユニットと、該絶縁性樹脂
ユニット内に埋め込まれ、該絶縁性樹脂ユニットに電圧
を課電させる埋込電極とを有し、該埋込電極の周囲に
は、電界緩和層が形成されていることを特徴とする絶縁
性樹脂成形品。
2. Carbon black in an amount of 0.
1 to 5 parts by weight of an insulating resin unit, and an embedded electrode that is embedded in the insulating resin unit and applies a voltage to the insulating resin unit. Around the embedded electrode, An insulating resin molded product having an electric field relaxation layer formed thereon.
JP19981793A 1993-08-11 1993-08-11 Molding method for insulating resin and insulating resin molding Pending JPH0757534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19981793A JPH0757534A (en) 1993-08-11 1993-08-11 Molding method for insulating resin and insulating resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19981793A JPH0757534A (en) 1993-08-11 1993-08-11 Molding method for insulating resin and insulating resin molding

Publications (1)

Publication Number Publication Date
JPH0757534A true JPH0757534A (en) 1995-03-03

Family

ID=16414137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19981793A Pending JPH0757534A (en) 1993-08-11 1993-08-11 Molding method for insulating resin and insulating resin molding

Country Status (1)

Country Link
JP (1) JPH0757534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252893A (en) * 2005-03-09 2006-09-21 Central Res Inst Of Electric Power Ind Manufacturing method of gradient dielectric constant electric insulation mold and electric insulation mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252893A (en) * 2005-03-09 2006-09-21 Central Res Inst Of Electric Power Ind Manufacturing method of gradient dielectric constant electric insulation mold and electric insulation mold

Similar Documents

Publication Publication Date Title
US4343966A (en) Electric line insulator made of organic material and having an inner semi-conductive part extending between end anchor fittings
US3793476A (en) Insulated conductor with a strippable layer
EP0365152B1 (en) Power Cable
EP3034561B1 (en) A method of manufacturing a high-voltage DC cable joint, and a high-voltage DC cable joint.
US3909507A (en) Electrical conductors with strippable polymeric materials
KR102386760B1 (en) Joint for High-Voltage Direct Current
US3925597A (en) Electrical conductors with strippable insulation and method of making the same
CA1180177A (en) Anti-tracking material for high voltage applications
JPH0757534A (en) Molding method for insulating resin and insulating resin molding
GB334840A (en) Improvements in the manufacture of electric cables
Koo et al. Comparison of DC and AC surface breakdown characteristics of GFRP and epoxy nanocomposites in liquid nitrogen
JPH0731044A (en) Dielectric resin molded item
EP0075471A1 (en) Electrical bushing and method of manufacture thereof
RU2453008C2 (en) Silicone through insulator and method for its production
JP3029203B2 (en) Connections and ends of cross-linked polyethylene power cables
US3244800A (en) Corona-free high voltage cable
US2381163A (en) Electrical insulating material
JP3108544B2 (en) Resin mold equipment and manufacturing method thereof
Abou-Dakka et al. Space charge evolution in XLPE and EPR under high uniform electric fields
RU2710687C1 (en) Pin-type linear insulator
US10388431B2 (en) Method for preparing an HVDC accessory
RU2187874C1 (en) High-voltage electrical machine winding
Davis et al. Silicone rubbers. Their present place in electrical insulation
JPS58126135A (en) Molding method of ep rubber molded article
JPH09180561A (en) Gas insulation equipment