JPH0731044A - Dielectric resin molded item - Google Patents

Dielectric resin molded item

Info

Publication number
JPH0731044A
JPH0731044A JP17072793A JP17072793A JPH0731044A JP H0731044 A JPH0731044 A JP H0731044A JP 17072793 A JP17072793 A JP 17072793A JP 17072793 A JP17072793 A JP 17072793A JP H0731044 A JPH0731044 A JP H0731044A
Authority
JP
Japan
Prior art keywords
insulating resin
electric field
unit
resin unit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17072793A
Other languages
Japanese (ja)
Inventor
Susumu Takahashi
享 高橋
Satoshi Kaneko
智 金子
Izumi Ishikawa
泉 石川
Toshio Niwa
利夫 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP17072793A priority Critical patent/JPH0731044A/en
Publication of JPH0731044A publication Critical patent/JPH0731044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cable Accessories (AREA)

Abstract

PURPOSE:To enhance dielectric strength of a dielectric resin unit containing a filler formed on the outer periphery of a cable insulator by providing an embedded electrode for applying voltage to the dielectric resin unit and forming a field relax layer around the embedded electrode. CONSTITUTION:Voltage is applied to a dielectric resin unit 15 through an embedded electrode 8 to cause electrophoresis of the filler in the unit 15 thus forming a field relax layer 17. Consequently, the electric field applied to the unit 15 is relaxed. Even when a strong electric field is applied to the vicinity of the edge part 8a of an electrode embedded in a power cable 1, for example, the field is relaxed by the field relax layer 17. This structure enhances the dielectric strength of the dielectric resin unit 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電線、電力ケーブル
の端末、接続部等に使用される絶縁性樹脂成形品に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating resin molded product used for electric wires, terminals of power cables, connecting portions and the like.

【0002】[0002]

【従来の技術】近年、エポキシ樹脂等の絶縁性樹脂成形
品は、ケーブルの端末、接続部等の電気機器に広く使用
されている。例えば、電気的に最も苛酷な例として、ケ
ーブルの分野に使用される絶縁性樹脂成形品としては、
架橋ポリエチレン絶縁PVCシースケーブル(CVケー
ブル)のプレハブ形接続部に使用されている。このプレ
ハブ形接続部は、275〜500kVの超高圧CVケー
ブルの中で、施工期間が短い等の理由からモールド形接
続部に替わって有望視されている。
2. Description of the Related Art In recent years, insulating resin moldings such as epoxy resin have been widely used in electric equipment such as cable terminals and connecting portions. For example, as the most electrically severe example, as an insulating resin molded product used in the field of cables,
Used for prefabricated connection of cross-linked polyethylene insulated PVC sheath cable (CV cable). This prefabricated type connection portion is regarded as a promising alternative to the molded type connection portion in the 275 to 500 kV ultrahigh voltage CV cable because of its short construction period.

【0003】このプレハブ形接続部は、図3に示すよう
に、電力ケーブル1の端部外周に挿入されたプレモール
ド絶縁体2と、このプレモールド絶縁体2に押し込めら
れる絶縁性樹脂ユニット3とを有する。電力ケーブル1
は、内部導体4と、この内部導体4を覆う架橋ポリエチ
レン(XLPE)製のケーブル絶縁体5とを有し、この
ケーブル絶縁体5の端部から内部導体4が突出された構
造にされている。
As shown in FIG. 3, the prefabricated type connecting portion includes a premolded insulator 2 inserted into the outer periphery of an end portion of a power cable 1, and an insulating resin unit 3 which is pushed into the premolded insulator 2. Have. Power cable 1
Has an inner conductor 4 and a cable insulator 5 made of cross-linked polyethylene (XLPE) that covers the inner conductor 4, and has a structure in which the inner conductor 4 is projected from an end portion of the cable insulator 5. .

【0004】プレモールド絶縁体2は、ケーブル絶縁体
5の端部周囲を覆うとともに、電界緩和絶縁補強層をな
す絶縁ゴム6と、この絶縁ゴム6を絶縁性樹脂ユニット
3側に押し込む半導電ゴム7とを有する。絶縁ゴム6
は、エチレンプロピレンゴムやシリコーンゴム等で製作
されている。
The pre-molded insulator 2 covers the periphery of the end of the cable insulator 5, an insulating rubber 6 which forms an electric field relaxation insulating reinforcing layer, and a semiconductive rubber which pushes the insulating rubber 6 toward the insulating resin unit 3 side. 7 and. Insulating rubber 6
Is made of ethylene propylene rubber, silicone rubber, or the like.

【0005】絶縁性樹脂ユニット3は、その端部がプレ
モールド絶縁体2に押し込まれる略筒状に形成されてい
る。この絶縁性樹脂ユニット3には、内側に埋込電極8
が埋め込まれている。この埋込電極8は、ケーブル絶縁
体5から突出する内部導体4の周囲に配設され、電力ケ
ーブル1の内部導体4に電気的に接続されている。ここ
で、絶縁性樹脂ユニット3の材料として、厚肉の電気絶
縁用注型品であることに考慮し、残留歪みが小さくなる
ように、硬化熱が小さく、硬化速度の遅い主剤/硬化剤
の組み合わせであるビスフェノールA/酸無水物と、シ
リカ、アルミナ等の充填剤とが通常用いられる。
The insulating resin unit 3 is formed into a substantially cylindrical shape whose end is pushed into the premolded insulator 2. The insulating resin unit 3 has an embedded electrode 8 inside.
Is embedded. The embedded electrode 8 is arranged around the inner conductor 4 protruding from the cable insulator 5, and is electrically connected to the inner conductor 4 of the power cable 1. Here, considering that the material of the insulating resin unit 3 is a cast product for electrical insulation having a large thickness, the main heat / curing agent having a small hardening heat and a slow hardening speed is used so that the residual strain becomes small. A combination of bisphenol A / anhydride and fillers such as silica and alumina are usually used.

【0006】このようなプレハブ形接続部の製造方法に
ついて説明する。まず、一対の電力ケーブル1の端部に
プレモールド絶縁体2をそれぞれ挿入する。そして、各
電力ケーブル1の内部導体4を対向配設するとともに、
これら内部導体4の外周に埋込電極8を配置する。この
埋込電極8の周囲に型枠(図示略)を配置し、この型枠
内に主剤/硬化剤/充填剤を混合させた樹脂を流し込
み、該樹脂に所定の温度、時間をかけ、該樹脂を硬化さ
せて絶縁性樹脂ユニット3を形成する。その後、この絶
縁性樹脂ユニット3の両端部にプレモード絶縁体2を押
し込み、プレハブ形接続部が製造される。
A method of manufacturing such a prefabricated type connecting portion will be described. First, the premolded insulators 2 are inserted into the ends of the pair of power cables 1, respectively. Then, the internal conductors 4 of each power cable 1 are arranged to face each other, and
Embedded electrodes 8 are arranged on the outer periphery of these internal conductors 4. A mold (not shown) is arranged around this embedded electrode 8, and a resin in which a main agent / curing agent / filler is mixed is poured into the mold, and the resin is subjected to predetermined temperature and time, The resin is cured to form the insulating resin unit 3. After that, the pre-mode insulator 2 is pushed into both ends of the insulating resin unit 3 to manufacture the prefabricated type connection portion.

【0007】[0007]

【発明が解決しようとする課題】ところで、絶縁性樹脂
ユニット3で電気的に弱い部分は埋込電極8のエッジ部
8aであり、この埋込電極8のエッジ部8a付近の電界
強度が最も大きくなる。すなわち、絶縁破壊試験を行っ
た場合、埋込電極8のエッジ部8a付近が破壊される場
合が多い。このため、埋込電極8のエッジ部8a付近の
電界強度を低下させ、耐絶縁破壊性能を向上させた絶縁
性樹脂ユニット3が望まれていた。絶縁破壊性能は、埋
込電極8の表面平滑度にも左右され易い性質を有してい
る。
The electrically weak portion of the insulating resin unit 3 is the edge portion 8a of the embedded electrode 8, and the electric field strength near the edge portion 8a of the embedded electrode 8 is the largest. Become. That is, when the dielectric breakdown test is performed, the vicinity of the edge portion 8a of the embedded electrode 8 is often destroyed. For this reason, the insulating resin unit 3 in which the electric field strength near the edge portion 8a of the embedded electrode 8 is reduced and the dielectric breakdown resistance is improved has been desired. The dielectric breakdown performance has the property of being easily influenced by the surface smoothness of the embedded electrode 8.

【0008】本発明は前記課題を有効に解決するもの
で、絶縁破壊性能を向上可能な絶縁性樹脂成形品を提供
することを目的とする。
The present invention effectively solves the above problems, and an object of the present invention is to provide an insulating resin molded article capable of improving dielectric breakdown performance.

【0009】[0009]

【課題を解決するための手段】本発明の絶縁性樹脂成形
品は、電力ケーブル等の絶縁体の外周に成形され、充填
剤を含む絶縁性樹脂ユニットと、該絶縁性樹脂ユニット
内に埋め込まれ、該絶縁性樹脂ユニットに電圧を課電さ
せる埋込電極とを有し、該埋込電極周囲には、電界緩和
層が形成されている。
An insulating resin molded article of the present invention is molded on the outer periphery of an insulator such as a power cable, and is embedded in the insulating resin unit containing a filler. , An embedded electrode that applies a voltage to the insulating resin unit, and an electric field relaxation layer is formed around the embedded electrode.

【0010】[0010]

【作用】本発明では、埋込電極で絶縁性樹脂ユニットに
電圧を課電することにより、この絶縁性ユニット内の充
填剤が泳動して電界緩和層を形成する。この電界緩和層
が形成されることにより、絶縁性樹脂ユニットに課電さ
れる電界が緩和される。すなわち、電力ケーブル等の埋
込電極のエッジ部付近に高い強度の電界が課電された場
合にあっても、この電界が電界緩和層で緩和される。
In the present invention, when a voltage is applied to the insulating resin unit by the embedded electrode, the filler in the insulating unit migrates to form the electric field relaxation layer. By forming this electric field relaxation layer, the electric field applied to the insulating resin unit is relaxed. That is, even when a high-strength electric field is applied near the edge portion of the embedded electrode of the power cable or the like, this electric field is relaxed by the electric field relaxation layer.

【0011】[0011]

【実施例】以下、本発明の絶縁性樹脂成形品の一実施例
について、図1ないし図2を参照しながら説明する。こ
こで、絶縁性樹脂成形品を用いる例として、プレハブ形
接続部を用いて説明し、従来例と同一のものについて
は、同一符号を用いて説明する。図1に示すように、符
号10はプレハブ形接続部10であり、このプレハブ形
接続部10は、電力ケーブル1に挿入されたプレモール
ド絶縁体2と、このプレモールド絶縁体2に押し込めら
れる絶縁性樹脂ユニット15(絶縁性樹脂成形品)とを
有する構成にされている。
EXAMPLE An example of an insulating resin molded article of the present invention will be described below with reference to FIGS. Here, as an example of using an insulating resin molded product, a prefabricated type connecting portion will be described, and the same components as those of the conventional example will be described using the same reference numerals. As shown in FIG. 1, reference numeral 10 is a prefabricated type connecting portion 10, and the prefabricated type connecting portion 10 includes a premolded insulator 2 inserted in a power cable 1 and an insulation that can be pressed into the premolded insulator 2. And a conductive resin unit 15 (insulating resin molded product).

【0012】電力ケーブル1では、ケーブル絶縁体5の
端部から内部導体4が突出されている。プレモールド絶
縁体2は、ケーブル絶縁体5の端部周囲を覆う絶縁ゴム
6と、この絶縁ゴム6を絶縁性樹脂ユニット3側に押し
込む半導電ゴム7とを有する。
In the power cable 1, the inner conductor 4 is projected from the end of the cable insulator 5. The premolded insulator 2 has an insulating rubber 6 that covers the periphery of the end of the cable insulator 5, and a semiconductive rubber 7 that pushes the insulating rubber 6 toward the insulating resin unit 3 side.

【0013】絶縁性樹脂ユニット15は、その両端部が
プレモールド絶縁体2に押し込まれる筒状部16と、こ
の筒状部16の内周面に形成された電界緩和層17と、
この電界緩和層17の内側に埋め込まれた埋込電極8と
を有する。ここで、筒状部16は、主剤と硬化剤とを混
合することで反応するエポキシ等の二液混合型樹脂等の
樹脂を主成分としている。電界緩和層17は、筒状部1
6の樹脂内に分散されたアルミナ、シリカ等の充填剤を
主成分としている。埋込電極8は、ケーブル絶縁体5か
ら突出する内部導体4の周囲に配設された筒状に形成さ
れ、電力ケーブル1の内部導体4に電気的に接続されて
いる。
The insulating resin unit 15 has a cylindrical portion 16 whose both ends are pressed into the premolded insulator 2, and an electric field relaxation layer 17 formed on the inner peripheral surface of the cylindrical portion 16.
The embedded electrode 8 is embedded inside the electric field relaxation layer 17. Here, the tubular portion 16 is mainly composed of a resin such as a two-component mixed resin such as epoxy which reacts when the main agent and the curing agent are mixed. The electric field relaxation layer 17 includes the tubular portion 1
The main component is a filler such as alumina or silica dispersed in the resin of No. 6. The embedded electrode 8 is formed in a cylindrical shape around the inner conductor 4 protruding from the cable insulator 5, and is electrically connected to the inner conductor 4 of the power cable 1.

【0014】このようなプレハブ形接続部10の製造方
法について説明する。まず、一対の電力ケーブル1の端
部にプレモールド絶縁体2をそれぞれ挿入し、各電力ケ
ーブル1の内部導体4を対向配設する。一方、埋込電極
8の表面を所定の粗さに表面処理し、この埋込電極8を
互いに対向する内部導体4の外周に配置する。そして、
埋込電極8の周囲に型枠(図示略)を配置し、この型枠
内に充填剤を含む樹脂を流し込み、該樹脂に所定の温
度、時間をかけ、該樹脂を硬化させて絶縁性樹脂ユニッ
ト15を形成する。ここで、樹脂を硬化させる際に、埋
込電極8に電圧を課電することにより、樹脂に電圧を課
電する。
A method of manufacturing such a prefabricated type connecting portion 10 will be described. First, the premolded insulators 2 are respectively inserted into the ends of the pair of power cables 1, and the inner conductors 4 of each power cable 1 are arranged to face each other. On the other hand, the surface of the embedded electrode 8 is surface-treated to have a predetermined roughness, and the embedded electrode 8 is arranged on the outer circumference of the internal conductors 4 facing each other. And
A mold (not shown) is arranged around the embedded electrode 8, a resin containing a filler is poured into the mold, and the resin is cured at a predetermined temperature for a predetermined time to cure the resin. The unit 15 is formed. Here, when the resin is cured, a voltage is applied to the embedded electrode 8 to apply a voltage to the resin.

【0015】この樹脂に電圧が課電されることにより、
樹脂中の充填剤が誘電泳動により埋込電極8に向かって
移動し、この埋込電極8の周囲に集中的に充填剤が配さ
れ、埋込電極8の周囲に電界緩和層17が形成される。
ここで、樹脂中の充填剤の誘電率が樹脂層の誘電率より
大きいため、樹脂層中の局所的な高電界部分である埋込
電極8のエッジ部8aや埋込電極8表面の凹凸部分周囲
に充填剤が誘電泳動により移動し、埋込電極8の周囲に
高誘電率の電界緩和層17が形成される。
By applying a voltage to this resin,
The filler in the resin moves toward the embedded electrode 8 by dielectrophoresis, the filler is concentrated around the embedded electrode 8, and the electric field relaxation layer 17 is formed around the embedded electrode 8. It
Here, since the dielectric constant of the filler in the resin is larger than that of the resin layer, the edge portion 8a of the embedded electrode 8 or the uneven portion of the surface of the embedded electrode 8 which is a local high electric field portion in the resin layer. The filler moves to the periphery by dielectrophoresis, and the electric field relaxation layer 17 having a high dielectric constant is formed around the embedded electrode 8.

【0016】液体中での課電による粒子の移動速度は、
次式で表される。 v=K・η・ε1・{(ε2−ε1)/(ε2+2ε1)}・(dE2/dx) ここで、vは粒子の移動速度を示し、Kは比例定数を示
し、ηは液体の粘度を示し、ε1は液体の誘電率を示
し、ε2は粒子の誘電率を示し、xは移動距離を示し、
Eは電界を示す。
The moving speed of particles in a liquid due to charging is
It is expressed by the following equation. v = K · η · ε 1 · {(ε 2 −ε 1 ) / (ε 2 + 2ε 1 )} · (dE 2 / dx) where v is the moving velocity of particles and K is a proportional constant. , Η is the viscosity of the liquid, ε 1 is the dielectric constant of the liquid, ε 2 is the dielectric constant of the particles, x is the migration distance,
E indicates an electric field.

【0017】このように粒子の移動速度は、誘電率差、
液体粘度、dE2/dxに比例する。このため、埋込電
極8の局所的な欠陥部分のレベルに応じて電界緩和層1
7が形成される。また、dE2/dxに移動速度が比例
するので、課電する電圧は交流でも直流でも良い。こう
して、電界緩和層17を形成し、樹脂を硬化させて絶縁
性樹脂ユニット15を形成した後、この絶縁性樹脂ユニ
ット15の両端部にプレモード絶縁体2を押し込み、プ
レハブ形接続部を製造する。
As described above, the moving speed of particles depends on the dielectric constant difference,
Liquid viscosity, proportional to dE 2 / dx. Therefore, depending on the level of the local defect portion of the buried electrode 8, the electric field relaxation layer 1
7 is formed. Since the moving speed is proportional to dE 2 / dx, the voltage to be applied may be alternating current or direct current. In this way, the electric field relaxation layer 17 is formed and the resin is cured to form the insulating resin unit 15, and then the pre-mode insulator 2 is pushed into both ends of the insulating resin unit 15 to manufacture the prefabricated type connection portion. .

【0018】このような絶縁性樹脂ユニット15の成形
方法によれば、電力ケーブル1のケーブル絶縁体5の外
周に充填剤を含む硬化型樹脂を流し込んでその樹脂を硬
化させて絶縁性樹脂ユニット15を形成する際に、該硬
化中の樹脂に電圧を課電することにより、前記充填剤を
泳動させて硬化樹脂内に電界緩和層17を形成させるの
で、この絶縁性樹脂ユニット15に課電される電界が電
界緩和層17で緩和され、絶縁性樹脂ユニット15が破
壊されるのを防止できる。こうして得られた絶縁性樹脂
ユニット15は高い耐絶縁破壊性能を有する。
According to such a method of molding the insulating resin unit 15, the insulating resin unit 15 is made by pouring a curable resin containing a filler on the outer periphery of the cable insulator 5 of the power cable 1 and curing the resin. When the resin is being formed, a voltage is applied to the resin being cured to cause the filler to migrate and form the electric field relaxation layer 17 in the cured resin. Therefore, the insulating resin unit 15 is electrically charged. It is possible to prevent the electric field generated by the electric field relaxation layer 17 from being relaxed and the insulating resin unit 15 from being destroyed. The insulating resin unit 15 thus obtained has high dielectric breakdown resistance.

【0019】このため、プレハブ形接続部10等の高い
電圧が課電される埋込電極8のエッジ部分等に絶縁性樹
脂ユニット15を硬化成形させることにより、埋込電極
8のエッジ部8aの耐絶縁破壊性能を向上させることが
でき、プレハブ形接続部10等の耐絶縁破壊性能を向上
させることができ、プレハブ形接続部の10安全性を向
上させることができる。
Therefore, by curing and molding the insulating resin unit 15 on the edge portion of the embedded electrode 8 to which a high voltage is applied, such as the prefabricated type connection portion 10, the edge portion 8a of the embedded electrode 8 is formed. The dielectric breakdown resistance can be improved, the dielectric breakdown resistance of the prefabricated connection 10 and the like can be improved, and the 10-safety of the prefabricated connection can be improved.

【0020】一方、絶縁性樹脂ユニット15内に埋め込
まれ、該絶縁性樹脂ユニット15に電圧を課電させる埋
込電極8を設けることで、この埋込電極8に電圧を課電
することにより、この埋込電極8の周囲に電界緩和層1
7を形成することができる。このため、埋込電極8付近
が高い電界で破壊されるのを防止でき、絶縁性樹脂ユニ
ット15の耐絶縁破壊性能を向上させることができ、埋
込電極8付近の電気的安全性を向上させることができ
る。
On the other hand, by providing the embedded electrode 8 embedded in the insulating resin unit 15 and applying a voltage to the insulating resin unit 15, by applying a voltage to the embedded electrode 8, The electric field relaxation layer 1 is provided around the buried electrode 8.
7 can be formed. Therefore, it is possible to prevent the vicinity of the embedded electrode 8 from being destroyed by a high electric field, improve the dielectric breakdown resistance performance of the insulating resin unit 15, and improve the electrical safety in the vicinity of the embedded electrode 8. be able to.

【0021】(実験例1)絶縁性樹脂ユニット15の原
料として、主剤にビスフェノールAを用い、硬化剤に酸
無水物を用い、充填剤にアルミナとシリカと各サンプル
毎に用いた。主剤と硬化剤とを混合し、この混合液に充
填剤を200重量部混合した。この充填剤を含む樹脂
を、図2に示すような型枠20内に流し込んだ。この型
枠20内には、一対のアルミニウム製電極21、21が
1mmの間隔をあけて対向配設されている。これらアル
ミニウム製電極21として、#120の研磨紙で表面処
理した一対の表面処理品と、#600の研磨紙で表面処
理した一対の表面処理品とを各サンプル毎に使用した。
そして、樹脂を硬化させる際には、125℃で12時間
保持するとともに、交流電圧と直流電圧とを各サンプル
毎に課電した。
(Experimental Example 1) As a raw material of the insulating resin unit 15, bisphenol A was used as a main component, an acid anhydride was used as a curing agent, and alumina and silica were used as fillers for each sample. The main agent and the curing agent were mixed, and 200 parts by weight of a filler was mixed with this mixed liquid. The resin containing the filler was poured into the mold 20 as shown in FIG. In this frame 20, a pair of electrodes 21, 21 made of aluminum are arranged facing each other with a space of 1 mm. As these aluminum electrodes 21, a pair of surface-treated products surface-treated with # 120 polishing paper and a pair of surface-treated products surface-treated with # 600 polishing paper were used for each sample.
When the resin was cured, the temperature was held at 125 ° C. for 12 hours, and an AC voltage and a DC voltage were applied to each sample.

【0022】(比較例)実験例1と同様の原料、同様の
試験器具を用い、樹脂を硬化させる際に、アルミニウム
電極21に電圧を課電しないで、125℃で12時間保
持して硬化させた。これら実験例1と比較例とにおける
各サンプル作製後、交流電圧を5kVづつ5分の間隔を
あけて上昇させ、AC破壊試験を各サンプル毎に行っ
た。各サンプル毎の硬化条件とAC破壊試験によるAC
破壊電圧結果を表1に示す。
Comparative Example Using the same raw material and the same test equipment as in Experimental Example 1, when the resin was cured, the aluminum electrode 21 was held at 125 ° C. for 12 hours to be cured without applying a voltage. It was After preparation of each sample in Experimental Example 1 and Comparative Example, an AC voltage was increased by 5 kV at intervals of 5 minutes, and an AC breakdown test was performed for each sample. AC by curing condition and AC destructive test for each sample
The breakdown voltage results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】表1の結果から明らかなように、交流電圧
を課電した場合と直流電圧を課電した場合とにそれぞれ
樹脂が硬化し、樹脂を課電硬化させない場合に比べ、A
C破壊電圧が高くなった。そして、硬化させる課電電圧
を高くするのにともなって、AC破壊電圧が高くなっ
た。一方、#120と#600とを比較して、表面粗さ
が大きいものでも効果が認められ、電極表粗部の電界緩
和に効果を示している。
As is clear from the results shown in Table 1, the resin is cured when the AC voltage is applied and when the DC voltage is applied, as compared with the case where the resin is not electrically cured.
C breakdown voltage increased. Then, as the applied voltage for curing was increased, the AC breakdown voltage was increased. On the other hand, comparing # 120 and # 600, the effect is recognized even with the one having a large surface roughness, and the effect is shown in alleviating the electric field in the rough surface of the electrode.

【0025】(実験例2)絶縁性樹脂ユニット15の原
料として実験例1と同様のものを用い、プレハブ形接続
部を作製した。絶縁性樹脂ユニット15を硬化させる際
には、交流電圧200kVを埋込電極8に課電した。
(Experimental Example 2) As the raw material of the insulating resin unit 15, the same material as in Experimental Example 1 was used to prepare a prefabricated type connecting portion. When curing the insulating resin unit 15, an AC voltage of 200 kV was applied to the embedded electrode 8.

【0026】(比較例)実験例2と同様の原料を絶縁性
樹脂ユニット3に使用し、この絶縁性樹脂ユニット3を
室温で自然硬化させた。これら実験例2と比較例とにお
けるプレハブ形接続部のAC破壊電圧を測定した。この
測定結果を表2に示す。
Comparative Example The same raw material as in Experimental Example 2 was used for the insulating resin unit 3, and the insulating resin unit 3 was naturally cured at room temperature. The AC breakdown voltage of the prefabricated type connection in these Experimental Example 2 and Comparative Example was measured. The measurement results are shown in Table 2.

【0027】[0027]

【表2】 [Table 2]

【0028】表2に示すように、樹脂を課電させない場
合は、埋込電極のエッジ部分が破壊され、このAC破壊
電圧は960kVであるのに対して、樹脂を課電硬化さ
せた場合は、絶縁性樹脂ユニット以外の部分が破壊さ
れ、このAC破壊電圧は1200kVであった。この結
果から明らかなように、樹脂を課電することにより硬化
させた場合には、樹脂の絶縁性能が向上することがわか
る。
As shown in Table 2, when the resin is not charged, the edge portion of the embedded electrode is destroyed and the AC breakdown voltage is 960 kV. The parts other than the insulating resin unit were destroyed, and the AC breakdown voltage was 1200 kV. As is clear from this result, when the resin is cured by applying an electric voltage, the insulating performance of the resin is improved.

【0029】[0029]

【発明の効果】以上説明したように、本発明の絶縁性樹
脂成形品によれば、電力ケーブル等の絶縁体の外周に成
形され、充填剤を含む絶縁性樹脂ユニットと、該絶縁性
樹脂ユニット内に埋め込まれ、該絶縁性樹脂ユニットに
電圧を課電させる埋込電極とを有し、該埋込電極の周囲
には、電界緩和層が形成されている構成にしたので、こ
の絶縁性ユニットに課電される電界が電界緩和層で緩和
され、絶縁性ユニットが高い電界で破壊されるのを防止
できる。そして、絶縁性樹脂ユニットに電圧を課電させ
る埋込電極を有するので、この埋込電極に電圧を課電す
ることにより、充填剤を泳動させて電界緩和層が埋込電
極の周囲に形成される。このため、埋込電極に高い電界
が課電された場合にあっても、この電界が電界緩和層で
緩和されるから、埋込電極付近が高い電界で破壊される
のを防止でき、埋込電極付近の電気的安全性を向上させ
ることができる。
As described above, according to the insulating resin molded product of the present invention, an insulating resin unit molded on the outer periphery of an insulator such as a power cable and containing a filler, and the insulating resin unit. The insulating unit has a buried electrode embedded in the inside and applies a voltage to the insulating resin unit, and an electric field relaxation layer is formed around the buried electrode. It is possible to prevent the electric field applied to the insulating unit from being relaxed by the electric field relaxation layer and being destroyed by the high electric field. Since the insulating resin unit has a buried electrode for applying a voltage, a voltage is applied to the buried electrode to cause the filler to migrate and an electric field relaxation layer to be formed around the buried electrode. It Therefore, even when a high electric field is applied to the buried electrode, this electric field is relaxed by the electric field relaxation layer, so that the vicinity of the buried electrode can be prevented from being destroyed by the high electric field. The electrical safety around the electrodes can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の絶縁性樹脂成形方法によって得られた
絶縁性樹脂成形品を示す断面図である。
FIG. 1 is a cross-sectional view showing an insulating resin molded product obtained by an insulating resin molding method of the present invention.

【図2】図1の絶縁性樹脂成形方法の試験に使用された
器具を示す断面図である。
FIG. 2 is a cross-sectional view showing an instrument used for a test of the insulating resin molding method of FIG.

【図3】従来の絶縁性樹脂成形品を示す断面図である。FIG. 3 is a cross-sectional view showing a conventional insulating resin molded product.

【符号の説明】[Explanation of symbols]

1 電力ケーブル 8 埋込電極 15 絶縁性樹脂ユニット(絶縁性樹脂成形品) 17 電界緩和層 1 Power Cable 8 Embedded Electrode 15 Insulating Resin Unit (Insulating Resin Molded Product) 17 Electric Field Relaxation Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丹羽 利夫 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Niwa 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電力ケーブル等の絶縁体の外周に成形さ
れ、充填剤を含む絶縁性樹脂ユニットと、該絶縁性樹脂
ユニット内に埋め込まれ、該絶縁性樹脂ユニットに電圧
を課電させる埋込電極とを有し、該埋込電極の周囲に
は、電界緩和層が形成されていることを特徴とする絶縁
性樹脂成形品。
1. An insulating resin unit formed on the outer periphery of an insulator such as a power cable and containing a filler, and an embedding embedded in the insulating resin unit and applying a voltage to the insulating resin unit. An insulating resin molded article having an electrode, and an electric field relaxation layer formed around the embedded electrode.
JP17072793A 1993-07-09 1993-07-09 Dielectric resin molded item Pending JPH0731044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17072793A JPH0731044A (en) 1993-07-09 1993-07-09 Dielectric resin molded item

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17072793A JPH0731044A (en) 1993-07-09 1993-07-09 Dielectric resin molded item

Publications (1)

Publication Number Publication Date
JPH0731044A true JPH0731044A (en) 1995-01-31

Family

ID=15910279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17072793A Pending JPH0731044A (en) 1993-07-09 1993-07-09 Dielectric resin molded item

Country Status (1)

Country Link
JP (1) JPH0731044A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518500A (en) * 2011-07-05 2014-07-28 アーベーベー・リサーチ・リミテッド Electric field control device
FR3052295A1 (en) * 2016-06-06 2017-12-08 Univ Toulouse Iii - Paul Sabatier PROCESS FOR TREATING AN ELECTRICALLY INSULATING MATERIAL WHICH CONFERS SELF-ADAPTIVE ELECTRIC FIELD GRADATION PROPERTIES FOR ELECTRICAL COMPONENTS

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518500A (en) * 2011-07-05 2014-07-28 アーベーベー・リサーチ・リミテッド Electric field control device
US9263875B2 (en) 2011-07-05 2016-02-16 Abb Research Ltd. Device for electric field control
FR3052295A1 (en) * 2016-06-06 2017-12-08 Univ Toulouse Iii - Paul Sabatier PROCESS FOR TREATING AN ELECTRICALLY INSULATING MATERIAL WHICH CONFERS SELF-ADAPTIVE ELECTRIC FIELD GRADATION PROPERTIES FOR ELECTRICAL COMPONENTS
WO2017211847A1 (en) * 2016-06-06 2017-12-14 Universite Toulouse Iii - Paul Sabatier Method for processing an electrically insulating material providing same with self-adjusting electric field grading properties for electrical components
US20190139844A1 (en) * 2016-06-06 2019-05-09 Universite Toulouse Iii - Paul Sabatier Method for processing an electrically insulating material providing same with self-adjusting electrical field grading properties for electrical components
JP2019520715A (en) * 2016-06-06 2019-07-18 ユニヴェルシテ トゥールーズ トロワズィエム−ポール サバティエ Method of processing electrical insulation material, providing self adjusting electric field relaxation characteristics to the electrical insulation material for electrical parts

Similar Documents

Publication Publication Date Title
EP0365152B1 (en) Power Cable
US3793476A (en) Insulated conductor with a strippable layer
US10250021B2 (en) Method of manufacturing a high-voltage DC cable joint, and a high-voltage DC cable joint
ES449876A1 (en) Corona-resistant ethylene-propylene rubber insulated power cable
JPH0613343U (en) Terminated high voltage cable
EP0088450A1 (en) Insulating joint for rubber or plastic insulated power cable
Hoang et al. Electrical characterization of a new enamel insulation
JPH0731044A (en) Dielectric resin molded item
CN113412522A (en) Elastic tubular high voltage insulator
EP0075471A1 (en) Electrical bushing and method of manufacture thereof
JPH0757534A (en) Molding method for insulating resin and insulating resin molding
JP3029203B2 (en) Connections and ends of cross-linked polyethylene power cables
JPS6144369B2 (en)
EP1522080A1 (en) Flexible high-voltage cable
RU2710687C1 (en) Pin-type linear insulator
JP2584871Y2 (en) Stress cone
JPS5845249B2 (en) Electric field relaxation structure of insulators
Świerzyna et al. Modification of the composition and technology of the processing of ceramic-polymer insulators
JPH0229778Y2 (en)
Khalil et al. Dependence of DC insulation resistivity of polyethylene on temperature and electric field
JPS6450712A (en) Connecting section of high-tension cable
JPS5832447Y2 (en) Insulated joints of rubber/plastic cables
JPH0742992U (en) Epoxy cast product
JPS5944756B2 (en) How to insulate the wiring part
JPH0680341U (en) Cable connection