JPH0757326B2 - Pulverizer - Google Patents

Pulverizer

Info

Publication number
JPH0757326B2
JPH0757326B2 JP1154469A JP15446989A JPH0757326B2 JP H0757326 B2 JPH0757326 B2 JP H0757326B2 JP 1154469 A JP1154469 A JP 1154469A JP 15446989 A JP15446989 A JP 15446989A JP H0757326 B2 JPH0757326 B2 JP H0757326B2
Authority
JP
Japan
Prior art keywords
crushing
collision member
nozzle
collision
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1154469A
Other languages
Japanese (ja)
Other versions
JPH0321356A (en
Inventor
博之 守屋
潔 橋本
一成 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP1154469A priority Critical patent/JPH0757326B2/en
Publication of JPH0321356A publication Critical patent/JPH0321356A/en
Publication of JPH0757326B2 publication Critical patent/JPH0757326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、固形物の粉砕を圧縮空気エネルギーで行う旋
回流式ジェットミルの改良、特に粉砕における消費エネ
ルギーおよび粉砕粒度分布が改良される微粉砕装置に関
する。
Description: TECHNICAL FIELD The present invention relates to an improvement of a swirl flow type jet mill for crushing solid matter with compressed air energy, and in particular, a fine crushing apparatus capable of improving energy consumption in crushing and crushed particle size distribution. Regarding

従来の技術 従来の旋回粉砕室を有する旋回流式ジェットミル(以
下、単にジェットミルという)は、圧縮空気を粉砕ノズ
ルより噴射させ、その高速空気流のエネルギーにより粒
子相互の衝突を起こし、固形物を粉砕し、更に高速空気
流の起こす旋回流により、粒子を遠心分級し、目的とす
る粉砕粒径を有する粒子を得ていた。
2. Description of the Related Art A conventional swirl flow type jet mill (hereinafter, simply referred to as a jet mill) having a swirl crushing chamber jets compressed air from a crushing nozzle, and the energy of its high-speed air flow causes particles to collide with each other, resulting in solid matter. The particles were pulverized, and the particles were centrifugally classified by a swirling flow generated by a high-speed air flow to obtain particles having a desired pulverized particle size.

ジェットミルの長所としては、圧縮空気の噴射を利用す
る為、断熱膨脹作用による温度低下が起こり、熱を嫌う
固形物の粉砕も可能であること、更に、粒子相互の衝
突、即ち、表面粉砕が主であることより微粉砕に適する
という利点があげられる。逆に短所としては、大量の圧
縮空気を使用するため、大型コンプレッサーが必要とな
り、粉砕消費エネルギーが機械式ミルに比べ、2〜5倍
と非常に大きいこと、更に粒子相互の衝突が主であるた
め、超微粉が発生し易く、また、衝突回数の少ない粒子
は粗粉のまま排出され、粉砕粒度分布が広くなることな
どがあげられる。
The advantage of the jet mill is that since it uses the injection of compressed air, a temperature drop occurs due to the adiabatic expansion action, and it is also possible to crush solids that dislike heat, and further, collision of particles, that is, surface crushing The main advantage is that it is suitable for fine pulverization rather than being main. On the other hand, the disadvantage is that a large amount of compressed air is used, so a large compressor is required, and the energy consumption for pulverization is 2 to 5 times larger than that of a mechanical mill, and moreover, the collision of particles is the main. Therefore, ultrafine powder is likely to be generated, and particles having a small number of collisions are discharged as coarse powder, so that the pulverized particle size distribution is widened.

発明が解決しようとする課題 上記の短所のうち、粉砕粒度分布が広くなることに対す
る改善は、粗粉分級機と組み合わせ、粉砕機で目的粉砕
粒径より大きめに粉砕し、粗粉分級機によって分級し、
粗粉は再度粉砕機へ戻し、目的の粉砕粒径を得る閉回路
粉砕方式を採用することで、かなり粒度分布の狭い粉砕
が可能となった。しかしながら粉砕消費エネルギーに関
しては、依然改良できずにいる。
Problems to be Solved by the Invention Among the above-mentioned disadvantages, an improvement for broadening the pulverized particle size distribution is to combine with a coarse powder classifier, pulverize to a size larger than the intended pulverized particle size with a pulverizer, and classify with a coarse powder classifier. Then
By returning the coarse powder to the crusher again and adopting the closed circuit crushing method to obtain the desired crushed particle size, crushing with a fairly narrow particle size distribution became possible. However, the energy consumption for grinding has not been improved yet.

実開昭51−100374号、同51−100375号、同56−64754号
公報、および特開昭58−143853号公報に記載の粉砕機
は、単一粉砕ノズル対単一衝突板方式のもので、粉砕機
単体ではジェットミルに比べ、粉砕粒度分布が広くなる
という欠点を有するため、粗粉分級機との組み合わせが
必須となる。また、単一ノズルの為、大型機へのスケー
ルアップは、効率が落ちるので行えないという欠点を有
している。特開昭57−84756号公報に記載の粉砕機は、
連通管を有するため、粉砕ノズルの本数が多い場合は、
構造が複雑となり、実用的ではない。
The crushers described in Japanese Utility Model Publication Nos. 51-100374, 51-100375, 56-64754, and JP-A-58-143853 are of a single crushing nozzle-single collision plate type. Since the pulverizer alone has a drawback that the pulverized particle size distribution is wider than that of the jet mill, it is essential to combine it with the coarse powder classifier. Further, since it has a single nozzle, it has a drawback that it cannot be scaled up to a large-scale machine because the efficiency is lowered. The crusher described in JP-A-57-84756,
Since there is a communication tube, if the number of grinding nozzles is large,
The structure is complicated and not practical.

本発明は、従来の技術における上記のような欠点を改良
することを目的としてなされたものである。
The present invention has been made for the purpose of ameliorating the above-mentioned drawbacks of the prior art.

即ち、本発明の目的は、粉砕ノズルの噴射方向の前方に
衝突部材を設置し、粒子間の衝突と粒子の衝突部材への
衝突という2つの力を有効に利用し、粉砕エネルギー効
率が高く、かつ粉砕粒度分布の狭い粉砕物を生産する微
粉砕装置を提供するものである。
That is, the object of the present invention is to install a collision member in front of the jetting direction of the crushing nozzle, effectively utilize two forces of collision between particles and collision of the particles with the collision member, and high crushing energy efficiency, Further, the present invention provides a fine pulverizing device for producing a pulverized product having a narrow pulverized particle size distribution.

課題を解決するための手段 本発明は、粉砕室内で圧縮空気を複数の粉砕ノズルから
噴射し、固形物を粉砕する旋回流式ジェットミルよりな
る微粉砕装置において、各粉砕ノズルの噴射方向前方
に、噴射空気が衝突するように、球形、卵形、円柱形お
よび円錘形より選ばれた形状の衝突部材を設け、該衝突
部材における噴射空気の中心方向に対して垂直な面又は
断面の面積が、粉砕ノズルの最小内径部の断面積の50倍
以下であることを特徴とする。
Means for Solving the Problems The present invention, in a fine pulverizing device composed of a swirling flow jet mill for injecting compressed air from a plurality of pulverizing nozzles in a pulverizing chamber to pulverize a solid matter, in the injection direction forward of each pulverizing nozzle. , A collision member having a shape selected from a spherical shape, an oval shape, a cylindrical shape, and a conical shape is provided so that the injection air may collide, and the area of a plane or a cross section perpendicular to the central direction of the injection air in the collision member. Is 50 times or less than the cross-sectional area of the minimum inner diameter portion of the crushing nozzle.

本発明の微粉砕装置について、実施例に相当する図面に
よって説明すると、本発明の微粉砕装置は、旋回粉砕室
6内で圧縮空気を複数の粉砕ノズル3から噴射して固形
物を粉砕する旋回流式ジェットミルよりなり、そして、
各粉砕ノズル3の噴射方向前方に衝突部材2を設け、粉
砕ノズルからの噴射空気が衝突部材2に衝突するように
構成されている。
The fine crushing device of the present invention will be described with reference to the drawings corresponding to the embodiments. The fine crushing device of the present invention is a swirling device in which compressed air is jetted from a plurality of crushing nozzles 3 in a swirling crushing chamber 6 to crush solid matter. Flow jet mill, and
The collision member 2 is provided in front of each crushing nozzle 3 in the ejection direction, and the air blown from the crushing nozzles collides with the collision member 2.

本発明において、衝突部材の設置位置は、粉砕ノズルか
らの噴射空気の中心方向を0゜としたとき、衝突部材の
衝突面の中心が20゜以内の頂角を有する円錐形範囲にあ
るようにするのが好ましく、また衝突部材の衝突面先端
と粉砕ノズル先端との距離が、ポテンシャルコアゾーン
の5倍以下であるのが好ましい。
In the present invention, the installation position of the collision member is such that the center of the collision surface of the collision member is in a conical range having an apex angle within 20 ° when the direction of the center of the air blown from the crushing nozzle is 0 °. It is preferable that the distance between the tip of the collision surface of the collision member and the tip of the crushing nozzle is not more than 5 times the potential core zone.

衝突部材は、球形、卵形、円柱形および円錘形より選ば
れた形状を有するものであって、合金、表面処理金属、
またはセラミックから形成されたものが使用できる。ま
た、この衝突部材のサイズとしては、噴射空気の中心方
向に対して垂直な面又は断面の面積が、粉砕ノズルの最
小内径部の断面積の50倍以下であることが必要である。
The collision member has a shape selected from a spherical shape, an oval shape, a cylindrical shape, and a conical shape, and includes an alloy, a surface-treated metal,
Alternatively, a ceramic material can be used. Further, as the size of the collision member, it is necessary that the area of a plane or a cross section perpendicular to the center direction of the blast air is 50 times or less than the cross sectional area of the minimum inner diameter portion of the crushing nozzle.

作用 本発明の微粉砕装置において、複数の粉砕ノズルから噴
射された圧縮空気は、圧縮空気噴射方向前方に設けた衝
突部材に衝突するので、利用されずに消費されている圧
縮空気エネルギーを有効に粉砕に活用することができ
る。
Action In the fine pulverization device of the present invention, the compressed air injected from the plurality of pulverization nozzles collides with the collision member provided in the front in the compressed air injection direction, so that the compressed air energy that is not used and is consumed effectively It can be used for crushing.

実施例 本発明の実施例を図面によって説明する。Embodiment An embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明の微粉砕装置の平面図であり、第2図
は第1図のA−A′線断面図である。図中、1は微粉砕
装置本体、2は衝突部材、3は粉砕ノズル、4は圧縮空
気室、5は排出管、6は旋回粉砕室、7は衝突部材支持
部品である。
FIG. 1 is a plan view of the fine crushing apparatus of the present invention, and FIG. 2 is a sectional view taken along the line AA ′ of FIG. In the figure, 1 is the main body of the fine crushing device, 2 is a collision member, 3 is a crushing nozzle, 4 is a compressed air chamber, 5 is a discharge pipe, 6 is a swirling crushing chamber, and 7 is a collision member supporting component.

本発明の微粉砕装置においては、旋回式ジェットミル本
体1の旋回粉砕室6内に、衝突部材2を粉砕ノズル3の
噴射方向前方に、各噴射ノズルに対応して設け、それに
より利用されずに消費されている圧縮空気エネルギーを
有効に粉砕に活用することができる。
In the fine crushing apparatus of the present invention, the collision member 2 is provided in the swirling crushing chamber 6 of the swirling type jet mill main body 1 in front of the crushing nozzle 3 in the injection direction, corresponding to each injection nozzle, and is not used. The compressed air energy consumed in the process can be effectively utilized for grinding.

衝突部材の設置位置については、粉砕ノズルからの噴射
空気の中心方向を0゜とすると、衝突部材の衝突面の中
心が20゜以内の頂角を有する円錘形範囲にあり、好まし
くは、噴射された圧縮空気の中心方向、即ち0゜であ
る。20゜の角度を越えると、衝突部材の衝突面が噴射さ
れた圧縮空気の流れから外れる割合が大きくなり、衝突
部材の効果がなくなる。また、距離については、圧縮空
気をノズルより噴射した場合、噴射された圧縮空気が有
効なエネルギーを有するゾーンをポテンシャルコアゾー
ン(通常、ノズル内径の5倍)と呼ぶが、衝突部材の衝
突面先端と粉砕ノズル先端との距離が前記ポテンシャル
コアゾーンの5倍以内、好ましくは2〜3倍とするのが
望ましい。上記距離が5倍を越える場合は、他のノズル
からの噴射空気を乱したり、粒子の分級効果を有する旋
回流を乱し、逆に粉砕効果を低下させる原因となる。
Regarding the installation position of the collision member, assuming that the direction of the center of the air blown from the crushing nozzle is 0 °, the center of the collision surface of the collision member is in the conical range having an apex angle within 20 °, and The direction of the center of the compressed air is 0 °. When the angle exceeds 20 °, the collision surface of the collision member is more likely to deviate from the flow of the compressed air injected, and the effect of the collision member is lost. Regarding the distance, when compressed air is jetted from a nozzle, a zone where the jetted compressed air has effective energy is called a potential core zone (usually 5 times the inner diameter of the nozzle). It is desirable that the distance from the tip of the crushing nozzle is within 5 times, preferably 2 to 3 times the potential core zone. If the distance exceeds 5 times, the air blown from other nozzles may be disturbed, or the swirling flow having a particle classification effect may be disturbed, which may cause a reduction in the crushing effect.

次に、衝突部材の形状としては、球形、円柱形、卵形お
よび円錐形等があげられるが、球形が好ましい。更に衝
突部材の大きさは、前記設置距離の理由と同様、他のノ
ズルからの噴射された圧縮空気を乱したり、旋回流を乱
したりしない範囲の大きさであって、具体的には、噴射
空気の中心方向に対して垂直な面又は断面の面積が、粉
砕ノズルの最小内径部の断面積の50倍以下である。
Next, examples of the shape of the collision member include a spherical shape, a cylindrical shape, an oval shape and a conical shape, and the spherical shape is preferable. Further, the size of the collision member is, in the same manner as the reason for the installation distance, a size in a range that does not disturb the compressed air injected from other nozzles or disturb the swirling flow, and specifically, The area of a plane or a cross section perpendicular to the central direction of the blast air is 50 times or less than the cross sectional area of the minimum inner diameter portion of the crushing nozzle.

衝突部材の材質は、耐摩耗性のものならば問題なく使用
することができる。特に、耐摩耗性合金、耐摩耗表面処
理金属、セラミックス等が望ましい。衝突部材の材質の
例として、合金類としては、超硬を始め、コバルトベー
スのステライト合金、ニッケルベースのデロロ合金、鉄
ベースのデルクロム合金、トライスチル合金、およびト
リバロイ金属間化合物があげられ、セラミックスとして
は、アルミナ、チタニア、ジルコニア等の酸化物、炭化
ケイ素、炭化クロム等の炭化物、窒化ケイ素、窒化チタ
ン等の窒化物、硼化物クロム、硼化チタン等の硼化物等
があげられる。
The material of the collision member can be used without any problem as long as it is wear resistant. In particular, wear resistant alloys, wear resistant surface treated metals, ceramics and the like are desirable. As examples of the material of the collision member, alloys such as cemented carbide, cobalt-based stellite alloy, nickel-based Deloro alloy, iron-based delchrome alloy, tristil alloy, and triballoy intermetallic compound, ceramics Examples thereof include oxides such as alumina, titania and zirconia, carbides such as silicon carbide and chromium carbide, nitrides such as silicon nitride and titanium nitride, borides such as chromium boride and titanium boride, and the like.

本発明の微粉砕装置を使用して微粉砕を行う場合の具体
例を以下に示す。
A specific example of fine pulverization using the fine pulverizer of the present invention will be shown below.

第1図および第2図に示す微粉砕装置を使用した。この
微粉砕装置は、旋回粉砕室内径420mmφ、旋回粉砕室円
周部高さ50mm、中心部高さ100mmで、旋回粉砕室中心底
部に内径138mmφ、高さ74mmの排出管を有していた。ま
た、旋回粉砕室円周部の粉砕ノズルは、内径5.2mmφの
ラバールノズル4個を中心方向から35度ずらせた角度に
設置し、原料は旋回粉砕室蓋部よりエアーインジェクシ
ョンノズルの作用によって供給されるようにした。上記
のジェットミルよりなる微粉砕装置とミクロンセパレー
ター(ホソカワミクロン(株)製)を組み合わせて閉回
路粉砕システムとし、以下の条件で粉砕を行った。
The fine pulverizer shown in FIGS. 1 and 2 was used. This fine pulverizer had a diameter of 420 mmφ in the swirling crushing chamber, a height of 50 mm in the circumference of the swirling crushing chamber, and a height of 100 mm in the center, and had a discharge pipe having an inner diameter of 138 mmφ and a height of 74 mm at the center bottom of the swirling crushing chamber. The crushing nozzles in the circumference of the swirling crushing chamber are installed with four Laval nozzles with an inner diameter of 5.2 mmφ offset by 35 degrees from the center direction, and the raw material is supplied from the lid of the swirling crushing chamber by the action of an air injection nozzle. I did it. The fine crushing device consisting of the above jet mill and a micron separator (manufactured by Hosokawa Micron Co., Ltd.) were combined to form a closed circuit crushing system, and crushing was performed under the following conditions.

実施例1 衝突部材 個数 4個 設置距離 22m 形状円柱 円柱 大きさ 16mmφ×35mm 材質 SUS304 粉砕条件 粉砕圧 7.6kg/cm2G 供給圧 6.0kg/cm2G 排気風量 11〜12m3/min 二次空気風量 1.2〜1.5m3/min 電子写真用トナー材料のハンマーミル破砕物(重量平均
粒径D50=300〜500μm)を原料とし、重量平均粒径D50
(以下、単にD50と言う)が11μmになるように上記の
条件で粉砕し、粒度分布をコールターカウンターTA−II
(コールターエレクトロニクス社製)で測定した。
Example 1 Number of collision members 4 pieces Installation distance 22m Shaped cylinder Shaped cylinder 16mmφ × 35mm Material SUS304 Grinding condition Grinding pressure 7.6kg / cm 2 G Supply pressure 6.0kg / cm 2 G Exhaust air flow 11-12m 3 / min Secondary air air volume 1.2~1.5m 3 / min hammer mill crushed electrophotographic toner material (= 300 to 500 [mu] m weight average particle diameter D 50) as a starting material, the weight average particle diameter D 50
(Hereinafter simply referred to as D 50 ) is pulverized under the above conditions so as to be 11 μm, and the particle size distribution is measured by Coulter Counter TA-II.
(Manufactured by Coulter Electronics).

その結果を第1表に示す。The results are shown in Table 1.

比較例1 粉砕室内に衝突部材を設けない構造とした以外は、実施
例1と同じ条件でD50=11μmになる様に粉砕を行っ
た。
Comparative Example 1 Crushing was performed under the same conditions as in Example 1 except that the collision member was not provided in the crushing chamber so that D 50 = 11 μm.

その結果を第1表に示す。The results are shown in Table 1.

実施例2 衝突部材の衝突面の中心を、粉砕ノズルの噴射中心方向
に正確に設置した以外は、実施例1と同じ条件でD50=1
1μmになる様に粉砕を行った。
Example 2 D 50 = 1 under the same conditions as in Example 1 except that the center of the collision surface of the collision member was accurately set in the injection center direction of the crushing nozzle.
Crushing was performed so that the size became 1 μm.

実施例3 衝突部材の衝突面の中心を、粉砕ノズルの噴射中心方向
から粉砕室外周方向へ水平に15゜ずらした以外は、実施
例1と同じ条件でD50=11μmになる様に粉砕を行っ
た。
Example 3 The crushing was performed under the same conditions as in Example 1 except that the center of the collision surface of the collision member was horizontally displaced from the injection center direction of the crushing nozzle by 15 ° in the outer peripheral direction of the crushing chamber so that D 50 = 11 μm. went.

実施例4 衝突部材の設置距離(衝突部材の衝突面先端と粉砕ノズ
ル先端との距離)を80mmとした以外は、実施例2と同じ
条件でD50=11μmになる様に粉砕を行った。
Example 4 Grinding was performed under the same conditions as in Example 2 except that the installation distance of the collision member (distance between the collision surface tip of the collision member and the crushing nozzle tip) was 80 mm, so that D 50 = 11 μm.

実施例5 衝突部材の設置距離を140mmとした以外は、実施例2と
同じ条件でD50=11μmになる様に粉砕を行った。
Example 5 Pulverization was performed under the same conditions as in Example 2 except that the collision member was installed at a distance of 140 mm so that D 50 = 11 μm.

実施例6 衝突部材の形状を球形(16mmφ)とした以外は、実施例
4と同じ条件でD50=11μmになる様に粉砕を行った。
Example 6 Grinding was performed under the same conditions as in Example 4 except that the shape of the collision member was spherical (16 mmφ), so that D 50 = 11 μm.

比較例2 衝突部材の形状を四角柱(16mm×16mm×30mm)とし、四
角柱の平面部分が粉砕ノズルと対向するように設置した
以外は、実施例4と同じ条件でD50=11μmになる様に
粉砕を行った。
Comparative Example 2 D 50 = 11 μm under the same conditions as in Example 4, except that the shape of the collision member was a quadrangular prism (16 mm × 16 mm × 30 mm), and the flat portion of the quadrangular prism faced the crushing nozzle. Was crushed in the same manner.

実施例7 衝突部材の形状を球形(20mmφ)とした以外は、実施例
4と同じ条件でD50=11μmになる様に粉砕を行った。
Example 7 Grinding was performed under the same conditions as in Example 4 except that the shape of the collision member was spherical (20 mmφ), so that D 50 = 11 μm.

実施例8 衝突部材の形状を球形(37mmφ)とした以外は、実施例
4と同じ条件でD50=11μmになる様に粉砕を行った。
Example 8 Crushing was performed under the same conditions as in Example 4 except that the shape of the collision member was spherical (37 mmφ), so that D 50 = 11 μm.

以上の実施例および比較例の結果を第1表に示す。The results of the above Examples and Comparative Examples are shown in Table 1.

実施例と比較例の比較から明らかなように、ジェットミ
ルの旋回粉砕室に衝突部材を設置することにより、粉砕
消費エネルギーが低減でき、かつ、粒度分布がシャープ
な粉砕物が得られることが分かる。
As is clear from the comparison between the example and the comparative example, it can be seen that by installing the collision member in the swirling crushing chamber of the jet mill, crushing energy consumption can be reduced and a crushed product having a sharp particle size distribution can be obtained. .

実施例1〜3の比較から、衝突部材の設置位置(衝突部
材の衝突面中心の粉砕ノズル噴射中心方向からのズレ)
の最適化をはかることにより、粉砕消費エネルギーをさ
らに低減することができる。粉砕ノズル(ラバール管)
圧縮空気の拡散状態と実施例3の結果から判断すると、
衝突部材の設置位置の範囲は、ノズルの中心方向0゜よ
り±10゜以内(すなわち、衝突部材の衝突面の中心か
ら、粉砕ノズルからの噴射空気の中心方向で20゜以内の
頂角を有する円錐形範囲)であれば、圧縮空気のエネル
ギーを有効に利用することができ、好ましくは、0゜で
ある。
From the comparison of Examples 1 to 3, the installation position of the collision member (deviation of the collision surface center of the collision member from the crushing nozzle injection center direction)
The energy consumption for pulverization can be further reduced by optimizing the above. Grinding nozzle (Laval tube)
Judging from the diffusion state of compressed air and the result of Example 3,
The range of the installation position of the collision member is within ± 10 ° from 0 ° in the central direction of the nozzle (that is, within 20 ° in the central direction of the blast air from the crushing nozzle from the center of the collision surface of the collision member. Within the conical range), the energy of compressed air can be effectively utilized, and it is preferably 0 °.

実施例2、4、5の比較から、衝突部材の設置距離の最
適化をはかることにより、粉砕消費エネルギーをさらに
低減できることが確認された。設置距離の範囲として
は、使用する粉体により最適距離が異なるが、粉砕ノズ
ルから噴射される圧縮空気のエネルギーが最大であるポ
テンシャルコアゾーンはもちろん、粒子の巻き込み、加
速ゾーン及び他の粉砕ノズルから噴射される圧縮空気流
への干渉ゾーン、旋回分散ゾーンへの干渉を考慮する
と、ポテンシャルコアゾーンは26mm(5×5.2mm:ノズル
内径)であり、その5倍以下の範囲は0〜130mmであっ
て、この範囲内であるのが好ましい。
From the comparison of Examples 2, 4, and 5, it was confirmed that the grinding energy consumption can be further reduced by optimizing the installation distance of the collision member. The range of installation distance varies depending on the powder used, but the potential core zone where the energy of the compressed air jetted from the pulverizing nozzle is maximum, as well as the entrainment of particles, the accelerating zone and other pulverizing nozzles Considering the interference to the compressed air flow and the interference to the swirl dispersion zone, the potential core zone is 26 mm (5 × 5.2 mm: nozzle inner diameter), and the range of 5 times or less is 0 to 130 mm, It is preferably within this range.

実施例4、6および比較例2の比較から、衝突部材の形
状の最適化をはかることにより、粉砕消費エネルギーを
さらに低減できることが確認された。衝突部材の形状
は、粉砕ノズルから噴射される圧縮空気流を乱さない形
状であるのが好ましく、球形、卵形、円柱形、円錐形、
特に球形が効果があることが分かる。
From the comparison between Examples 4 and 6 and Comparative Example 2, it was confirmed that the energy consumption for grinding can be further reduced by optimizing the shape of the collision member. The shape of the collision member is preferably a shape that does not disturb the flow of compressed air ejected from the crushing nozzle, and is spherical, oval, cylindrical, conical,
It can be seen that the spherical shape is particularly effective.

さらに、実施例7及び8の比較から、衝突部材の大きさ
の最適化をはかることにより、粉砕消費エネルギーをさ
らに低減できることが確認された。衝突部材の大きさの
範囲としては、粉砕ノズルから噴射される圧縮空気の広
がりと、衝突部材の設置範囲から、粉砕ノズルの最小内
径部の断面積の50倍以下が好ましいことが分かる。な
お、実施例7及び8の場合、粉砕ノズルの最小内径部断
面図の50倍は1061mm2(=1/4×(5.2)×3.14×50)
であり、実施例7は314mm2、実施例8は1075mm2であ
る。
Further, from the comparison between Examples 7 and 8, it was confirmed that the energy consumption for grinding can be further reduced by optimizing the size of the collision member. It is understood that the range of the size of the collision member is preferably 50 times or less of the cross-sectional area of the minimum inner diameter portion of the crushing nozzle from the spread of the compressed air injected from the crushing nozzle and the installation range of the collision member. In addition, in the case of Examples 7 and 8, 50 times the sectional view of the minimum inner diameter portion of the crushing nozzle is 1061 mm 2 (= 1/4 × (5.2) 2 × 3.14 × 50)
, And the Example 7 314 mm 2, Example 8 is 1075 mm 2.

実施例9 実施例1〜8において使用した微粉砕装置を使用して、
4本の粉砕ノズルに対向するそれぞれの衝突部材とし
て、超硬(材質WH40、日立金属(株)製)、粉末高速度
工具鋼(HAP40、日立金属(株)製)、サイアロン(HCN
10、日立金属(株)製)及びSUS304を用い、実施例2と
同じ条件で、磁性粉含有樹脂のハンマーミル粉砕物(30
0〜500μm)を原料とし、原料供給量20kg/Hで4時間粉
砕を行い、衝突部材の摩耗重量変化(摩耗度)を測定し
た。各粉砕ノズルの差をなくすために、1時間毎に衝突
部材の位置を交換し、測定を行った。その結果を第2表
に示す。
Example 9 Using the milling equipment used in Examples 1-8,
Cemented carbide (material WH40, manufactured by Hitachi Metals, Ltd.), powder high-speed tool steel (HAP40, manufactured by Hitachi Metals, Ltd.), sialon (HCN)
10, Hitachi Metals Co., Ltd. and SUS304, under the same conditions as in Example 2, hammermill pulverized product (30) of magnetic powder-containing resin
(0 to 500 μm) as a raw material, the raw material supply rate was 20 kg / H, and pulverization was performed for 4 hours, and the change in wear weight of the collision member (wear degree) was measured. In order to eliminate the difference between the crushing nozzles, the position of the collision member was exchanged every hour and the measurement was performed. The results are shown in Table 2.

上部の結果から明らかなように、超硬は、SUS304の96.6
倍、HAP40は71.2倍、サイアロンは55.4倍であり、いず
れも良好な耐摩耗性が得られた。
As is clear from the results above, carbide is 96.6% of SUS304.
2 times, HAP40 was 71.2 times, Sialon was 55.4 times, and good wear resistance was obtained in all cases.

発明の効果 以上の結果から明らかなように、本発明の微粉砕装置は
各粉砕ノズルの噴射方向前方に前記所定の形状およびサ
イズの衝突部材を設けたから、消費エネルギーが低減さ
れ、かつ、粉砕粒度分布のシャープな粉砕が可能にな
る。さらに、耐摩耗材質により、摩耗性の強い粉体の粉
砕も可能である。
EFFECTS OF THE INVENTION As is apparent from the above results, since the fine pulverization device of the present invention is provided with the collision member having the predetermined shape and size in the injection direction of each pulverization nozzle, the energy consumption is reduced, and the pulverization particle size is reduced. It enables crushing with a sharp distribution. Further, the wear-resistant material enables pulverization of powder having strong wear resistance.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の微粉砕装置の一例の平面図であり、
第2図は、第1図のA−A′線断面図である。 1……微粉砕装置本体、2……衝突部材、3……粉砕ノ
ズル、4……圧縮空気室、5……排出管、6……旋回粉
砕室、7……衝突部材支持部品。
FIG. 1 is a plan view of an example of a pulverizing apparatus of the present invention,
FIG. 2 is a sectional view taken along the line AA ′ of FIG. 1 ... Main body of fine pulverizer, 2 ... Collision member, 3 ... Grinding nozzle, 4 ... Compressed air chamber, 5 ... Discharge pipe, 6 ... Swirl grinding chamber, 7 ... Collision member supporting parts.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】粉砕室内で圧縮空気を複数の粉砕ノズルか
ら噴射し、固形物を粉砕する旋回流式ジェットミルより
なる微粉砕装置において、各粉砕ノズルの噴射方向前方
に、噴射空気が衝突するように、球形、卵形、円柱形お
よび円錘形より選ばれた形状の衝突部材を設け、該衝突
部材における噴射空気の中心方向に対して垂直な面又は
断面の面積が、粉砕ノズルの最小内径部の断面積の50倍
以下であることを特徴とする微粉砕装置。
1. In a fine pulverizing apparatus comprising a swirling flow type jet mill for blasting compressed air from a plurality of pulverizing nozzles in a pulverizing chamber, the blast air collides in front of each pulverizing nozzle in the jet direction. As described above, a collision member having a shape selected from a spherical shape, an oval shape, a cylindrical shape, and a conical shape is provided, and the area of a plane or a cross section perpendicular to the center direction of the blast air in the collision member is the minimum of the grinding nozzle. A fine crushing device characterized by having a cross-sectional area of 50 times or less of the inner diameter portion.
【請求項2】粉砕ノズルからの噴射空気の中心方向を0
゜としたとき、衝突部材の衝突面の中心が20゜以内の頂
角を有する円錘形範囲に設置されたことを特徴とする特
許請求の範囲第1項に記載の微粉砕装置。
2. The direction of the center of the air blown from the crushing nozzle is 0.
The fine crushing apparatus according to claim 1, wherein the center of the collision surface of the collision member is set in a cone-shaped range having an apex angle within 20 ° when the angle is defined as °.
【請求項3】衝突部材の衝突面先端と粉砕ノズル先端と
の距離が、ポテンシャルコアゾーンの5倍以下であるこ
とを特徴とする特許請求の範囲第2項に記載の微粉砕装
置。
3. The fine pulverizing device according to claim 2, wherein the distance between the tip of the collision surface of the collision member and the tip of the crushing nozzle is 5 times or less of the potential core zone.
【請求項4】衝突部材の衝突面の材質が合金、表面処理
金属、およびセラミックスより選ばれることを特徴とす
る特許請求の範囲第1項に記載の微粉砕装置。
4. The fine crushing apparatus according to claim 1, wherein the material of the collision surface of the collision member is selected from alloys, surface-treated metals, and ceramics.
JP1154469A 1989-06-19 1989-06-19 Pulverizer Expired - Fee Related JPH0757326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1154469A JPH0757326B2 (en) 1989-06-19 1989-06-19 Pulverizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1154469A JPH0757326B2 (en) 1989-06-19 1989-06-19 Pulverizer

Publications (2)

Publication Number Publication Date
JPH0321356A JPH0321356A (en) 1991-01-30
JPH0757326B2 true JPH0757326B2 (en) 1995-06-21

Family

ID=15584930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1154469A Expired - Fee Related JPH0757326B2 (en) 1989-06-19 1989-06-19 Pulverizer

Country Status (1)

Country Link
JP (1) JPH0757326B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215321B (en) * 2010-04-08 2013-07-24 联咏科技股份有限公司 Mobile detection method and device
JP5849951B2 (en) * 2010-07-30 2016-02-03 ホソカワミクロン株式会社 Jet mill

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190656A (en) * 1981-05-20 1982-11-24 Hosokawa Micron Kk Air current type crushing classifying device

Also Published As

Publication number Publication date
JPH0321356A (en) 1991-01-30

Similar Documents

Publication Publication Date Title
JP3139721B2 (en) Fluidized bed jet mill
JP5849951B2 (en) Jet mill
JP3335312B2 (en) Jet mill
JP6255681B2 (en) Toner manufacturing method and toner manufacturing apparatus
JP2017176956A (en) Magnetic high-hardness metal particle crushing device
US5277369A (en) Micromilling device
JP2531028B2 (en) Pulverizer
JP2010155224A (en) Air current type crushing and classifying apparatus
CN219682774U (en) Air flow crusher with good noise reduction effect
US5628464A (en) Fluidized bed jet mill nozzle and processes therewith
JPH0757326B2 (en) Pulverizer
US5562253A (en) Throughput efficiency enhancement of fluidized bed jet mill
JP5790042B2 (en) Crusher and cylindrical adapter
JP3984120B2 (en) Fluidized bed type pulverization and classification device
KR930005170B1 (en) Pulverizing apparatus
JP2000140675A (en) Pulverizer
US5547135A (en) Micromilling apparatus
JP2006297305A (en) Crusher and crushing method method
JPH03213161A (en) Pulverizing apparatus
JPH01215354A (en) Crushing and coating device
JPH04210255A (en) Pulverizer and crushing method
JP2006035106A (en) Crusher and crushing method
JP2004113841A (en) Fluidized bed type grinding classifier
JP3102902B2 (en) Collision type supersonic jet crusher
CN2248097Y (en) Jet mill

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees