JPH0756644A - Temperature controller - Google Patents

Temperature controller

Info

Publication number
JPH0756644A
JPH0756644A JP5232596A JP23259693A JPH0756644A JP H0756644 A JPH0756644 A JP H0756644A JP 5232596 A JP5232596 A JP 5232596A JP 23259693 A JP23259693 A JP 23259693A JP H0756644 A JPH0756644 A JP H0756644A
Authority
JP
Japan
Prior art keywords
transistor
temperature
voltage
capacitor
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5232596A
Other languages
Japanese (ja)
Inventor
Yasuhisa Nomura
泰久 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAMANISHI SANGYO KK
Original Assignee
HAMANISHI SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAMANISHI SANGYO KK filed Critical HAMANISHI SANGYO KK
Priority to JP5232596A priority Critical patent/JPH0756644A/en
Publication of JPH0756644A publication Critical patent/JPH0756644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

PURPOSE:To detect a phase difference without receiving any influence of the high frequency superposed on an AC power supply and to control the heater temperature with high accuracy by dividing the voltage of the AC power supply by a resistor and a capacitor which are connected in series to the power supply and detecting the phase difference of a temperature measuring element by means of the divided voltage. CONSTITUTION:The high frequency superposed on an AC power supply 1 is eliminated by a resistor R and a capacitor C1 connected in series to the supply 1. The both-end voltage of the capacitor C1 where the power voltage is divided is further divided by two resistors R1 and R2. One of both divided voltage is applied to a temperature measuring element 10, and the other divided voltage is applied between the collector and the emitter of a transistor TR Q1. A base current flows to the TR Q1 when a positive half-wave current flows through the element 10. Then the divided voltage of the supply 1 is applied to the collector of the TR Q1 when a negative half-wave current is applied to the element 10. Thus the time width equivalent to the phase difference corresponding to the temperature of the element 10 is acquired at the collector side of the TR Q1 in each cycle of the supply 1 regardless of the size of the heat- sensitive layer of the element 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、測温素子の位相角を検
出して温度制御する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for detecting the phase angle of a temperature measuring element to control the temperature.

【0002】[0002]

【従来の技術】感熱線等の測温素子に印加される電圧と
これに流れる電流の位相差を温度信号として検出し、ヒ
ータ温度を制御する装置の例としては、特開平3−77
036号公報や実開平3−82412号公報に開示の技
術が知られている。
2. Description of the Related Art As an example of a device for controlling a heater temperature by detecting a phase difference between a voltage applied to a temperature measuring element such as a heat sensitive wire and a current flowing through the temperature measuring element, an example of an apparatus for controlling a heater temperature is disclosed in JP-A-3-77.
Techniques disclosed in Japanese Patent No. 036 and Japanese Utility Model Laid-Open No. 3-82412 are known.

【0003】[0003]

【発明が解決しようとする課題】交流電源を基準電圧と
して測温素子に印加される電圧のゼロ点とこれに流れる
電流のゼロ点との位相差を検出して温度制御する上記従
来の技術は、電源が商用電源の場合、別の電気機器から
発生した高調波が交流電源に重畳し、その影響によって
上記ゼロ点が本来の位置から偏移されて正確な温度検
出、制御ができなくなる欠点と、測温素子が断線あるい
は短絡したときに制御素子がオンし続け、ヒータ温度が
異状に上昇して焦損事故を引き起こすなど全体として故
障時に対する安全対策に問題点がある。
The above-mentioned conventional technique for detecting the phase difference between the zero point of the voltage applied to the temperature measuring element and the zero point of the current flowing through the temperature measuring element with the AC power supply as the reference voltage and controlling the temperature is known. When the power supply is a commercial power supply, harmonics generated from another electric device are superimposed on the AC power supply, and the zero point is deviated from its original position due to the influence, which makes accurate temperature detection and control impossible. When the temperature measuring element is broken or short-circuited, the control element continues to be turned on and the heater temperature rises abnormally to cause a burnout accident.

【0004】本発明は、交流電源に重畳した高調波の影
響を受けることなく、また測温素子として感熱線の寸法
精度に関係なくこれに印加される電圧と流れる電流の位
相差を検出して高精度に温度制御し、さらに測温素子の
断線あるいは短絡時にヒータへの通電を停止し、これら
断線あるいは短絡状態が解消すると正常動作に復帰する
温度制御装置を極めて簡単な構成で得ることを目的とす
る。
According to the present invention, the phase difference between the voltage and the current applied to the temperature sensing element is detected without being affected by the harmonics superposed on the AC power source and regardless of the dimensional accuracy of the thermosensitive wire as the temperature measuring element. It is an object of the present invention to obtain a temperature control device which controls the temperature with high accuracy, stops the energization of the heater when the temperature measuring element is broken or short-circuited, and returns to normal operation when the broken or short-circuited state is resolved, with an extremely simple structure. And

【0005】本発明の別の目的は、耐電圧の規格値が低
い部品を用いることができ、また、主要部品が故障した
場合にヒータへの通電を停止する安全な温度制御装置を
安価に提供することである。
Another object of the present invention is to provide a safe temperature control device which can use a component having a low withstand voltage standard value and which stops the energization of a heater when a major component fails. It is to be.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、交流電源に抵抗と第1コンデンサを直列
接続し、該第1コンデンサの両端電圧を分圧し、第1ト
ランジスタのべース〜エミッタにこれと逆極性に第1ダ
イオードを並列接続したものに測温素子を直列接続して
上記一方の分圧を印加し、他方の分圧は第1トランジス
タのエミッタ〜コレクタと直列接続の第2ダイオード及
び他の抵抗に印加し、測温素子に印加される交流電圧と
これに流れる電流の位相差を上記第1トランジスタのコ
レクタ側より測温信号として得、この測温信号を第2コ
ンデンサを介して第2トランジスタの入力とし、前記第
2コンデンサの充放電に対応した第2トランジスタの動
作によって制御素子をオン・オフしヒータへの通電を制
御するようにしている。
In order to achieve the above-mentioned object, the present invention is to connect a resistor and a first capacitor in series to an AC power source, divide the voltage across the first capacitor, and divide the voltage across the first transistor. The temperature measuring element is connected in series to the source-emitter in which the first diode is connected in parallel with the opposite polarity, and the partial pressure of one of the above is applied, and the other partial pressure is in series with the emitter-collector of the first transistor. The phase difference between the AC voltage applied to the temperature measuring element and the current flowing through it is applied as a temperature measuring signal from the collector side of the first transistor. The second transistor is input through the second capacitor, and the operation of the second transistor corresponding to the charging and discharging of the second capacitor controls the ON / OFF of the control element to control the energization of the heater. That.

【0007】制御手段としてのサイリスタが短絡した場
合に、電源路に介設の温度ヒューズを溶断するため、サ
イリスタのアノード側と交流電源の一端間にダイオード
と発熱用抵抗を直列接続している。
When the thyristor as the control means is short-circuited, the temperature fuse provided in the power supply path is blown, so that a diode and a heating resistor are connected in series between the anode side of the thyristor and one end of the AC power supply.

【0008】上記ヒータには溶解層を介して検知導体を
設け、溶解層が溶けてヒータと検知導体が短絡した場合
に、電源路に介設の温度ヒューズを溶断するため、検知
導体と交流電源の他端間に別の発熱用抵抗を直列接続し
ている。
The heater is provided with a sensing conductor via a melting layer, and when the melting layer is melted and the heater and the sensing conductor are short-circuited, the temperature fuse provided in the power supply path is blown. Another heating resistor is connected in series between the other ends of the.

【0009】また、制御手段としてのサイリスタをオン
するために、上記第2トランジスタのコレクタ〜エミッ
タに流れる電流は、交流電源を整流して充電した一定の
電荷で行なう。なお、後記する理由により、上記第2ト
ランジスタのコレクタと交流電源の他端間にはツェナー
ダイオードを介設し、第2トランジスタのベースには抵
抗をカスケード接続する。
Further, in order to turn on the thyristor as the control means, the current flowing from the collector to the emitter of the second transistor is a constant electric charge obtained by rectifying and charging the AC power supply. For the reason described later, a Zener diode is provided between the collector of the second transistor and the other end of the AC power source, and a resistor is cascade-connected to the base of the second transistor.

【0010】[0010]

【作用】交流電源に重畳した高調波は、電源に直列接続
の抵抗とコンデンサによって除去され、また電源電圧が
分圧されたコンデンサの両端電圧はさらに2個の抵抗に
よって分圧される。一方の分圧は測温素子に印加され、
他方の分圧は第1トランジスタのコレクタ〜エミッタに
印加される。
The harmonics superposed on the AC power supply are removed by the resistor and the capacitor connected in series to the power supply, and the voltage across the capacitor obtained by dividing the power supply voltage is further divided by two resistors. One partial pressure is applied to the temperature measuring element,
The other partial voltage is applied to the collector-emitter of the first transistor.

【0011】測温素子に正の半波の電流が流れるとき、
第1トランジスタにベース電流が流れ、測温素子に負の
半波が印加されるとき第1トランジスタのコレクタに交
流電源の分電圧が印加され、測温素子の感熱層の寸法と
無関係に、測温素子の温度に対応した位相差に相当する
時間幅が電源の1サイクル毎に第1トランジスタのコレ
クタ側に得られる。測温素子が断線時には第1トランジ
スタのベースが導通せず、また、測温素子が短絡時には
上記位相差が零となって第1トランジスタのコレクタ出
力は得らず、従って、これら断線、短絡どちらの場合も
次段の第2トランジスタ、制御手段は共にオンせず、ヒ
ータの電源路は閉じない。
When a positive half-wave current flows through the temperature measuring element,
When a base current flows through the first transistor and a negative half-wave is applied to the temperature measuring element, a voltage corresponding to the AC power source is applied to the collector of the first transistor, and the voltage is measured regardless of the size of the thermosensitive layer of the temperature measuring element. A time width corresponding to the phase difference corresponding to the temperature of the temperature element is obtained on the collector side of the first transistor for each cycle of the power supply. When the temperature measuring element is broken, the base of the first transistor does not conduct, and when the temperature measuring element is short-circuited, the phase difference becomes zero and the collector output of the first transistor cannot be obtained. Also in the case of (2), neither the second transistor in the next stage nor the control means is turned on, and the power supply path of the heater is not closed.

【0012】上述のように、測温素子が断線あるいは短
絡によって第1トランジスタのコレクタ出力は無くなる
が、これらの状態で各部品には通常を上回る過負荷の印
加、それによる部品破壊もないので、この断線あるいは
短絡状態が解消すると第1トランジスタの動作は正常復
帰し、ヒータは設定温度に制御される。
As described above, the collector output of the first transistor disappears due to the disconnection or short circuit of the temperature measuring element, but under these conditions, overload is not applied to each part and the parts are not destroyed. When this disconnection or short-circuit state is resolved, the operation of the first transistor returns to normal, and the heater is controlled to the set temperature.

【0013】ヒータの局部過熱などによって溶解層が溶
け、ヒータと検知導体が短絡したとき、または制御手段
のサイリスタが短絡故障したとき、発熱用抵抗が発熱し
て電源路の温度ヒューズを溶断し、ヒータへの通電は停
止する。
When the melting layer is melted due to local overheating of the heater and the heater and the detection conductor are short-circuited or the thyristor of the control means is short-circuited, the heat-generating resistor generates heat to melt the temperature fuse of the power supply line, Power to the heater is stopped.

【0014】上記第2トランジスタが短絡故障した場
合、制御手段のサイリスタがオンするのに充分な電流が
第2トランジスタに流れない。また、可変抵抗の可動子
が接触不良になった場合、第2トランジスタは完全にオ
フする。
When the second transistor is short-circuited, a sufficient current for turning on the thyristor of the control means does not flow in the second transistor. Further, when the movable element of the variable resistance has poor contact, the second transistor is completely turned off.

【0015】[0015]

【実施例】図1は本発明装置の回路図を示し、交流電源
1に温度ヒューズ2、ヒータ3、サイリスタ4が直列接
続されてヒータ電源路を構成している。また、電源1に
は抵抗RとコンデンサC1が直列接続され、該コンデン
サC1には別の直列接続した抵抗R1、R2が並列に接
続されている。コンデンサC1の一端aと両抵抗R1、
R2の接続部dには測温素子10とトランジスタQ1の
ベース〜エミッタが直列接続されている。また、トラン
ジスタQ1のベース〜エミッタにはダイオードD1が逆
極性に並列接続され、トランジスタQ1のコレクタと電
源1の他端b間にはダイオードD2と抵抗R3が直列接
続されている。尚、上記測温素子10はヒータ3に近接
して設けられる。
1 is a circuit diagram of an apparatus according to the present invention, in which a temperature fuse 2, a heater 3 and a thyristor 4 are connected in series to an AC power source 1 to form a heater power source path. A resistor R and a capacitor C1 are connected in series to the power source 1, and another resistor R1 and R2 connected in series are connected in parallel to the capacitor C1. One end a of the capacitor C1 and both resistors R1,
The temperature measuring element 10 and the base-emitter of the transistor Q1 are connected in series to the connection portion d of R2. A diode D1 is connected in parallel to the base to the emitter of the transistor Q1 in reverse polarity, and a diode D2 and a resistor R3 are connected in series between the collector of the transistor Q1 and the other end b of the power supply 1. The temperature measuring element 10 is provided close to the heater 3.

【0016】ダイオードD2のアノード側と電源他端b
間にはコンデンサC2とダイオード6が直列接続され、
該ダイオード6のカソード側には直列接続の可変抵抗7
と抵抗8がカスケード接続されている。可変抵抗7の可
動子には抵抗9を介してトランジスタQ2のベースが接
続され、同Q2のエミッタと電源他端b間には抵抗12
が接続され、また同エミッタはサイリスタ4のゲートに
接続されている。トランジスタQ2のコレクタとサイリ
スタ4のアノード側にはダイオード13と抵抗14が直
列接続されている。また、トランジスタQ2のコレクタ
と電源他端b間にはツェナーダイオード15が接続され
ている。
The anode side of the diode D2 and the other end b of the power source
A capacitor C2 and a diode 6 are connected in series between
A variable resistor 7 connected in series is provided on the cathode side of the diode 6.
And resistor 8 are cascaded. The base of the transistor Q2 is connected to the mover of the variable resistor 7 through the resistor 9, and the resistor 12 is connected between the emitter of the transistor Q2 and the other end b of the power source.
Are connected, and the emitter is connected to the gate of the thyristor 4. A diode 13 and a resistor 14 are connected in series on the collector side of the transistor Q2 and the anode side of the thyristor 4. A Zener diode 15 is connected between the collector of the transistor Q2 and the other end b of the power supply.

【0017】上記サイリスタ4のアノード側と電源一端
c間にはダイオード16と発熱用抵抗17が直列接続さ
れ、また、ヒータ3に溶解層11を介して配設された検
知導体5と電源他端b間には他の発熱用抵抗18が直列
接続され、これら両抵抗17、18は温度ヒューズ2に
近設されている。ダイオード16のカソード側と電源他
端b間には抵抗19と発光ダイオード20が直列接続さ
れている。なお、ダイオード21は発光ダイオード20
の保護用、抵抗22はトランジスタQ1の動作安定用で
ある。
A diode 16 and a heating resistor 17 are connected in series between the anode side of the thyristor 4 and one end c of the power supply, and the detection conductor 5 and the other end of the power supply which are arranged on the heater 3 via the melting layer 11. Another heating resistor 18 is connected in series between b, and both resistors 17 and 18 are provided close to the thermal fuse 2. A resistor 19 and a light emitting diode 20 are connected in series between the cathode side of the diode 16 and the other end b of the power supply. The diode 21 is the light emitting diode 20.
, And the resistor 22 is for stabilizing the operation of the transistor Q1.

【0018】図3は、測温素子10に印加される電圧v
と、これに流れる電流iの波形(説明の便宜上正弦波で
示す)で、電圧vは交流電源1の電圧Eを抵抗Rとコン
デンサC1で分圧したものを更に抵抗R1、R2で分圧
した抵抗R1の両端電圧で、電流iが正の半波(時刻t
1〜t3の間)のとき測温素子10〜トランジスタQ1
のベース〜同エミッタ〜抵抗R2の回路でトランジスタ
Q1にベース電流が流れ、他方電圧vが負の半波(時刻
・・〜t2、t5〜t6の間)のときダイオードD2が
導通してトランジスタQ1のコレクタに抵抗R2の両端
電圧の負の半波が印加される。
FIG. 3 shows the voltage v applied to the temperature measuring element 10.
With the waveform of the current i flowing through it (shown as a sine wave for convenience of explanation), the voltage v is obtained by dividing the voltage E of the AC power supply 1 by the resistor R and the capacitor C1 and further dividing it by the resistors R1, R2. The voltage across the resistor R1 causes the current i to have a positive half-wave (time t
(Between 1 and t3) temperature measuring element 10 to transistor Q1
In the circuit of the base-the emitter of the same-resistor R2, the base current flows through the transistor Q1, while when the voltage v is a negative half-wave (time ... T2, between t5 and t6), the diode D2 becomes conductive and the transistor Q1. A negative half-wave of the voltage across the resistor R2 is applied to the collector of the.

【0019】トランジスタQ1のコレクタ電流Icは図
4に示すように、電流iのゼロ点と電圧Vのゼロ点間
(t1〜t2、t5〜t6)で流れる。このコレクタ電
流Icが流れる区間は、測温素子10に印加される電圧
vと流れる電流iの位相差φと1:1の対応をし、該位
相差φの検出は温度に対応して変化する測温素子10の
位相角φに相当する。
As shown in FIG. 4, the collector current Ic of the transistor Q1 flows between the zero point of the current i and the zero point of the voltage V (t1 to t2, t5 to t6). The section in which the collector current Ic flows corresponds to the phase difference φ between the voltage v applied to the temperature measuring element 10 and the flowing current i in a ratio of 1: 1, and the detection of the phase difference φ changes according to the temperature. It corresponds to the phase angle φ of the temperature measuring element 10.

【0020】このコレクタ電流Icは、電源他端b〜ダ
イオード6〜コンデンサC2〜ダイオードD2〜トラン
ジスタQ1のコレクタ〜同エミッタ〜抵抗R1〜抵抗R
〜電源一端cの経路で流れ、コンデンサC2に充電され
る。電圧vが正の半波になると前記コレクタ電流ICは
流れなくなって、コンデンサC2に充電された電荷は可
変抵抗7〜抵抗8〜抵抗R3の経由で放電される。
This collector current Ic is supplied to the other end b of the power source, the diode 6, the capacitor C2, the diode D2, the collector of the transistor Q1, the emitter thereof, the resistor R1 and the resistor R.
~ Flows in the path of the power supply end c and charges the capacitor C2. When the voltage v becomes a positive half-wave, the collector current IC stops flowing, and the charge charged in the capacitor C2 is discharged through the variable resistors 7 to 8 to the resistor R3.

【0021】このとき、コンデンサC2の放電電圧がト
ランジスタQ2の動作に必要な電圧を越えると、コンデ
ンサC2の電荷は可変抵抗7〜抵抗9〜トランジスタQ
2のベース〜エミッタ〜抵抗12〜抵抗R3の経路でも
放電する。従って、トランジスタQ2のコレクタ〜エミ
ッタが導通し、サイリスタ4のゲートに電流が流れてサ
イリスタ4が導通し、ヒータ3に交流電源1の半波が印
加される。コンデンサC2に充電される電圧は、測温素
子10の温度と可変抵抗7の調節によって変わるので、
これらによってヒータ3を所定の温度に保持することが
できる。
At this time, when the discharge voltage of the capacitor C2 exceeds the voltage required for the operation of the transistor Q2, the charge of the capacitor C2 changes from the variable resistor 7 to the resistor 9 to the transistor Q.
2 also discharges in the path of the base, the emitter, the resistor 12 and the resistor R3. Therefore, the collector-emitter of the transistor Q2 becomes conductive, a current flows through the gate of the thyristor 4 to make the thyristor 4 conductive, and the half wave of the AC power supply 1 is applied to the heater 3. Since the voltage charged in the capacitor C2 changes depending on the temperature of the temperature measuring element 10 and the adjustment of the variable resistor 7,
With these, the heater 3 can be maintained at a predetermined temperature.

【0022】コンデンサC1の一端a〜測温素子10の
両側導体10a、10b〜トランジスタQ1のベースの
経路で途中が断線した場合には、トランジスタQ1が導
通しないのでコンデンサC2は充電されず、トランジス
タQ2及びサイリスタ4はオンしない。また、測温素子
10の感熱層10cが異常高温による溶融などで両側導
体10a、10bが短絡すると上記位相差φは零になっ
てコンデンサC2は充電されず、上記同様トランジスタ
Q2、サイリスタ4はオフ状態を保つ。これらの断線、
短絡が解消すると動作は正常復帰する。
If the line between the one end a of the capacitor C1 to both conductors 10a and 10b of the temperature measuring element 10 to the base of the transistor Q1 is disconnected, the transistor Q1 does not conduct, the capacitor C2 is not charged, and the transistor Q2 is not charged. And the thyristor 4 is not turned on. Further, when the thermosensitive layer 10c of the temperature measuring element 10 is short-circuited by the conductors 10a and 10b on both sides due to melting due to an abnormally high temperature, the phase difference φ becomes zero, the capacitor C2 is not charged, and the transistor Q2 and the thyristor 4 are turned off. Keep the state. These wire breaks,
When the short circuit is resolved, the operation returns to normal.

【0023】サイリスタ4が短絡故障した場合には、電
源1の半波がサイリスタ4〜ダイオード16〜発熱用抵
抗17と流れて該抵抗17が発熱し、温度ヒューズ2が
溶断してヒータ3の電源路が断たれる。発熱用抵抗17
と発光ダイオード21は電源1に直列接続されているの
で、発光ダイオード21が点灯しない場合該抵抗17の
断線をチェックできる。なお、抵抗19の抵抗値は発熱
用抵抗17のそれよりも40倍以上なので、正常動作時
は発熱に必要な電流が流れない。異常過熱などで溶解層
11が溶けたりして検知導体5がヒータ3に短絡する
と、他方の発熱用抵抗18が発熱し温度ヒューズ2が溶
断してヒータ3の電源路が断たれる。
When the thyristor 4 is short-circuited, a half wave of the power source 1 flows through the thyristor 4 to the diode 16 to the heating resistor 17 to heat the resistor 17, and the thermal fuse 2 is melted to blow the power source of the heater 3. The road is cut off. Heating resistor 17
Since the light emitting diode 21 and the light emitting diode 21 are connected in series to the power source 1, the disconnection of the resistor 17 can be checked when the light emitting diode 21 does not light up. Since the resistance value of the resistor 19 is 40 times or more that of the resistor 17 for heat generation, the current required for heat generation does not flow during normal operation. When the melting layer 11 is melted due to abnormal overheating or the like and the detection conductor 5 is short-circuited to the heater 3, the other heating resistor 18 generates heat and the temperature fuse 2 is melted and the power supply path of the heater 3 is cut off.

【0024】測温素子10の温度−位相角特性が図5に
示すように高温側で小さくなる場合には、トランジスタ
Q2〜サイリスタ4を導通するために必要なコンデンサ
C2の電荷量が充電されないので、ヒータ3の温度上昇
は押えられて身体に危険を及ぼしたりあるいは焦損事故
に至るまでの高温にならず、全く安全である。
When the temperature-phase angle characteristic of the temperature measuring element 10 becomes small on the high temperature side as shown in FIG. 5, the charge amount of the capacitor C2 necessary for conducting the transistor Q2 to the thyristor 4 is not charged. The rise in the temperature of the heater 3 is completely safe because it is not pressed down and poses a danger to the body or does not reach a high temperature leading to a burn injury.

【0025】ツェナーダイオード15は、トランジスタ
Q2がオフのときトランジスタQ2のコレクタに印加さ
れる電圧を低くし、耐電圧規格の低いトランジスタQ2
の使用を可能にする
The Zener diode 15 lowers the voltage applied to the collector of the transistor Q2 when the transistor Q2 is off, and the transistor Q2 having a low withstand voltage standard.
Enable the use of

【0026】図2は本発明の他の実施例で、抵抗R1へ
の電源路はコンデンサC1の一端aから測温素子10の
一方導体10aを経由して形成されており、該導体10
aが断線するとトランジスタQ1が導通しない。また、
トランジスタQ1のコレクタ側の抵抗R3への電源路
は、電源他端b〜発熱用抵抗18〜検知導体5を経由し
て形成されており、発熱用抵抗18あるいは検知導体5
が断線するとトランジスタQ1は導通しない。従って、
上記両者の場合、次段のトランジスタQ2、サイリスタ
4はオンせず、ヒータ3への電源印加がないので安全が
確保される。尚、抵抗R3の抵抗値は発熱用抵抗18の
それよりも40倍以上なので、正常動作時は発熱に必要
な電流が流れない。
FIG. 2 shows another embodiment of the present invention, in which a power supply path to the resistor R1 is formed from one end a of the capacitor C1 through one conductor 10a of the temperature measuring element 10.
When a is disconnected, the transistor Q1 does not conduct. Also,
A power supply path to the resistor R3 on the collector side of the transistor Q1 is formed via the other end of the power supply b, the heating resistor 18 and the detection conductor 5, and the heating resistor 18 or the detection conductor 5 is formed.
Is disconnected, the transistor Q1 does not conduct. Therefore,
In the case of both of the above, the transistor Q2 and the thyristor 4 in the next stage are not turned on and the power is not applied to the heater 3, so that safety is ensured. Since the resistance value of the resistor R3 is 40 times or more that of the resistor 18 for heat generation, the current required for heat generation does not flow during normal operation.

【0027】さらに、トランジスタQ2のコレクタとダ
イオード13間には抵抗23を介設し、ダイオード13
のカソードと電源他端b間にはコンデンサ24、ツェナ
ーダイオード25を並列接続している。抵抗14の抵抗
値は、トランジスタQ2のコレクタとエミッタを短絡し
たときサイリスタ4がオンしない値に設定してあり、通
常時においては、トランジスタQ2がオンしてコンデン
サ24に充電されている電荷がサイリスタ4のゲートに
供給されることでサイリスタ4はオンされる。一方、ト
ランジスタQ2の短絡故障時においては、コンデンサ2
4にサイリスタ4をオンするに充分な電荷が充電され
ず、ヒータ3への電源印加はない。
Further, a resistor 23 is provided between the collector of the transistor Q2 and the diode 13, and the diode 13
A capacitor 24 and a Zener diode 25 are connected in parallel between the cathode and the other end b of the power source. The resistance value of the resistor 14 is set so that the thyristor 4 does not turn on when the collector and the emitter of the transistor Q2 are short-circuited. Under normal conditions, the transistor Q2 turns on and the charge stored in the capacitor 24 is charged by the thyristor. The thyristor 4 is turned on by being supplied to the gate of No. 4. On the other hand, when the transistor Q2 is short-circuited, the capacitor 2
4 is not charged enough to turn on the thyristor 4, and the heater 3 is not supplied with power.

【0028】なお、トランジスタQ2のベースには抵抗
26がカスケード接続され、可変抵抗9の可動子が接触
不良になったときトランジスタQ2を確実にオフする。
ヒータ3とサイリスタ4間に設けたダイオード27は、
電源1が負の半波のとき該サイリスタ4を保護するため
のものである。
A resistor 26 is cascade-connected to the base of the transistor Q2 to surely turn off the transistor Q2 when the mover of the variable resistor 9 has a poor contact.
The diode 27 provided between the heater 3 and the thyristor 4 is
This is for protecting the thyristor 4 when the power source 1 has a negative half-wave.

【0029】[0029]

【発明の効果】本発明は、以上説明したように、直列接
続した抵抗とコンデンサで交流電源を分圧し、該コンデ
ンサ両端の分電圧を利用して測温素子の位相差を検出し
ているので、交流電源に重畳した高調波はこれら抵抗と
コンデンサによるフィルターで除去され、測温素子に印
加される電圧、流れる電流の夫々ゼロ点は高調波の影響
を受けないので測温信号としての位相差を正確に検出で
きると共に、これに基づく後段の温度制御も高い精度で
行なうことができる。
As described above, according to the present invention, the AC power source is divided by the resistor and the capacitor connected in series, and the phase difference of the temperature measuring element is detected by utilizing the divided voltage across the capacitor. , The harmonics superposed on the AC power supply are removed by the filter with these resistors and capacitors, and the zero point of the voltage applied to the temperature measuring element and the zero point of the flowing current are not affected by the harmonics, so the phase difference as the temperature measuring signal Can be accurately detected, and temperature control in the subsequent stage based on this can be performed with high accuracy.

【0030】また、測温素子や位相検出用トランジスタ
には、抵抗とコンデンサで分圧した交流電源の分電圧
を、さらに2つの抵抗で分圧した低電圧が印加されるの
で、両者とも低い耐電圧のものが使えて装置全体を小
形、安価に提供できると共に、測温素子の短絡、断線時
にも過負荷よる各部品の損傷は起こらず、これらが解消
すると動作は正常復帰し、長期に渉って安定した動作を
得ることができる。
Further, the temperature measuring element and the phase detection transistor are applied with a low voltage obtained by dividing the voltage of the AC power source, which is divided by the resistor and the capacitor, by two resistors. Voltage can be used to provide the entire device in a compact and inexpensive manner, and even if the temperature measuring element is short-circuited or broken, damage to each component due to overload does not occur, and if these are eliminated, the operation will return to normal and will continue for a long time. Therefore, stable operation can be obtained.

【0031】さらに、測温信号は、測温素子のみの位相
差を検出して得るものなので、測温素子の感熱層の寸法
精度に関係なく温度制御ができる特徴を有し、測温素子
の断線、短絡時あるいは主要部品の故障時にヒータへの
通電を断つようにしたので、焦損事故に至るまでヒータ
が異状過熱することなく、安心して使用に供せる。
Further, since the temperature measuring signal is obtained by detecting the phase difference of only the temperature measuring element, it has the characteristic that the temperature can be controlled regardless of the dimensional accuracy of the heat sensitive layer of the temperature measuring element. Since the power to the heater is cut off when the wire is broken or short-circuited or when a major part fails, the heater does not abnormally overheat until the accident of a burnout, and the heater can be used with peace of mind.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る温度制御装置の基本回路図であ
る。
FIG. 1 is a basic circuit diagram of a temperature control device according to the present invention.

【図2】本発明の他の実施例に係る温度制御装置の回路
図である。
FIG. 2 is a circuit diagram of a temperature control device according to another embodiment of the present invention.

【図3】測温素子に印加される電圧とこれに流れる電流
の波形図である。
FIG. 3 is a waveform diagram of a voltage applied to the temperature measuring element and a current flowing through the temperature measuring element.

【図4】トランジスタQ1のコレクタ電流の波形図であ
る。
FIG. 4 is a waveform diagram of a collector current of a transistor Q1.

【図5】測温素子の温度−位相角特性の一例図である。FIG. 5 is an example diagram of temperature-phase angle characteristics of a temperature measuring element.

【符号の説明】[Explanation of symbols]

1 交流電源 2 温度フューズ 3 ヒータ 4 サイリスタ 5 検知導体 C1、C2 コンデンサ Q1、Q2 トランジスタ D1、D2、6、13、16 ダイオード R、R1、R2、R3、8、9、12、14 抵抗 7 可変抵抗 10 測温素子 17、18 発熱用抵抗 1 AC power supply 2 Temperature fuse 3 Heater 4 Thyristor 5 Detection conductor C1, C2 Capacitors Q1, Q2 Transistors D1, D2, 6, 13, 16 Diodes R, R1, R2, R3, 8, 9, 12, 14 Resistance 7 Variable resistance 10 Temperature measuring element 17, 18 Heating resistor

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年7月4日[Submission date] July 4, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】 図3は、測温素子10に印加される電圧
vと、これに流れる電流iの波形(説明の便宜上正弦波
で示す)で、電圧vは交流電源1の電圧Eを抵抗Rとコ
ンデンサC1で分圧したものを更に抵抗R1、R2で分
圧した抵抗R1の両端電圧で、電流iが正の半波(時刻
t1〜t3の間)のとき測温素子10〜トランジスタQ
1のベース〜同エミッタ〜抵抗R2の路でトランジス
タQ1にベース電流が流れ、他方電圧vが負の半波(時
刻・・〜t2、t〜t6の間)のときダイオードD2
が導通してトランジスタQ1のコレクタに抵抗R2の両
端電圧の負の半波が印加される。
FIG. 3 shows a voltage v applied to the temperature measuring element 10 and a waveform of a current i flowing through the temperature measuring element 10 (shown as a sine wave for convenience of explanation). The voltage v is the voltage E of the AC power source 1 as a resistance R. When the current i is a positive half-wave (between times t1 and t3) by the voltage across the resistor R1 obtained by dividing the voltage divided by the capacitor C1 by the resistors R1 and R2, the temperature measuring element 10 and the transistor Q
A base current flows to the transistor Q1 in route 1 of the base - the emitter-resistor R2, the other voltage v is negative half-wave (time ·· ~t2, t 4 ~t6 between) diode when D2
Becomes conductive and a negative half-wave of the voltage across the resistor R2 is applied to the collector of the transistor Q1.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 交流電源に抵抗と第1コンデンサを直列
接続し、該第1コンデンサの両端電圧を分圧し、第1ト
ランジスタのベース〜エミッタにこれと並列に第1ダイ
オードを逆極性に接続したものに測温素子を直列接続し
て一方の分圧を印加し、他方の分圧は第1トランジスタ
のエミッタ〜コレクタと直列接続の第2ダイオード及び
他の抵抗に印加し、測温素子に印加される交流電圧とこ
れに流れる電流の位相差を上記第1トランジスタのコレ
クタ側より測温信号として得、この測温信号を第2コン
デンサを介して第2トランジスタの入力とし、前記第2
コンデンサの充放電に対応した第2トランジスタの動作
によって制御素子をオン・オフしヒータへの通電を制御
するようにしたことを特徴とする温度制御装置。
1. A resistance and a first capacitor are connected in series to an AC power source, a voltage across the first capacitor is divided, and a first diode is connected in reverse polarity to the base-emitter of the first transistor in parallel with the voltage. A temperature-measuring element is connected in series to an object and one of the divided voltages is applied, and the other of the divided voltages is applied to the second diode and another resistor connected in series with the emitter-collector of the first transistor and applied to the temperature-measuring element. The phase difference between the generated AC voltage and the current flowing therein is obtained as a temperature measurement signal from the collector side of the first transistor, and this temperature measurement signal is input to the second transistor via the second capacitor,
A temperature control device characterized in that a control element is turned on / off by controlling the operation of a second transistor corresponding to charging / discharging of a capacitor to control energization to a heater.
【請求項2】 上記測温素子の断線または短絡によって
ヒータへの通電を断ち、これらの断線または短絡の解消
で動作は正常復帰する構成とした請求項1記載の温度制
御装置。
2. The temperature control device according to claim 1, wherein the heater is deenergized by disconnection or short circuit of the temperature measuring element, and normal operation is restored by eliminating the disconnection or short circuit.
【請求項3】 上記ヒータに溶解層を介して検知導体を
設け、ヒータと検知導体の短絡でヒータへの通電を断つ
構成とした請求項1記裁の温度制御装置。
3. The temperature control device according to claim 1, wherein the heater is provided with a detection conductor through a melted layer, and the heater and the detection conductor are short-circuited to interrupt the power supply to the heater.
【請求項4】 上記第2トランジスタが短絡した場合
に、ヒータへの通電を断つ構成とした請求項1記載の温
度検出装置。
4. The temperature detecting device according to claim 1, wherein the heater is deenergized when the second transistor is short-circuited.
JP5232596A 1993-08-11 1993-08-11 Temperature controller Pending JPH0756644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5232596A JPH0756644A (en) 1993-08-11 1993-08-11 Temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5232596A JPH0756644A (en) 1993-08-11 1993-08-11 Temperature controller

Publications (1)

Publication Number Publication Date
JPH0756644A true JPH0756644A (en) 1995-03-03

Family

ID=16941843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5232596A Pending JPH0756644A (en) 1993-08-11 1993-08-11 Temperature controller

Country Status (1)

Country Link
JP (1) JPH0756644A (en)

Similar Documents

Publication Publication Date Title
US4546239A (en) Non-continuous sensing apparatus for a temperature control
US4485296A (en) Automatic temperature control device for an electric appliance such as an electric blanket
US4053733A (en) Temperature control device
US3778581A (en) Time-at-temperature a-c reflow soldering power supply
US6570129B1 (en) Protection device for dual stage power supply
JPH06281693A (en) Measuring method for thermal resistance of semiconductor device
JPH0756644A (en) Temperature controller
US6717416B2 (en) Circuit configuration for the voltage supply of a two-wire sensor
JPH0832361A (en) Amplifier circuit provided with protection device
JPH06332546A (en) Temperature controller
KR0132351Y1 (en) Temperature control device for electric carpet
JPS60158584A (en) Device and method for controlling and regulating temperatureof electric heating resistor
JP2533432B2 (en) Phase detection circuit
JP3197985B2 (en) Heater control device
JPH0739194Y2 (en) Safety circuit
KR870001657B1 (en) Temperature controller
KR910008670Y1 (en) Temperature control apparatus for electric panel
JPH0611499Y2 (en) Abnormality detection circuit of temperature measuring resistance of control equipment
JPH04296484A (en) Temperature control unit of heater
JPS6292718A (en) Identification apparatus of current discontinuation
KR910001943Y1 (en) Electronic thermal relay
JPH0637448Y2 (en) Temperature detector
JPH0623190Y2 (en) DC / DC converter power supply circuit
KR900004203B1 (en) Control circuit for discharge lamps
JPH07280865A (en) Abnormality detector for electric apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050701

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051125