JPH06332546A - Temperature controller - Google Patents

Temperature controller

Info

Publication number
JPH06332546A
JPH06332546A JP15991293A JP15991293A JPH06332546A JP H06332546 A JPH06332546 A JP H06332546A JP 15991293 A JP15991293 A JP 15991293A JP 15991293 A JP15991293 A JP 15991293A JP H06332546 A JPH06332546 A JP H06332546A
Authority
JP
Japan
Prior art keywords
heater
temperature
transistor
voltage
temperature measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15991293A
Other languages
Japanese (ja)
Inventor
Yasuhisa Nomura
泰久 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYUULA KK
Original Assignee
MIYUULA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYUULA KK filed Critical MIYUULA KK
Priority to JP15991293A priority Critical patent/JPH06332546A/en
Publication of JPH06332546A publication Critical patent/JPH06332546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Resistance Heating (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To provide a temperature controller of a simple constitution which can control the temperature with high accuracy and high stability without receiving any effect of the voltage variance of an AC power supply and regardless of the dimentional accuracy of the heat-sensitive layer of a temperature measuring element and furthermore can stop the energization of a heater when the temperature measuring element and the parts have the faults. CONSTITUTION:The voltage of an AC power supply 1 is divided and applied to a transistor TR 7, and the phase difference between the AC voltage applied to a temperature measuring element and the current flowing to this element is calculated as the output of the TR 7 in each cycle of the power supply 1. Then, the output of the TR 7 is used as a temperature measuring signal and a temperature control means of the following stage controls the temperature of a heater regardless of the voltage variance of the power supply 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、測温素子の位相差を検
出して温度制御する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting the phase difference of a temperature measuring element to control the temperature.

【0002】[0002]

【従来の技術】測温素子に印加される電圧と、これに流
れる電流の位相差を温度信号として検出し、ヒータ温度
を制御する装置の例としては、特開平3−77036号
公報や特開平4−190581号公報に開示の技術が知
られている。
2. Description of the Related Art As an example of an apparatus for detecting a phase difference between a voltage applied to a temperature measuring element and a current flowing through the temperature measuring element as a temperature signal and controlling a heater temperature, Japanese Patent Application Laid-Open No. 3-77036 and Japanese Patent Application Laid-Open No. 3-77036 are disclosed. The technique disclosed in Japanese Patent Laid-Open No. 4-190581 is known.

【0003】[0003]

【発明が解決しようとする課題】上記従来の技術では、
測温素子に印加される電圧のゼロ点と、これに流れる電
流のゼロ点を夫々検出し、さらにこれら両ゼロ点の区間
を計測することによって測温信号を得てヒータ温度を制
御しているので、全体として構成が複雑になる欠点と、
構成部品の断線、短絡などの故障時に対する安全対策が
なされていないといった問題点がある。
SUMMARY OF THE INVENTION In the above conventional technique,
The zero point of the voltage applied to the temperature measuring element and the zero point of the current flowing through it are detected, and the temperature of these two zero points is measured to obtain the temperature measurement signal and control the heater temperature. Therefore, the drawback that the configuration is complicated as a whole,
There is a problem that safety measures have not been taken against failures such as disconnection and short circuit of component parts.

【0004】本発明は、測温素子の感熱層の寸法精度に
関係なく高精度に温度制御できる装置を極めて簡単な構
成で得、さらに測温素子の断線、短絡時にヒータへの通
電を停止する装置の提供を目的とする。
The present invention provides a device capable of controlling the temperature with high accuracy regardless of the dimensional accuracy of the thermosensitive layer of the temperature measuring element with an extremely simple structure, and further stops energizing the heater when the temperature measuring element is broken or short-circuited. The purpose is to provide a device.

【0005】本発明の別の目的は、交流電源の1サイク
ル毎に測温素子の位相差を検出し、これを測温信号とし
て交流電源の電圧変動の影響を受けずにヒータ温度を安
定して制御できる装置の提供を目的とする。
Another object of the present invention is to detect the phase difference of the temperature measuring element for each cycle of the AC power supply and use this as a temperature measuring signal to stabilize the heater temperature without being affected by the voltage fluctuation of the AC power supply. The purpose of the present invention is to provide a device that can be controlled.

【0006】本発明のさらに別の目的は、上記装置を構
成する部品等の故障時にヒータへの通電を停止する装置
の提供を目的とする。
Still another object of the present invention is to provide a device for stopping the energization of the heater when a component or the like constituting the device fails.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、交流電源の電圧を分圧してトランジスタ
に印加し、測温素子に印加される交流電圧とこれに流れ
る電流の位相差を、前記トランジスタのコレクタより測
温信号として得、この測温信号をPUT(プログラマブ
ル・ユニジャンクション・トランジスタ、以下略称)の
アノード入力とし、またPUTのゲート電圧は前記トラ
ンジスタへの印加電圧を分圧したものとし、該PUTの
カソード出力に対応して動作する制御手段によってヒー
タへの通電を制御するようにしたものである。
In order to achieve the above-mentioned object, the present invention divides the voltage of an AC power supply and applies the voltage to a transistor to determine the level of the AC voltage applied to the temperature measuring element and the current flowing through it. The phase difference is obtained as a temperature measurement signal from the collector of the transistor, the temperature measurement signal is used as an anode input of a PUT (programmable unijunction transistor, hereinafter abbreviated), and the gate voltage of the PUT divides the voltage applied to the transistor. It is assumed that the pressure is applied, and the energization to the heater is controlled by the control means that operates corresponding to the cathode output of the PUT.

【0008】上記制御手段はPUTのカソード出力で動
作するサイリスタのオンオフ動作でリレーを駆動するよ
うにし、該サイリスタより前段部品の断線、短絡故障で
前記リレーはオンせず、また上記測温素子が感熱線の場
合、該感熱線の内外導体の何れの個所が断線、短絡して
もヒータへの通電を断ち、さらに上記ヒータに溶解層を
介して検知導体を設け、該検知導体がヒータに接触する
とヒータへの通電を断つ回路構成としたものである。
The control means drives the relay by the on / off operation of the thyristor which operates by the cathode output of the PUT, the relay is not turned on due to the disconnection or short circuit failure of the preceding component of the thyristor, and the temperature measuring element is In the case of a heat-sensitive wire, even if any part of the inner and outer conductors of the heat-sensitive wire is broken or short-circuited, the heater is de-energized, and a detection conductor is provided on the heater through a melting layer, and the detection conductor contacts the heater. Then, the circuit configuration is such that the power supply to the heater is cut off.

【0009】[0009]

【作用】測温素子に正の半波の電流が流れるとき、トラ
ンジスタにベース電流が流れ、測温素子に負の半波が印
加されるときトランジスタのコレクタに交流電源の分電
圧が印加され、1サイクル毎に測温素子の温度に対応し
た位相差に相当する時間幅が感熱層の寸法精度に関係な
くトランジスタのコレクタ側に得られる。測温素子が断
線時にはトランジスタのベースが導通せず、また、測温
素子が短絡時には位相差が零となってトランジスタのコ
レクタ出力が得られないので、次段のPUTは出力が無
く制御手段はヒータ回路を閉じない。
When a positive half-wave current flows through the temperature measuring element, a base current flows through the transistor, and when a negative half wave is applied to the temperature measuring element, a voltage equivalent to the AC power source is applied to the collector of the transistor. A time width corresponding to the phase difference corresponding to the temperature of the temperature measuring element is obtained for each cycle on the collector side of the transistor regardless of the dimensional accuracy of the heat sensitive layer. When the temperature measuring element is broken, the base of the transistor does not conduct, and when the temperature measuring element is short-circuited, the phase difference becomes zero and the collector output of the transistor cannot be obtained. Do not close the heater circuit.

【0010】交流電源の電圧変動はトランジスタのコレ
クタ電圧、即ち、PUTのアノード入力の変動をもたら
すが、PUTのゲート電圧も交流電源の電圧変動に対応
して変わるので、PUT出力は一定を保ってヒータ温度
は安定する。また、サイリスタ前段の何れかの部品が故
障してサイリスタがオンオフを繰り返さなくなると、ヒ
ータ回路を開閉するリレーはオンしなくなり、ヒータへ
の通電は停止する。
The voltage fluctuation of the AC power supply causes the collector voltage of the transistor, that is, the anode input of the PUT, but the gate voltage of the PUT also changes corresponding to the voltage fluctuation of the AC power supply, so that the PUT output is kept constant. The heater temperature stabilizes. Further, if any of the components in the preceding stage of the thyristor fails and the thyristor does not repeatedly turn on and off, the relay that opens and closes the heater circuit will not turn on, and the power supply to the heater will stop.

【0011】[0011]

【実施例】図1は、本発明装置の基本回路図を示し、交
流電源1に温度ヒューズ2、ヒータ3、サイリスタ4が
直列接続されてヒータ回路を構成している。ヒータ3に
は温度に対応して位相角が変化する感熱層5を介して導
体6が設けられ、該導体6はトランジスタ7のベースに
接続されている。また、電源1には抵抗8、9が直列接
続され、前記トランジスタ7のエミッタは両抵抗ヒータ
8、9の接続部に接続され、トランジスタ7のベース〜
エミッタ間にはダイオード10が逆極性に並列接続され
ている。
1 shows a basic circuit diagram of the device of the present invention, in which a temperature fuse 2, a heater 3 and a thyristor 4 are connected in series to an AC power source 1 to form a heater circuit. The heater 3 is provided with a conductor 6 via a heat sensitive layer 5 whose phase angle changes according to temperature, and the conductor 6 is connected to the base of a transistor 7. Further, resistors 8 and 9 are connected in series to the power source 1, the emitter of the transistor 7 is connected to the connection portion of the resistance heaters 8 and 9, and the base of the transistor 7
A diode 10 is connected in parallel with the opposite polarity between the emitters.

【0012】トランジスタ7のコレクタと電源1b側に
はダイオード11、抵抗12、可変抵抗13、抵抗14
が、また、抵抗8、9の接続部と電源1b側には抵抗1
5、ダイオード16が夫々直列接続されている。可変抵
抗13の摺動子にはコンデンサ18と直列にPUT22
のアノードが接続され、該アノード側にはダイオード1
9と抵抗20がカスケード接続されている。PUT22
のゲートは直列接続の抵抗23を介して前記ダイオード
16のカソード側に接続され、またPUT22のカソー
ドはカスケード接続の抵抗24及びサイリスタ4のゲー
トに接続されている。さらにヒータ3には、直列接続の
発熱用抵抗25とダイオード26が並列に接続され、該
抵抗25は上記温度ヒューズ2に接触されている。
A diode 11, a resistor 12, a variable resistor 13 and a resistor 14 are provided on the collector of the transistor 7 and the power source 1b side.
However, the resistor 1 is connected to the connection of the resistors 8 and 9 and the power source 1b side.
5 and the diode 16 are respectively connected in series. The slider of the variable resistor 13 is connected to the capacitor 18 in series with the PUT 22.
Of the diode 1 is connected to the anode side of the
9 and the resistor 20 are cascade-connected. PUT22
The gate of is connected to the cathode side of the diode 16 via a resistor 23 connected in series, and the cathode of the PUT 22 is connected to the resistor 24 connected in cascade and the gate of the thyristor 4. Further, a heating resistor 25 and a diode 26 connected in series are connected in parallel to the heater 3, and the resistor 25 is in contact with the thermal fuse 2.

【0013】図3は感熱層5の両端に印加される電圧v
と、これを流れる電流iの波形(説明上正弦波で示して
いる)で、電流iが正の半波(時刻t1〜t3、t5〜
t7の間)のとき導体6〜トランジスタ7のベース〜同
エミッタ〜抵抗9の回路でトランジスタ7にベース電流
が流れ、他方電圧vが負の半波(時刻・・〜t2、t4
〜t6の間)のときダイオード11が導通してトランジ
スタ7のコレクタに負の分電圧が印加され、トランジス
タ7のコレクタ電流ICは図4に示すように、電流iの
ゼロ点t1と電圧vのゼロ点t2間(同様に次の時刻t
5〜t6間)で流れる。このコレクタ電流ICが流れる
区間は、感熱層5に印加される電圧と流れる電流の位相
差φと1:1の対応をし、該位相差φの検出は温度に対
応して変化する感熱層5の位相角φに相当する。
FIG. 3 shows the voltage v applied across the heat-sensitive layer 5.
And a waveform of a current i flowing through it (indicated by a sine wave for explanation), the current i is a positive half-wave (time t1 to t3, t5 to t5).
During t7), a base current flows through the transistor 7 in the circuit of the conductor 6 to the base of the transistor 7 to the emitter to the resistor 9 while the voltage v is a negative half wave (time ... t2, t4).
(Between t6 and t6), the diode 11 is turned on and a negative voltage is applied to the collector of the transistor 7, and the collector current IC of the transistor 7 becomes zero between the zero point t1 of the current i and the voltage v, as shown in FIG. Between zero points t2 (similarly, the next time t
Flows between 5 and t6). The section in which the collector current IC flows corresponds to the phase difference φ between the voltage applied to the heat sensitive layer 5 and the flowing current in a ratio of 1: 1, and the detection of the phase difference φ changes according to the temperature. Corresponds to the phase angle φ of.

【0014】このコレクタ電流ICは、電源1b側〜ダ
イオード19〜コンデンサ18〜可変抵抗13〜抵抗1
2〜ダイオード11〜トランジスタ7〜抵抗8〜電源1
a側の経路で流れ、コンデンサ18には図5で示される
極性で充電される。電圧vが正の半波になると前記コレ
クタ電流は流れなくなって、コンデンサ18に充電され
た電荷は抵抗20〜抵抗14〜可変抵抗13の経由で放
電される。
This collector current IC is supplied to the power source 1b side to the diode 19 to the capacitor 18 to the variable resistor 13 to the resistor 1.
2-diode 11-transistor 7-resistor 8-power supply 1
It flows through the path on the side a, and the capacitor 18 is charged with the polarity shown in FIG. When the voltage v becomes a positive half-wave, the collector current stops flowing, and the electric charge charged in the capacitor 18 is discharged via the resistors 20 to 14 to the variable resistor 13.

【0015】このとき、コンデンサ18の充電電圧VA
がPUTのゲート電圧vgよりも高いとPUT22のカ
ソードが導通(図6に示す出力VK)し、コンデンサ1
8の電荷はPUT22〜サイリスタ4〜抵抗14〜可変
抵抗13の経路で放電してサイリスタ4をトリガーし、
ヒータ3に交流電源1の半波が印加される。コンデンサ
18に充電する電圧は、感熱層5の温度と可変抵抗13
の調節によって変わるので、これらによってヒータ3を
所定の温度に保持することができる。
At this time, the charging voltage VA of the capacitor 18
Is higher than the gate voltage vg of PUT, the cathode of PUT 22 becomes conductive (output VK shown in FIG. 6), and capacitor 1
The electric charge of 8 is discharged through the path of PUT22-thyristor 4-resistor 14-variable resistor 13 to trigger thyristor 4,
A half wave of the AC power supply 1 is applied to the heater 3. The voltage charged in the capacitor 18 is the temperature of the heat sensitive layer 5 and the variable resistor 13
The temperature of the heater 3 can be maintained at a predetermined temperature by adjusting the temperature of the heater 3.

【0016】電源1の電圧変動の影響を受けてPUT2
2のアノード電圧VAは安定しないが、電源1の電圧を
抵抗8、9で分圧、コンデンサ17で平滑した電圧をP
UT22のゲートに印加しているので、結局、PUT2
2のカソード出力は電源1電圧の変動に関係無く安定し
たものとなる。
Under the influence of the voltage fluctuation of the power source 1, the PUT 2
Although the anode voltage VA of 2 is not stable, the voltage of the power source 1 is divided by the resistors 8 and 9 and the voltage smoothed by the capacitor 17 is P.
Since it is applied to the gate of UT22, PUT2
The cathode output of 2 is stable regardless of the fluctuation of the voltage of the power supply 1.

【0017】感熱層5が異常高温による溶融などで導体
6がヒータ3に接触すると上記位相差φは零になってコ
ンデンサ18は充電されず、PUT22〜サイリスタ4
はオフ状態を保ってヒータ3には通電されない。このと
き同時にコンデンサ17の充電電圧が上昇するので、P
UT22の動作点も高くなって、PUT22の動作はよ
り安全側に偏移する
When the conductor 6 comes into contact with the heater 3 due to melting of the heat-sensitive layer 5 due to an abnormally high temperature, the phase difference φ becomes zero, the capacitor 18 is not charged, and the PUT 22 to the thyristor 4 are connected.
Is kept off and the heater 3 is not energized. At this time, the charging voltage of the capacitor 17 rises at the same time, so P
The operating point of the UT22 also rises, and the operation of the PUT22 shifts to a safer side.

【0018】導体6とトランジスタ7間が断線して感熱
層5の温度信号が伝わらなくなった場合には、トランジ
スタ7が導通しないのでコンデンサ18は充電されず、
上記同様ヒータ3には通電されない。また、サイリスタ
4がオン故障した場合には、電源1の半波がダイオード
26〜発熱用抵抗25と流れて該抵抗25が発熱し、こ
の発熱によって温度ヒューズ2が断線しヒータ3への通
電を断つ。
When the conductor 6 and the transistor 7 are disconnected and the temperature signal of the thermosensitive layer 5 is not transmitted, the transistor 7 does not conduct and the capacitor 18 is not charged.
Similarly to the above, the heater 3 is not energized. When the thyristor 4 fails to turn on, a half wave of the power source 1 flows from the diode 26 to the heat-generating resistor 25 to generate heat in the resistor 25, which causes the thermal fuse 2 to be disconnected and the heater 3 to be energized. cut off.

【0019】感熱層5の位相角φが図7に示すように高
温側で小さくなる場合には、PUT22〜サイリスタ4
をトリガーするため必要な電荷量がコンデンサ18に充
電されず、ヒータ3を高温に設定できないので、例えば
電気毛布等に本装置を適用すれば、身体に危険を及ぼす
までの温度上昇は起こらない。
When the phase angle φ of the heat sensitive layer 5 becomes small on the high temperature side as shown in FIG. 7, the PUT 22 to the thyristor 4 are provided.
Since the capacitor 18 is not charged with a necessary amount of electric charge for triggering, the heater 3 cannot be set to a high temperature. Therefore, if the present device is applied to, for example, an electric blanket or the like, the temperature does not rise to a level that poses a danger to the body.

【0020】図2は測温素子として感熱線27をヒータ
3に近接して用い、ヒータ3には溶解層28を介して検
知導体29を配設し、ヒータ3回路の制御素子にリレー
30を用い、さらに安全回路を付加したもので、リレー
30はダイオード31、抵抗32、コンデンサ33と共
に電源1に直列接続され、またリレー30にはコンデン
サ34が並列接続され、上記サイリスタ4のアノード側
がダイオード31のカソード側に接続されている。尚、
感熱線27に代えて感熱シートとしても良い。
In FIG. 2, a thermosensitive wire 27 is used as a temperature measuring element in the vicinity of the heater 3, a detection conductor 29 is arranged in the heater 3 through a melting layer 28, and a relay 30 is provided as a control element of the heater 3 circuit. The relay 30 is connected in series with the power source 1 together with the diode 31, the resistor 32, and the capacitor 33, and the capacitor 34 is connected in parallel with the relay 30, and the anode side of the thyristor 4 is the diode 31. Connected to the cathode side of. still,
A heat sensitive sheet may be used instead of the heat sensitive wire 27.

【0021】図1で電源1a側に接続の上記抵抗8は、
図2では感熱線27の一次導体5a一端に接続され、一
次導体5a他端は電源1a側に接続されている。また、
感熱線27の二次導体5b一端は上記トランジスタ7の
ベースに、同5b他端はダイオード35と直列に抵抗8
他端に接続されている。この抵抗8他端と上記ダイオー
ド10間には別のトランジスタ36のエミッタ〜ベース
が介され、該トランジスタ36のコレクタと電源1a側
にはダイオード37と2個の抵抗38、39が直列接続
されている。直列接続の発熱用抵抗40と別のサイリス
タ41が電源1に接続され、該サイリスタ41のゲート
は前記両抵抗38、39間に接続されている。なお発熱
用抵抗40は上記温度ヒューズ2に接触される。
The resistor 8 connected to the power source 1a side in FIG.
In FIG. 2, the heat-sensitive wire 27 is connected to one end of the primary conductor 5a, and the other end of the primary conductor 5a is connected to the power supply 1a side. Also,
One end of the secondary conductor 5b of the heat-sensitive wire 27 is connected to the base of the transistor 7, and the other end of the secondary conductor 5b is connected in series with the diode 35 to the resistor 8
It is connected to the other end. An emitter-base of another transistor 36 is interposed between the other end of the resistor 8 and the diode 10, and a diode 37 and two resistors 38 and 39 are connected in series on the collector of the transistor 36 and the power source 1a side. There is. A heat generating resistor 40 connected in series and another thyristor 41 are connected to the power source 1, and the gate of the thyristor 41 is connected between the resistors 38 and 39. The heating resistor 40 is brought into contact with the thermal fuse 2.

【0022】また電源1には2個のダイオード42、4
3が逆極性で接続され、両ダイオード42、43の接続
部と前記検知導体29間には短絡検知回路44が設けら
れている。該回路44は直列接続のフォトカプラ投光側
45と抵抗47にコンデンサ48を並列接続したもの
で、フォトカプラ受光側46は前記トランジスタ36の
エミッタ〜コレクタ間に接続されている。
Further, the power supply 1 has two diodes 42, 4
3 is connected in reverse polarity, and a short-circuit detection circuit 44 is provided between the connection portion of the diodes 42 and 43 and the detection conductor 29. The circuit 44 comprises a series-connected photocoupler projecting side 45, a resistor 47 and a capacitor 48 connected in parallel, and a photocoupler receiving side 46 is connected between the emitter and collector of the transistor 36.

【0023】上記図2の構成において、先ずリレー30
部の動作を詳述すると、電源1を印加すると負の半波で
コンデンサ34、リレー30〜ダイオード31〜抵抗3
2の経路で電流が流れてコンデンサ33が充電され、該
充電後は電流が流れなくなってリレー30はオフする。
サイリスタ4が正の半波毎に導通すると、コンデンサ3
3の電荷はその度々に放電し、その次の負の半波で上記
同様経路で電流が流れるのでリレー30がオンし、リレ
ー接点30aが閉じてヒータ3が発熱する。
In the structure shown in FIG. 2, first, the relay 30
The operation of the parts will be described in detail. When the power supply 1 is applied, the capacitor 34, the relay 30, the diode 31 and the resistor 3 are negative half-waves.
A current flows through the route 2 to charge the capacitor 33, and after the charging, no current flows and the relay 30 is turned off.
When the thyristor 4 conducts every positive half-wave, the capacitor 3
The electric charge of 3 is discharged each time, and a current flows through the same path as above in the next negative half wave, so that the relay 30 is turned on, the relay contact 30a is closed, and the heater 3 generates heat.

【0024】サイリスタ4がオン・オフを繰返さなけれ
ばコンデンサ33の電荷は放電されないのでリレー30
はオンしない。従って、サイリスタ4より前段の何れか
の部品が断線または短絡故障した場合には、サイリスタ
がオン・オフしなくなってリレー30はオンしない。サ
イリスタ4又はダイオード31の短絡では、コンデンサ
33又は/及びコンデンサ34が破損してリレー30は
オンしない。抵抗32が短絡するとリレー用電源のバラ
ンスが崩れてリレー30がばたつき、サイリスタ4が破
損してリレー30はオンしなくなる。
Unless the thyristor 4 is repeatedly turned on and off, the electric charge of the capacitor 33 is not discharged, so the relay 30
Does not turn on. Therefore, when any of the parts preceding the thyristor 4 is broken or short-circuited, the thyristor does not turn on / off and the relay 30 does not turn on. When the thyristor 4 or the diode 31 is short-circuited, the capacitor 33 and / or the capacitor 34 is damaged and the relay 30 is not turned on. When the resistor 32 is short-circuited, the balance of the power supply for the relay is lost, the relay 30 flickers, the thyristor 4 is damaged, and the relay 30 does not turn on.

【0025】次に感熱線27の断線について詳述する
と、一次導体5aが断線した場合は抵抗8が電源1aか
ら切り離されてトランジスタ7が動作しなくなり、サイ
リスタ4はオンしない。二次導体5bが正常時には、ダ
イオード35の閾い電圧が、トランジスタ36のエミッ
タ・ベース間閾い電圧とダイオード10の閾い電圧との
和より低いのでトランジスタ36はオンしないが、二次
導体5bが図2の上方部分で断線した場合は、ダイオー
ド35のカソード側が切り離されるためトランジスタ3
6がオンしてサイリスタ41に電流が流れ、抵抗40が
発熱して温度ヒューズ2を溶断し、ヒータ3への電源印
加を断つ。二次導体5bが図2の下方部分で断線した場
合には、該残部のインピーダンス絶対値が大となるので
トランジスタ7を動作させるに十分なベース電流が流れ
ず、サイリスタ4はオンしない。
Explaining the disconnection of the heat-sensitive wire 27 in detail, when the primary conductor 5a is disconnected, the resistor 8 is disconnected from the power supply 1a, the transistor 7 does not operate, and the thyristor 4 does not turn on. When the secondary conductor 5b is normal, the threshold voltage of the diode 35 is lower than the sum of the emitter-base threshold voltage of the transistor 36 and the threshold voltage of the diode 10, so that the transistor 36 does not turn on, but the secondary conductor 5b. 2 is disconnected in the upper part of FIG. 2, the cathode side of the diode 35 is disconnected and the transistor 3
6 is turned on, a current flows through the thyristor 41, the resistor 40 generates heat, and the thermal fuse 2 is melted and the power supply to the heater 3 is cut off. When the secondary conductor 5b is broken in the lower part of FIG. 2, the absolute value of the impedance of the remaining part becomes large, so that a base current sufficient to operate the transistor 7 does not flow and the thyristor 4 does not turn on.

【0026】さらに溶解層28がヒータ3の異状過熱な
どで溶けてヒータ3と検知導体29が接触すると、コン
デンサ48が充電されてフォトカプラ45〜46が動作
し、サイリスタ41が電源1の負の半波で導通して抵抗
40に電流が流れ、前記同様にヒータ3への電源印加を
断つ。
Further, when the melting layer 28 is melted due to abnormal overheating of the heater 3 and the heater 3 comes into contact with the detection conductor 29, the capacitor 48 is charged and the photocouplers 45 to 46 operate, and the thyristor 41 causes the negative voltage of the power source 1. Conducting with a half wave, a current flows through the resistor 40, and the power supply to the heater 3 is cut off as described above.

【0027】[0027]

【発明の効果】本発明は、以上説明したように、測温素
子の位相差を測温信号として検出し、この信号を利用し
て温度制御するようにしたので、感熱層の寸法精度に関
係なく温度制御ができると共に、位相差検出と制御は交
流電源を分圧した低電圧印加で行なうようにしたので装
置全体を小型、安価に提供できる。また、測温素子の断
線、短絡時および部品の故障時にはヒータへの通電を断
つようにしたので、ヒータの異常過熱がなく安心して使
用に供せる。さらに、測温素子の位相差は電源の1サイ
クル毎に検出し、電源の電圧変動に対応して制御素子の
動作を補償したので、ヒータの温度制御は安定したもの
となる。
As described above, according to the present invention, the phase difference of the temperature measuring element is detected as a temperature measuring signal, and the temperature is controlled by using this signal. Since the temperature control can be performed without using it, and the phase difference detection and control are performed by applying a low voltage by dividing the AC power supply, the entire apparatus can be provided at a small size and at low cost. Further, when the temperature measuring element is disconnected or short-circuited or the component is broken, the heater is de-energized so that the heater is not overheated and can be used with confidence. Further, since the phase difference of the temperature measuring element is detected for each cycle of the power source and the operation of the control element is compensated for in response to the voltage fluctuation of the power source, the temperature control of the heater becomes stable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る温度制御装置の基本回路図であ
る。
FIG. 1 is a basic circuit diagram of a temperature control device according to the present invention.

【図2】本発明の他の実施例に係る温度制御装置の回路
図である。
FIG. 2 is a circuit diagram of a temperature control device according to another embodiment of the present invention.

【図3】測温素子に印加される電圧とこれに流れる電流
の波形図である。
FIG. 3 is a waveform diagram of a voltage applied to the temperature measuring element and a current flowing through the temperature measuring element.

【図4】トランジスタ7のコレクタ電流の波形図であ
る。
FIG. 4 is a waveform diagram of a collector current of a transistor 7.

【図5】図1におけるVA点の電圧波形図である。5 is a voltage waveform diagram at a point VA in FIG.

【図6】図1におけるVK点の電圧波形図である。FIG. 6 is a voltage waveform diagram at a VK point in FIG.

【図7】測温素子の温度−位相角特性の一例図である。FIG. 7 is an example diagram of temperature-phase angle characteristics of a temperature measuring element.

【符号の説明】[Explanation of symbols]

1 交流電源 2 温度フューズ 3 ヒータ 4 サイリスタ 5 感熱層 6 導体 7 トランジスタ 8、9、12、14、15、20、21、23、24
抵抗 10、11、16、19、26 ダイオード 17、18 コンデンサ 22 PUT 25 発熱用抵抗
1 AC Power Supply 2 Temperature Fuse 3 Heater 4 Thyristor 5 Thermosensitive Layer 6 Conductor 7 Transistor 8, 9, 12, 14, 15, 20, 21, 23, 24
Resistance 10, 11, 16, 19, 26 Diode 17, 18 Capacitor 22 PUT 25 Heat generation resistance

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年8月3日[Submission date] August 3, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】 本発明の別の目的は、交流電源の1サイ
クル毎に測温素子の位相差を検出し、これを測温信号と
して交流電源の電圧変動の影響を受けずにヒータ温度を
安定して制御できる装置の提供である。
Another object of the present invention is to detect the phase difference of the temperature measuring element for each cycle of the AC power source and use this as a temperature measuring signal to stabilize the heater temperature without being affected by the voltage fluctuation of the AC power source. It is the provision of a device that can be controlled .

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】 本発明のさらに別の目的は、上記装置を
構成する部品等の故障時にヒータへの通電を停上する装
置の提供である。
Still another object of the present invention is to provide a device for stopping the power supply to the heater when a component or the like constituting the device fails .

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】[0011]

【実施例】 図1は、本発明装置の基本回路図を示し、
交流電源1に温度ヒューズ2、ヒータ3、サイリスタ4
が直列接続されてヒータ回路を構成している。ヒータ3
には温度に対応して位相角が変化する感熱層5を介して
導体6が設けられ、該導体6はトランジスタ7のベース
に接続されている。また、電源1には抵抗8、9が直列
接続され、前記トランジスタ7のエミッタは両抵抗8、
の接続部に接続され、トランジスタ7のベース〜エミ
ッタ間にはダイオード10が逆極性に並列接続されてい
る。
Embodiment FIG. 1 shows a basic circuit diagram of the device of the present invention,
The AC power source 1 has a temperature fuse 2, a heater 3, and a thyristor 4.
Are connected in series to form a heater circuit. Heater 3
Is provided with a conductor 6 via a thermosensitive layer 5 whose phase angle changes according to temperature, and the conductor 6 is connected to the base of a transistor 7. Further, resistors 8 and 9 are connected in series to the power source 1, and the emitter of the transistor 7 has both resistors 8 and 9.
A diode 10 is connected in reverse polarity between the base and the emitter of the transistor 7 in parallel.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】 トランジスタ7のコレクタと電源1b側
にはダイオード11、抵抗12、可変抵抗13、抵抗1
4が直列接続され、また、前記抵抗8、9の接続部と電
源1b側には抵抗15、ダイオード16、コンデンサ1
7が直列接続されている。可変抵抗13の動子にはコ
ンデンサ18と直列にPUT22のアノードが接続さ
れ、該アノード側にはダイオード19と抵抗20がカス
ケード接続されている。PUT22のゲートは直列接続
の抵抗23を介して前記ダイオード16のカソード側に
接続され、またPUT22のカソードはカスケード接続
の抵抗24及びサイリスタ4のゲートに接続されてい
る。さらにヒータ3には、直列接続の発熱用抵抗25と
ダイオード26が並列に接続され、該抵抗25は上記温
度ヒューズ2に接触されている。
A diode 11, a resistor 12, a variable resistor 13, and a resistor 1 are provided on the collector side of the transistor 7 and the power source 1b side.
4 are connected in series, also connection and the power source 1b resistance to side 15 of the resistor 8 and 9, the diode 16, the capacitor 1
7 are connected in series . The mover of the variable resistor 13 is connected to the anode of PUT22 in series with a capacitor 18, to the anode side diode 19 and the resistor 20 are connected in cascade. The gate of the PUT 22 is connected to the cathode side of the diode 16 via the series-connected resistor 23, and the cathode of the PUT 22 is connected to the cascade-connected resistor 24 and the gate of the thyristor 4. Further, a heating resistor 25 and a diode 26 connected in series are connected in parallel to the heater 3, and the resistor 25 is in contact with the thermal fuse 2.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 交流電源の電圧を分圧してトランジスタ
に印加し、測温素子に印加される交流電圧とこれに流れ
る電流の位相差を、前記トランジスタのコレクタより測
温信号として得、この測温信号をPUTのアノード入力
とし、またPUTのゲート電圧は前記トランジスタへの
印加電圧を分圧したものとし、該PUTのカソード出力
に対応して動作する制御手段によってヒータへの通電を
制御するようにしたことを特徴とする温度制御装置。
1. A voltage of an AC power source is divided and applied to a transistor, and a phase difference between an AC voltage applied to a temperature measuring element and a current flowing therein is obtained from a collector of the transistor as a temperature measuring signal. The temperature signal is used as the anode input of the PUT, the gate voltage of the PUT is obtained by dividing the voltage applied to the transistor, and the energization of the heater is controlled by the control means that operates corresponding to the cathode output of the PUT. The temperature control device characterized in that
【請求項2】 上記制御手段はサイリスタのオンオフ動
作でリレーを駆動するようにし、該サイリスタより前段
部品の断線、短絡故障で前記リレーがオンしない構成と
した請求項1記載の温度制御装置。
2. The temperature control device according to claim 1, wherein the control means drives the relay by an on / off operation of the thyristor, and the relay is not turned on due to a disconnection or a short circuit failure of a preceding component of the thyristor.
【請求項3】 上記測温素子を感熱線とし、感熱線の各
導体がどの個所で断線、短絡してもヒータへの通電を断
つ構成とした請求項1記載の温度制御装置。
3. The temperature control device according to claim 1, wherein the temperature measuring element is a heat-sensitive wire, and the heater is energized no matter where each conductor of the heat-sensitive wire is broken or short-circuited.
【請求項4】 上記ヒータに溶解層を介して検知導体を
設け、検知導体がヒータに接触するとヒータへの通電を
断つ構成とした請求項1記載の温度制御装置
4. The temperature control device according to claim 1, wherein the heater is provided with a detection conductor via a melting layer, and when the detection conductor comes into contact with the heater, the power supply to the heater is cut off.
JP15991293A 1993-05-25 1993-05-25 Temperature controller Pending JPH06332546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15991293A JPH06332546A (en) 1993-05-25 1993-05-25 Temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15991293A JPH06332546A (en) 1993-05-25 1993-05-25 Temperature controller

Publications (1)

Publication Number Publication Date
JPH06332546A true JPH06332546A (en) 1994-12-02

Family

ID=15703882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15991293A Pending JPH06332546A (en) 1993-05-25 1993-05-25 Temperature controller

Country Status (1)

Country Link
JP (1) JPH06332546A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019501455A (en) * 2015-12-22 2019-01-17 江陰市輝龍電熱電器有限公司Jiangyin Huilong Electric Heating Appliance Co., Ltd. Heater alarm and control module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019501455A (en) * 2015-12-22 2019-01-17 江陰市輝龍電熱電器有限公司Jiangyin Huilong Electric Heating Appliance Co., Ltd. Heater alarm and control module

Similar Documents

Publication Publication Date Title
US4546239A (en) Non-continuous sensing apparatus for a temperature control
US3778581A (en) Time-at-temperature a-c reflow soldering power supply
US6570129B1 (en) Protection device for dual stage power supply
JPH06332546A (en) Temperature controller
US5607604A (en) Apparatus for detecting voltage across thyristor in alternating-current resistance welding machine
JP2940227B2 (en) Method and apparatus for measuring temperature trip characteristics of semiconductor device
KR960003534Y1 (en) Temperature controller for heating device
JP3197985B2 (en) Heater control device
JPH04296484A (en) Temperature control unit of heater
JPH0756644A (en) Temperature controller
JPH07129254A (en) Temperature control unit
JP2599371B2 (en) Fail safe device
JPH0219595B2 (en)
JPH0345877B2 (en)
JP2591179B2 (en) Cordless iron
JP2791849B2 (en) Electric carpet control equipment
JP2589227B2 (en) Anomaly detection device for heating equipment
JP2664468B2 (en) Temperature control device
JPH07280865A (en) Abnormality detector for electric apparatus
JPH053904B2 (en)
JPS6156687B2 (en)
JPH07105263B2 (en) Floor heating system
JP2001110561A (en) High frequency heating apparatus
JPH0650667B2 (en) Planar heating appliances
JPH05299169A (en) Thermistor circuit and cooking apparatus