JPH0756368B2 - Steam generator plant - Google Patents

Steam generator plant

Info

Publication number
JPH0756368B2
JPH0756368B2 JP60272261A JP27226185A JPH0756368B2 JP H0756368 B2 JPH0756368 B2 JP H0756368B2 JP 60272261 A JP60272261 A JP 60272261A JP 27226185 A JP27226185 A JP 27226185A JP H0756368 B2 JPH0756368 B2 JP H0756368B2
Authority
JP
Japan
Prior art keywords
steam
switching valve
flow path
passage
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60272261A
Other languages
Japanese (ja)
Other versions
JPS62131104A (en
Inventor
正 藤井
隆平 川部
明彦 湊
建治 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60272261A priority Critical patent/JPH0756368B2/en
Publication of JPS62131104A publication Critical patent/JPS62131104A/en
Publication of JPH0756368B2 publication Critical patent/JPH0756368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、蒸気発生器プラントに関するものである。Description: FIELD OF THE INVENTION The present invention relates to steam generator plants.

〔発明の背景〕[Background of the Invention]

実証炉(実験炉と実用炉との中間のもの)以降の高速プ
ラントでは、原子炉トリツプ後の崩壊熱除去を、通常の
冷却系設備を用いて行う方法が検討されている。実証炉
以降の蒸気発生器の型式として設備合理化を図るため、
高速原型炉「もんじゆ」で採用されたような蒸発器と過
熱器の2基に分離させるのではなく、一体貫流型が採用
される見通しである。
In a high-speed plant after the demonstration reactor (which is between the experimental reactor and the practical reactor), a method of removing decay heat after the reactor trip using a normal cooling system facility is being studied. In order to streamline the equipment as the type of steam generator after the demonstration reactor,
It is expected that an integrated flow-through type will be adopted instead of the two separate units of evaporator and superheater used in the fast prototype reactor "Monjiyu."

しかし、原子炉トリツプ時に冷却系設備にかかる熱過渡
(熱の時間的変化)条件を緩和し、さらに原子炉トリッ
プ後の再起動を容易にする目的で、プラント運転サイク
ルで想定している高温待機モードを可能とする冷却系プ
ラントが求められいる。このため、一体貫流型で高温待
機モードでの運転が可能と云う二つの要求を満足する合
理的な原子炉水蒸気系システムの開発が望まれている。
従来技術としては、火力ボイラーの経験から、ドレン熱
交換方式,再循環方式,蒸気凝縮器を設置した方式が知
られている。
However, for the purpose of relaxing the thermal transient (temporal change of heat) conditions on the cooling system equipment during the reactor trip and facilitating restart after the reactor trip, the high temperature standby assumed in the plant operation cycle There is a demand for a cooling system plant that enables the mode. Therefore, it is desired to develop a rational reactor steam system that satisfies the two requirements of being able to operate in the high-temperature standby mode as an integrated flow-through type.
As a conventional technique, a drain heat exchange system, a recirculation system, and a system in which a steam condenser is installed are known from experience of a thermal power boiler.

第6図は従来の蒸気発生器プラントの再循環方式を高速
炉プラントに適用した配管図である。図において、1は
蒸気発生器、2は蒸発管、3は気水分離器、4はタービ
ン、5は復水器、6は脱気器、7は給水ポンプ、8は給
水加熱器、9は再循環ポンプ、10は圧力計、11は圧力調
整弁、12,13は蒸気流路切換バルブ、14は給水流路切換
バルブである。また、15は再循環流路切換バルブ、16,1
7,18はそれぞれ蒸気流路、19,20,21,22はそれぞれ給水
流路、23は再循環流路、24は二次ナトリウム系ホツトレ
グ、25は二次ナトリウム系コールドレグ、26は二次ナト
リウムポンプである。
FIG. 6 is a piping diagram in which a conventional steam generator plant recirculation system is applied to a fast reactor plant. In the figure, 1 is a steam generator, 2 is an evaporation pipe, 3 is a steam separator, 4 is a turbine, 5 is a condenser, 6 is a deaerator, 7 is a feed pump, 8 is a feed water heater, and 9 is A recirculation pump, 10 is a pressure gauge, 11 is a pressure adjusting valve, 12 and 13 are steam flow path switching valves, and 14 is a water supply flow path switching valve. Further, 15 is a recirculation flow path switching valve, 16, 1
7,18 are steam flow paths, 19,20,21,22 are water supply flow paths, 23 are recirculation flow paths, 24 is a secondary sodium-based hot leg, 25 is a secondary sodium cold leg, and 26 is secondary sodium. It is a pump.

原子炉がトリップすると、1次系ナトリウム、2次系ナ
トリウムのポンプは停止し、ポニーモータ運転に移行
し、2次ナトリウム流量は定格状態の6%が確保され
る。2次ナトリウム系ホツトレグ24から蒸気発生器1の
シエルに流入する2次ナトリウム温度は、原子炉がトリ
ツプしても、炉容器内の高温プレナムの温度が下がらな
いので、定格運転状態の475℃からはほとんど変化しな
い。一方、水蒸気系側では、2次ナトリウム側の負荷低
減に合わせ、原子炉トリツプ信号により、給水ポンプ7
の回転数を低下させ、給水流量を定格状態の20〜30%ま
で減少させる。
When the reactor trips, the primary sodium pumps and secondary sodium pumps stop, the operation shifts to pony motor operation, and the secondary sodium flow rate is secured at 6% of the rated state. The temperature of the secondary sodium flowing into the shell of the steam generator 1 from the secondary sodium-based hot-leg 24 does not decrease even when the reactor is tripped, so the temperature of the high temperature plenum in the reactor vessel does not decrease. Hardly changes. On the other hand, on the steam system side, in accordance with the load reduction on the secondary sodium side, the feed water pump 7 is sent by the reactor trip signal.
Reduce the number of rotations and reduce the water supply flow rate to 20 to 30% of the rated state.

蒸気管2内を流れる水は二次ナトリウムと熱交換する
が、交換熱量が減少しているので定格時の加熱蒸気とは
異なり、水・蒸気の二相状態の飽和蒸気として気水分離
器3へ向かう。この気水分離器3で、蒸気と水分とが分
離される。まず、蒸気は、蒸気流路17を通りタービン4
へ向かうが、切換バルブ12を閉じ切換バルブ13を開くこ
とにより、タービン4を通らずにバイパス蒸気流路18か
ら直接復水器5へ流入する。復水器5で凝縮した水は、
脱気器6でさらに溶存ガスを除去させた後、給水ポンプ
7で昇圧されさらに給水加熱器8で蒸気により(図示せ
ず)加熱される。一方、気水分離器3内の水は、再循環
流路23に設けられた切換バルブ15が開かれ再循環ポンプ
9が起動されるので、給水加熱器8からの給水と合流し
蒸気発生器1に戻る。尚、切換バルブ12,13,15の開閉制
御,給水ポンプ7,再循環ポンプ9の制御は制御装置(図
示せず)により自動的に制御されるようになっている。
The water flowing in the steam pipe 2 exchanges heat with secondary sodium, but the amount of heat exchanged is reduced, so unlike the heating steam at the time of rating, the steam separator 2 is a saturated steam in a two-phase state of water / steam. Head to. The steam and water are separated by the steam separator 3. First, the steam passes through the steam flow path 17 and the turbine 4
However, when the switching valve 12 is closed and the switching valve 13 is opened, the bypass steam passage 18 directly flows into the condenser 5 without passing through the turbine 4. The water condensed in the condenser 5
After the dissolved gas is further removed by the deaerator 6, the pressure is raised by the feed water pump 7 and further heated by the steam (not shown) by the feed water heater 8. On the other hand, the water in the steam separator 3 merges with the feed water from the feed water heater 8 because the switching valve 15 provided in the recirculation flow path 23 is opened and the recirculation pump 9 is activated. Return to 1. The opening / closing control of the switching valves 12, 13, 15 and the control of the water supply pump 7 and the recirculation pump 9 are automatically controlled by a control device (not shown).

この気水分離器3内の水温は、水蒸気系の圧力(約10MP
a)で決まる飽和温度310℃であるが、給水加熱器8から
の水温はそれと比べかなり低いため、蒸気発生器1の入
口での給水温度は、170〜200℃あたりまで下がつてしま
う。原子炉トリツプ時には、このように負荷が減少して
も熱交換器の伝熱面積は定格状態と変らないので、交換
熱量に比べ伝熱面積が過剰となり、2次ナトリウム出口
温度は給水温度に支配される。従つて、定格状態の310
℃に対し、210〜250℃となり、中間熱交換器等の原子炉
冷却系機器に熱衝撃が加わる可能性がある。さらに時間
が経過し、原子炉出力が定格状態の1%程度の崩壊熱レ
ベルに達した場合、2次ナトリウム入口温度は約330℃
あたりまで下がる。この場合、給水温度が低いため、2
次ナトリウム出口温度はほとんど給水温度と等しくな
り、約200℃前後まで下がつてしまう。
The water temperature in the steam separator 3 is the pressure of the steam system (about 10MP
Although the saturation temperature is 310 ° C. determined by a), the water temperature from the feed water heater 8 is considerably lower than that, so the feed water temperature at the inlet of the steam generator 1 drops to around 170 to 200 ° C. At the time of reactor trip, the heat transfer area of the heat exchanger does not change from the rated state even if the load decreases in this way, so the heat transfer area becomes excessive compared to the heat exchange amount, and the secondary sodium outlet temperature is controlled by the feed water temperature. To be done. Therefore, the rated condition of 310
The temperature is 210 to 250 ℃, and there is a possibility that thermal shock will be applied to reactor cooling system equipment such as intermediate heat exchangers. When the reactor power reaches the decay heat level of about 1% of the rated state after a further lapse of time, the secondary sodium inlet temperature is about 330 ° C.
It goes down to around. In this case, since the water temperature is low, 2
The secondary sodium outlet temperature is almost equal to the feed water temperature and drops to around 200 ° C.

これに対し、2次ナトリウム側の流量に合わせ給水流量
も定格状態の6%程度まで減少すれば、2次ナトリウム
出口温度の低下を制御できる。しかし、給水減少により
蒸発管2の一部では水単相、他方では水・蒸気の2相、
さらに他の一部では蒸気単相と分離し、配管内で水と蒸
気との分布状態が異なり振動が生じる等不安定状態が発
生し、また、蒸気管2を支持している管板に温度差が生
じるため、蒸気発生器の健全性が損なわれる可能性があ
る。尚、原子炉トリツプ後、プラントを再起動する際に
は、2次ナトリウム温度が安定状態によりかなり低下し
ているので、再度定格状態まで温度を上昇されるには、
相当の時間を費すことになる。
On the other hand, if the supply water flow rate is also reduced to about 6% of the rated state in accordance with the flow rate on the secondary sodium side, the decrease in the secondary sodium outlet temperature can be controlled. However, due to the decrease in water supply, a part of the evaporation pipe 2 is a water single phase, and the other is a water / steam two phase
In another part, it is separated from the steam single phase, and the distribution state of water and steam is different in the pipe, which causes unstable conditions such as vibration, and the temperature of the tube plate supporting the steam pipe 2 is increased. Because of the difference, the integrity of the steam generator may be compromised. When the plant is restarted after the reactor trip, the secondary sodium temperature has dropped considerably due to the stable state, so to raise the temperature to the rated state again,
It will take a considerable amount of time.

以上再循環方式を採用した従来例について説明したが、
ドレーン熱交換方式を採用しても同様に給水温度は充分
に高くならない。従つて、従来方式を採用した一体貫流
型の蒸気発生器において高温待機モード運転では、ナト
リウム温度を十分に高く維持するのは困難である。尚、
この種蒸気発生プラントに関連し、「FBR開発国際シン
ポジウム」論文集(Proceding of the IAE Internation
al Synposium on LMEBR Development)No.6〜9,1984年,
TOKYO Japan.が知られている。
The conventional example using the recirculation method has been described above.
Even if the drain heat exchange method is adopted, the feed water temperature does not rise sufficiently. Therefore, it is difficult to maintain the sodium temperature sufficiently high in the high-temperature standby mode operation in the integrally flow-through type steam generator adopting the conventional method. still,
Related to this type of steam generation plant, "Proceding of the IAE Internation"
al Synposium on LMEBR Development) No.6-9, 1984,
TOKYO Japan is known.

〔発明の目的〕[Object of the Invention]

本発明は上記の状況に鑑みなされたものであり、本発明
の第1目的及び第2目的は、高温待機モード運転が可能
で、かつ、原子炉冷却設備に加わる熱衝撃を緩和できる
蒸気発生器プラントを提供することにある。
The present invention has been made in view of the above circumstances, and a first object and a second object of the present invention are a steam generator capable of performing a high temperature standby mode operation and mitigating a thermal shock applied to a reactor cooling facility. To provide a plant.

〔発明の概要〕[Outline of Invention]

本発明の蒸気発生器プラントは、二次ナトリウムが二次
ナトリウム系ポンプによって内部に循環されるとととも
に該内部に両端をそれぞれ給水流路及び蒸気流路に連通
される蒸発管が内蔵された蒸気発生器、該蒸気流路に配
設された気水分離器と、該気水分離器からの蒸気が順次
第1の蒸気流路切換バルブ、タービン、復水器、脱気器
を経て水となり給水ポンプ、給水加熱器及び給水流路切
換バルブを経て連通し循環供給される上記給水流路と、
上記給水加熱器、上記給水流路切換バルブ下流位置及び
上記水分離器底部を連通する再循環流路切換バルブが取
り付けられている再循環流路と、上記気水分離器下流の
蒸気流路に設けられた上記第1の蒸気流路切換バルブ上
流の該蒸気流路から分岐し上記タービン下流の上記復水
器に連通される第2の蒸気流路切換バルブが設けられて
いる蒸気流路と、原子炉トリツプ信号に基づき上記給水
ポンプ、上記第1及び第2蒸気流路切換バルブ、上記給
水流路切換バルブ、及び上記再循環流路切換バルブを自
動的に制御して、上記第1の蒸気流路切換バルブと上記
給水流路切換バルブとを閉じ、上記第2の蒸気流路切換
バルブと上記再循環流路切換バルブとを開いて給水を上
記蒸気発生器に供給し、原子炉トリップ直後において上
記二次ナトリウム系ポンプから上記蒸気発生器に流入す
る定格温度に近い高温の二次ナトリウムを冷却するナト
リウム顕熱除去モードのループ構成に切り換える制御装
置とを設けたものにおいて、上記給水加熱器下流の上記
給水流路切換バルブとの間の位置で上記給水流路から分
岐し上記気水分離内上部に配設されたスプレイノズルに
連通された上記制御装置によつて制御されるスプレイノ
ズル切換バルブが取り付けられたスプレイノズル給水流
路と、上記再循環路に設けられた再循環ポンプとが設け
られていることを第1の特徴とし、二次ナトリウムが二
次ナトリウム系ポンプによってが内部に循環されるとと
もに該内部に両端をそれぞれ給水流路及び蒸気流路に連
通される蒸発管が内蔵された蒸気発生器と、該蒸気流路
に配設された気水分離器と、該気水分離器からの蒸気が
順次蒸気流路切換バルブ、タービン、復水器、脱気器を
経て水となり給水ポンプ、給水加熱器及び給水流路切換
バルブを経て連通し循環供給される上記給水流路と、上
記給水加熱器、上記給水流路切換バルブ下流位置及び上
記気水分離器底部を連通する再循環路切換バルブが取り
付けられている再循環流路と、原子炉トリップ信号に基
づき上記給水ポンプ、上記蒸気流路切換バルブ、上記給
水流路切換バルブ、及び上記再循環流路切換バルブを自
動的に制御する制御装置とを設けたものにおいて、上記
タービン及び上記給水加熱器を連通し切換バルブが設け
られている第1のバイパス蒸気流路と、上記気水分離器
の下流で上記タービンに連通し形成され上記蒸気流路切
換バルブが設けられた上記蒸気流路の該蒸気流路切換バ
ルブ上流側及び上記タービン、上記給水加熱器間を結ぶ
上記第1のバイパス蒸気流路の上記切換バルブの下流間
を連通し切換バルブが設けられた第2のバイパス蒸気流
路と、上記給水加熱器及び上記復水器間を連通されてい
る第3のバイパス蒸気流路と、上記気水分離器の底部側
及び上記脱気器間を連通し切換バルブが設けられた第2
の再循環流路と、上記給水加熱器下流の上記給水流路切
換バルブとの間の位置で上記給水流路から分岐し上記気
水分離器内上部に配設されたスプレイノズルに連通され
上記制御装置によって制御されるスプレイノズル切換バ
ルブが取り付けられたスプレイノズル給水流路と、上記
蒸気発生器に連通された2次ナトリウム系ホツトレグに
取り付けられたナトリウム温度を検出し、検出されたナ
トリウム温度が設定温度以下の場合には上記制御装置に
より、上記第2の再循環流路に設けた切換バルブ及び上
記給水加熱器下流の上記給水流路切換バルブを開き、上
記気水分離器底部の上記再循環流路及び上記スプレイノ
ズル給水流路に設けた上記切換バルブを閉じて給水を上
記蒸気発生器に供給し、原子炉トリップ直後において上
記二次ナトリウム系ポンプカラ上記蒸気発生器に流入す
る定格温度に近い高温の二次ナトリウムを冷却するナト
リウム顕熱除去モードのループ構成から、上記第2の再
循環流路に設けた切換バルブ及び上記給水加熱器下流の
上記給水流路切換バルブを閉じ、上記気水分離器底部の
上記再循環流路及び上記スプレイノズル給水流路に設け
た上記切換バルブを開いて、上記気水分離器内に給水を
スプレイし、上記気水分離器内の蒸気と熱交換した後上
記蒸気発生器に供給して、上記二次ナトリウム系ポンプ
から上記蒸気発生器に流入する定格温度より低温の二次
ナトリウムを冷却して、定格出力の数%以下に相当する
原子炉の崩壊熱を除去する崩壊熱除去モードのループ構
成に切り換わる信号を発する熱電対とが設けられている
ことを第2の特徴とするものである。
In the steam generator plant of the present invention, the secondary sodium is circulated inside by a secondary sodium pump, and a vapor having an evaporation pipe whose both ends are respectively connected to the water supply passage and the vapor passage is built in the steam generator plant. A generator, a steam separator provided in the steam passage, and steam from the steam separator are turned into water through a first steam passage switching valve, a turbine, a condenser, and a deaerator. The water supply flow path, which is circulated and supplied in communication via a water supply pump, a water supply heater and a water supply flow path switching valve,
A recirculation flow passage having a recirculation flow passage switching valve communicating the feed water heater, the feed water flow passage switching valve downstream position and the water separator bottom, and a steam flow passage downstream of the steam separator. And a steam flow path provided with a second steam flow path switching valve that branches from the steam flow path upstream of the first steam flow path switching valve and communicates with the condenser downstream of the turbine. The first feedwater pump, the first and second steam flow passage switching valves, the feedwater flow passage switching valve, and the recirculation flow passage switching valve are automatically controlled based on a reactor trip signal. The steam flow path switching valve and the feed water flow path switching valve are closed, the second steam flow path switching valve and the recirculation flow path switching valve are opened to supply feed water to the steam generator, and a reactor trip is performed. Immediately after that, the secondary sodium In the one provided with a control device for switching to a loop configuration of a sodium sensible heat removal mode for cooling secondary sodium having a high temperature close to the rated temperature flowing into the steam generator from the pump, the feed water passage downstream of the feed water heater A spray equipped with a spray nozzle switching valve that is controlled by the control device that branches from the water supply flow path at a position between the switching valve and the spray nozzle that is connected to the spray nozzle disposed in the upper portion of the water / water separation. A first feature is that a nozzle water supply flow path and a recirculation pump provided in the recirculation path are provided, and secondary sodium is circulated inside by a secondary sodium pump and A steam generator having an evaporation pipe whose both ends are respectively connected to a water supply channel and a steam channel, a steam separator disposed in the steam channel, and the steam The steam from the separator is turned into water through the steam flow switching valve, turbine, condenser, and deaerator in order, and is circulated and supplied through the water supply pump, the water heater, and the water flow switching valve. And a recirculation passage provided with a recirculation passage switching valve that communicates the feed water heater, the feed water passage switching valve downstream position and the bottom of the steam separator, and the feed pump based on a reactor trip signal A control device for automatically controlling the steam flow path switching valve, the feed water flow path switching valve, and the recirculation flow path switching valve, the switching valve communicating the turbine and the feed water heater. And a first bypass steam flow path provided with a steam flow path switching valve of the steam flow path, which is formed in communication with the turbine downstream of the steam separator and provided with the steam flow path switching valve. A second bypass steam flow passage provided with a switching valve that connects the upstream side of the lube, the turbine, and the feed water heater to the downstream side of the switching valve of the first bypass steam flow passage, and the feed water heating. And a second bypass steam flow passage communicating between the condenser and the condenser, and a second switching valve that communicates between the bottom side of the steam separator and the deaerator.
Of the recirculation flow path and the feed water flow path switching valve downstream of the feed water heater, branching from the water supply flow path and communicating with a spray nozzle arranged in the upper part of the steam separator. The sodium temperature attached to the spray nozzle water supply passage to which the spray nozzle switching valve controlled by the control device is attached and the secondary sodium type hot leg connected to the steam generator is detected, and the detected sodium temperature is When the temperature is equal to or lower than the set temperature, the control device opens the switching valve provided in the second recirculation flow path and the feed water flow path switching valve downstream of the feed water heater, and the recirculation valve at the bottom of the steam separator is opened. The switching valve provided in the circulation flow path and the spray nozzle water supply flow path is closed to supply the supply water to the steam generator, and the secondary sodium is supplied immediately after the reactor trip. Pump color From the loop configuration of the sodium sensible heat removal mode for cooling the secondary sodium having a high temperature close to the rated temperature flowing into the steam generator, the switching valve provided in the second recirculation flow path and the downstream of the feed water heater. The water supply passage switching valve is closed, the recirculation passage at the bottom of the steam separator and the switching valve provided in the spray nozzle water supply passage are opened, and spray water is sprayed into the steam separator. Supply to the steam generator after heat exchange with steam in the steam separator, cool secondary sodium at a temperature lower than the rated temperature flowing into the steam generator from the secondary sodium pump, and A second feature is that a thermocouple that emits a signal to switch to a decay heat removal mode loop configuration that removes decay heat of a nuclear reactor equivalent to several percent or less of output is provided.

即ち、本発明は、原子炉トリツプの際、配管系に設けた
バルブの開閉操作により給水加熱器からの給水を気水分
離器内のスプレイノズルからスプレイし気水分離器内の
蒸気と熱交換させ水側飽和温度(約300℃)で蒸気発生
器に給水するものである。これにより、原子炉の出力変
化に応じて崩壊熱を除去し、2次ナトリウム出力温度を
水側飽和温度に保つことができる。
That is, in the present invention, during the reactor trip, the supply water from the feed water heater is sprayed from the spray nozzle in the steam separator by the opening / closing operation of the valve provided in the piping system to exchange heat with the steam in the steam separator. Water is supplied to the steam generator at the saturation temperature on the water side (about 300 ° C). Thereby, the decay heat can be removed according to the output change of the nuclear reactor, and the secondary sodium output temperature can be maintained at the water side saturation temperature.

〔発明の実施例〕Example of Invention

以下本発明の蒸気発生器プラントを実施例を用い従来と
同部品は同符号で示し同部分の構造の説明は省略し第1
図により説明する。第1図は説明図である。図におい
て、27は給水流路で、給水加熱器8の下流で、かつ、給
水流路22の再循環流路23接続位置の上流の給水流路切換
バルブ14の上流側から分岐され気水分離器3内上部に配
設されたスプレイノズル29に連通されている。給水流路
27には切換バルブ28が設けられている。尚、図中におい
てバルブの記号が、黒塗りのものは閉じており、白抜き
のものは開いていることを意味している。
In the following, the steam generator plant of the present invention is used in the embodiment, the same parts as those of the conventional one are denoted by the same reference numerals, and the description of the structure of the same part is omitted.
It will be described with reference to the drawings. FIG. 1 is an explanatory diagram. In the figure, 27 is a water supply passage, which is branched from the upstream side of the water supply passage switching valve 14 downstream of the water supply heater 8 and upstream of the connection position of the recirculation passage 23 of the water supply passage 22. It communicates with a spray nozzle 29 arranged at the upper part of the container 3. Water supply channel
A switching valve 28 is provided at 27. In the drawings, the black and white symbols indicate that the valves are closed and the white ones are open.

上記の構成において、原子炉がトリツプすると、原子炉
トリツプ信号により、2次ナトリウムポンプ26は停止し
ポニーモータ運転に移行するので、2次ナトリウム流量
は定格状態の6%まで低下する。また、水蒸気側も、原
子炉がトリツプ信号により給水ポンプ7の回転数を低下
させ、蒸気発生器1内での不安定状態を発生させないよ
うに定格状態の20%流量まで減少させる。これと同時
に、従来と同様に切換バルブ12を閉じ切換バルブ13を開
き、さらに、切換バルブ14を閉じ切換バルブ28を開く操
作を行う。
In the above configuration, when the reactor trips, the secondary sodium pump 26 is stopped and the pony motor operation is started by the reactor trip signal, so that the secondary sodium flow rate decreases to 6% of the rated state. Also on the steam side, the reactor reduces the rotational speed of the feed water pump 7 by a trip signal, and reduces the flow rate to 20% of the rated state so as not to cause an unstable state in the steam generator 1. At the same time, the switching valve 12 is closed, the switching valve 13 is opened, and the switching valve 14 is closed and the switching valve 28 is opened as in the conventional case.

蒸気発生器1での交換熱量は、2次ナトリウム流量減少
に伴い大きく低下するため、蒸発管2の出口部では、水
・蒸気の二相が混在する飽和蒸気となつて気水分離器3
へ至る。気水分離器3で分離された蒸気は、蒸気流路17
からタービン4側に向かうが、切換バルブ12を閉じてい
るため、蒸気流路18から直接復水器5へ至り凝縮する。
凝縮水は、脱気器6で溶存ガスを除去された後、給水ポ
ンプ7で昇圧され給水加熱器8へと至る。給水加熱器8
で加熱された給水は、切換バルブ14が閉じているので、
給水流路27から気水分離器3上部に導かれ、スプレイノ
ズル29より蒸気にスプレイされる。このスプレイされた
給水は蒸気と熱交換した後、気水分離器3内の飽和水と
合流し、再循環ポンプ9で昇圧され給水流路22から蒸気
発生器1へ流入する。この水蒸気系の圧力は、圧力計10
で計測され、圧力調整弁11により、10MPaに維持されて
おり、この圧力での飽和温度は310℃である。
The amount of heat exchanged in the steam generator 1 greatly decreases as the secondary sodium flow rate decreases. Therefore, at the outlet of the evaporation pipe 2, saturated steam in which two phases of water and steam are mixed is formed, and the steam separator 3 is used.
To The steam separated by the steam separator 3 has a steam flow path 17
From the steam turbine 18 to the turbine 4 side, but since the switching valve 12 is closed, the steam passage 18 directly reaches the condenser 5 and condenses.
The condensed water has its dissolved gas removed by the deaerator 6 and is pressurized by the feed water pump 7 to reach the feed water heater 8. Water heater 8
Since the switching valve 14 is closed for the water supply heated by,
It is guided to the upper part of the steam separator 3 from the water supply channel 27 and sprayed into steam from the spray nozzle 29. The sprayed feed water exchanges heat with steam, then merges with the saturated water in the steam separator 3, is pressurized by the recirculation pump 9, and flows into the steam generator 1 from the feed water passage 22. The pressure of this steam system is 10
The pressure is maintained at 10 MPa by the pressure control valve 11, and the saturation temperature at this pressure is 310 ° C.

従来の例では、給水加熱器8からの給水が、直接、気水
分離器3内の飽和水と給水流路22で合流するため、飽和
温度よりかなり低い170〜200℃で蒸気発生器1に給水さ
れている。しかし、本実施例では、給水加熱器8からの
給水を気水分離器3内でスプレイし、蒸気と熱交換させ
た後気水分離器3内の飽和水と合流するため、飽和温度
付近の約300℃と云う従来例より高い温度まで給水温度
を上昇させることができる。即ち、原子炉トリツプ時に
おいては熱交換器では交換熱量に比べ伝熱面積が過剰で
あるため、2次ナトリウム出口温度は給水温度に支配さ
れる。しかし、本実施例では、給水温度を300℃近くま
で上昇させることがが可能であるため、2次ナトリウム
出口温度もこの給水温度以下には下がらず、定格状態の
310℃に比べ急激に変化しない。
In the conventional example, the feed water from the feed water heater 8 directly merges with the saturated water in the steam separator 3 in the feed water passage 22, so that the steam generator 1 is heated to 170 to 200 ° C., which is considerably lower than the saturation temperature. It is supplied with water. However, in the present embodiment, since the feed water from the feed water heater 8 is sprayed in the steam separator 3 and heat-exchanged with the steam and then merges with the saturated water in the steam separator 3, the saturated water near the saturation temperature is obtained. The feed water temperature can be raised to a temperature higher than the conventional example of about 300 ° C. That is, at the time of reactor trip, the heat transfer area in the heat exchanger is excessive compared to the amount of heat exchanged, so the secondary sodium outlet temperature is dominated by the feed water temperature. However, in this embodiment, since the feed water temperature can be raised to near 300 ° C., the secondary sodium outlet temperature also does not drop below this feed water temperature, and
Does not change rapidly compared to 310 ° C.

蒸気のように2次ナトリウム出口温度を、水側飽和温度
付近に保つことができるので、一体貫流型に再循環方式
を加えた蒸気発生器において高温待機モードでの運転が
可能となる。また、2次ナトリウム出口温度が急激に変
化しないため、中間熱交換器等の原子炉冷却材設備にか
かる熱衝撃を緩和できる。尚、原子炉トリツプ後、プラ
ント再起動する際には切換バルブ14と切換バルブ28の開
度を調節し、気水分離器3にスプレイする流量を可変と
することができるため、原子炉の出力変化に応じて給水
温度を制御することができる。
Since the secondary sodium outlet temperature can be maintained near the water side saturation temperature like steam, it is possible to operate in a high temperature standby mode in a steam generator that has a recirculation method in an integrated flow type. Further, since the outlet temperature of the secondary sodium does not change suddenly, it is possible to mitigate the thermal shock applied to the reactor coolant equipment such as the intermediate heat exchanger. Note that when the plant is restarted after the reactor trip, the opening of the switching valve 14 and the switching valve 28 can be adjusted to change the flow rate sprayed to the steam separator 3, so that the output of the reactor The feed water temperature can be controlled according to the change.

このように本実施例の蒸気発生器プラントは、一体貫流
型に再循環方式を加えたプラントにおいて原子炉トリツ
プ時に蒸気発生器で加熱された給水を気水分離器内でス
プレイし蒸気発生器からの蒸気と熱交換し温度を上昇さ
せた後、給水流路から蒸気発生器に供給する構造とした
ので、二次ナトリウム出口温度を定格時から下げ過ぎな
い温度の高温待機モードの運転が可能となる。また、二
次ナトリウム出口温度の変化が小さくなるので、原子炉
冷却系にかかる熱過渡条件が緩和され原子炉プラント機
器の健全性が向上する。さらに、高温待機モードでの運
転ができるので、原子炉トリツプ後、再起動するまでの
時間を短縮でき、原子炉プラントの運転操作が容易とな
る。
As described above, the steam generator plant of the present embodiment is a one-flow type plant in which a recirculation method is added to spray the feed water heated by the steam generator during the reactor trip from the steam generator into the steam water separator. It has a structure to supply heat to the steam generator from the water supply channel after exchanging heat with the steam from the steam generator, so it is possible to operate in the high temperature standby mode where the secondary sodium outlet temperature does not drop too much from the rated time. Become. Further, since the change in the secondary sodium outlet temperature is small, the thermal transient condition concerning the reactor cooling system is relaxed, and the soundness of the reactor plant equipment is improved. Further, since the operation in the high temperature standby mode can be performed, the time until the reactor is restarted after the trip is shortened and the operation of the reactor plant becomes easy.

第2図ないし第4図は他の実施例を示し、第2図は定格
運転状態を示し、第3図はナトリウム顕熱除去モード
(Na温度が高い状態に合せて行うため、顕熱モードと云
う)を示し、第4図は崩壊熱除去モードを示すそれぞれ
の説明図である。第2図においては、従来及び上記実施
例で使用されていた切換バルブ13,蒸気流路18及び再循
環ポンプ9を削除している。その代りに、蒸気タービン
4と給水加熱器8下流側とを接続する蒸気流路切換バル
ブ31を有する蒸気流路34,給水加熱器8上流側と復水器
5を接続する蒸気流路35,気水分離器3と脱気器6とを
接続する切換バルブ32を有する再循環流路36、蒸気流路
17の切換バルブ12上流側から分岐し切換バルブ31下流側
の蒸気流路34と接続する蒸気流路33を設けている。尚、
気水分離器3への給水流路27,切換バルブ28,スプレイノ
ズル29は上記実施例と同様である。そして、蒸気側,給
水側及び再循環側の各流路を切り換えるようになつてい
る。また、2次ナトリウム入口温度計測用に、熱電対37
が2次ナトリウム系ホツトレグ24に設置されている。
2 to 4 show another embodiment, FIG. 2 shows the rated operation state, and FIG. 3 shows the sodium sensible heat removal mode (since the Na temperature is high, the sensible heat mode is used. 4) and FIG. 4 is an explanatory view showing the decay heat removal mode. In FIG. 2, the switching valve 13, the steam flow path 18 and the recirculation pump 9 which have been used conventionally and in the above-described embodiment are omitted. Instead, a steam flow path 34 having a steam flow path switching valve 31 connecting the steam turbine 4 and the feed water heater 8 downstream side, a steam flow path 35 connecting the feed water heater 8 upstream side and the condenser 5, A recirculation flow path 36 having a switching valve 32 connecting the steam separator 3 and the deaerator 6, a steam flow path
17 is provided with a steam passage 33 that branches from the upstream side of the switching valve 12 and is connected to the steam passage 34 on the downstream side of the switching valve 31. still,
The water supply passage 27 to the steam separator 3, the switching valve 28, and the spray nozzle 29 are the same as those in the above embodiment. Then, the flow paths on the steam side, the water supply side, and the recirculation side are switched. In addition, a thermocouple 37 was used to measure the secondary sodium inlet temperature.
Is installed in the secondary sodium-based Hottreg 24.

次に動作を説明すると第2図は定格運転状態であり、2
次ナトリウムは、2次ナトリウム系ホツトレグ24から、
475℃の温度で定格流量で流入する。そして、蒸気発生
器1のシエル側を流れ蒸発管2内を流れる水蒸気と熱交
換し、310℃まで下降し後、2次ナトリウム系コールド
レグ25から、2次ナトリウム系ポンプ26で昇圧され中間
熱交換器(図示せず)へ戻る。一方、切換バルブ15,28,
30,32が閉じているので、給水加熱器8で210℃まで加熱
された給水は、定格流量で蒸発管2に分配され2次ナト
リウムと熱交換し、455℃の加熱蒸気となり蒸気流路16
より気水分離器3に至る。その後、過熱蒸気は蒸気流路
17を通り蒸気タービン4を回転駆動する。この蒸気の一
部は抽出され蒸気流路34から給水加熱器8に流れ、給水
の加熱に使用された後蒸気流路35から復水器5に至り蒸
気タービン4からの蒸気と合流する。復水器5内で、蒸
気は大量の冷却水により凝縮して脱気器6で溶存ガスを
除去した後、給水ポンプ7で昇圧され給水加熱器8へと
至る。
Next, the operation will be described. FIG. 2 shows the rated operation state.
Secondary sodium is from the secondary sodium-based Hottreg 24,
It flows in at a rated flow rate at a temperature of 475 ° C. Then, it exchanges heat with the steam flowing in the shell side of the steam generator 1 and flowing in the evaporation pipe 2, and after falling to 310 ° C., it is boosted from the secondary sodium cold leg 25 by the secondary sodium pump 26 to intermediate heat exchange. Return to the container (not shown). On the other hand, switching valves 15, 28,
Since 30, 32 are closed, the feed water heated to 210 ° C. by the feed water heater 8 is distributed to the evaporation pipe 2 at the rated flow rate and exchanges heat with secondary sodium, and becomes heated steam at 455 ° C. and becomes the steam flow path 16
It reaches the steam separator 3. After that, the superheated steam is in the steam flow path.
The steam turbine 4 is driven to rotate through 17. A part of this steam is extracted and flows from the steam flow path 34 to the feed water heater 8. After being used for heating the feed water, it reaches the condenser 5 from the steam flow path 35 and joins with the steam from the steam turbine 4. In the condenser 5, the steam is condensed by a large amount of cooling water, the dissolved gas is removed by the deaerator 6, and the pressure is increased by the feed water pump 7 to reach the feed water heater 8.

定格状態では以上のようなループを構成するが、原子炉
がトリツプすると原子炉トリツプ信号に基づき制御装置
によりバルブ開閉を制御し、第3図に示すナトリウム顕
熱除去モードのループ構成に切り換えられる。2次ナト
リウム側は、2次ナトリウム系ポンプ26が停止しポニー
モータ運転に移行しており定格の6%流量であるが、2
次ナトリウム入口温度は、原子炉内高温プレナムの温度
変化が緩やかであるので、定格状態の475℃にしばらく
の間維持される。この2次ナトリウムの顕熱を除去する
ため、水蒸気側は以下のような対応をとる。まず、原子
炉トリツプ信号により給水ポンプ7の回転数を低下させ
定格状態の20%に流量を低減させるそれと同時に、切換
バルブ12,31を閉じ、切換バルブ30,32を開く。
In the rated state, the loop is constructed as described above, but when the reactor trips, the valve opening / closing is controlled by the control device based on the reactor trip signal, and the loop construction is switched to the sodium sensible heat removal mode loop construction shown in FIG. On the secondary sodium side, the secondary sodium pump 26 has stopped and the operation has shifted to pony motor operation, and the flow rate is 6% of the rated value.
The secondary sodium inlet temperature is maintained at the rated state of 475 ° C for a while because the temperature change in the high temperature plenum inside the reactor is gentle. In order to remove the sensible heat of the secondary sodium, the steam side takes the following measures. First, the rotational speed of the feed water pump 7 is reduced by the reactor trip signal to reduce the flow rate to 20% of the rated state, and at the same time, the switching valves 12 and 31 are closed and the switching valves 30 and 32 are opened.

蒸気発生器1での交換熱量が2次ナトリウムの流量減少
により大きく低下するので、蒸発管2の出口部では、水
・蒸気の二相が混在する飽和蒸気となり気水分離器3へ
戻る。気水分離器3で分離された蒸気は、蒸気流路17か
らタービン4側へ向かう切換バルブ12,31が閉じている
ので、蒸気流路33,34から直接給水加熱器8へ至り、給
水と熱交換した後、蒸気流路35から復水器5に流入し凝
縮する。また、気水分離器3内で分離された飽和水は、
切換バルブ15が閉じられており、切換バルブ32が開かれ
ているので再循環流路36から脱気器6へ至る。その後は
定格状態と同様に給水流路20,21を経て給水加熱器8へ
至る。給水加熱器8の入口部における給水温度を160℃
とし、2次ナトリウム顕熱除去モードにおける交換熱量
を定格状態の8%程度とすると、蒸気流路34からの蒸気
との熱交換によつて、給水温度は275℃と、従来例に比
べて70℃以上高くすることができる。
Since the amount of heat exchanged in the steam generator 1 is greatly reduced due to the decrease in the flow rate of the secondary sodium, at the outlet of the evaporation pipe 2, saturated steam in which two phases of water and steam are mixed is returned to the steam separator 3. The steam separated in the steam separator 3 reaches the feed water heater 8 directly from the steam passages 33, 34 because the switching valves 12, 31 heading from the steam passage 17 to the turbine 4 side are closed. After exchanging heat, it flows into the condenser 5 from the steam passage 35 and is condensed. The saturated water separated in the steam separator 3 is
Since the switching valve 15 is closed and the switching valve 32 is opened, the recirculation flow path 36 reaches the deaerator 6. After that, it reaches the feed water heater 8 through the feed water passages 20 and 21 as in the rated state. The feed water temperature at the inlet of the feed water heater 8 is 160 ° C.
When the amount of heat exchanged in the secondary sodium sensible heat removal mode is about 8% of the rated state, the heat exchange with the steam from the steam flow path 34 causes the feed water temperature to be 275 ° C., which is 70% less than the conventional example. It can be higher than ℃.

この275℃と云う給水温度で蒸気発生器1に給水するた
め、2次ナトリウム出口温度はこの温度以下に下がら
ず、定格状態の310℃から急激に変化しない。さらに、
原子路出力が低下し、定格状態の6〜1%状態の崩壊熱
除去レベルとなつた場合には、2次ナトリウム系ホツト
レグ24に設けた熱電対37で計測する2次ナトリウム入口
温度に基づく信号によりバルブ開度を制御し、第4図に
示す崩壊熱除去モードのループ構成に切り換えられる。
2次ナトリウム側は、上記ナトリウム顕熱除去モード同
様、ポニーモータ側運転に移行しており定格の6%流量
であるが、既に原子炉内高温プレナムの温度が低下して
いるため、2次ナトリウム入口温度は335℃あたりまで
下降している。
Since the water is supplied to the steam generator 1 at the water supply temperature of 275 ° C, the secondary sodium outlet temperature does not drop below this temperature and does not change rapidly from the rated state of 310 ° C. further,
A signal based on the secondary sodium inlet temperature measured by the thermocouple 37 installed in the secondary sodium-based hot-leg 24 when the atomic path output decreases and the decay heat removal level of 6 to 1% of the rated state is reached. The valve opening is controlled by the switch to switch to the decay heat removal mode loop configuration shown in FIG.
On the secondary sodium side, as in the above-mentioned sodium sensible heat removal mode, the operation is on the pony motor side and the flow rate is 6% of the rated value, but since the temperature of the high temperature plenum inside the reactor has already dropped, the secondary sodium The inlet temperature has dropped to around 335 ° C.

一方、水蒸気側も、この崩壊熱除去のための給水ポンプ
7の回転数をさらに低下させ、不安定が生じない程度の
定格の10%流量に減少する。そして、2次ナトリウム系
ホツトレグ24に設けた熱電対37で計測する2次ナトリウ
ム入口温度が設定温度(仮りに350℃とする)以下にな
つた場合、切換バルブ14,32を閉じ、切換バルブ15,28を
開く。これにより、給水流路と再循環流路が切り換わ
り、以下この手順で蒸気発生器1に給水される。給水加
熱器8で蒸気により加熱された給水は、切換バルブ14が
閉じているので、給水流路27から給水分離器3上部に導
かれた後スプレイノズル29から給水分離器3内の蒸気に
スプレイされる。この蒸気と熱交換した給水は、気水分
離器3内の飽和水と合流し再循環流路23から蒸気発生器
1へ至る。そして、気水分離器3で分離された蒸気は、
蒸気のナトリウム顕熱除去モードと同様の蒸気流路17,3
3,34,35を経て復水器5で凝縮し、脱気器6,給水ポンプ
7から給水加熱器8へ至る。
On the steam side, on the other hand, the rotation speed of the water supply pump 7 for removing the decay heat is further reduced, and the flow rate is reduced to 10% of the rated value at which instability does not occur. When the secondary sodium inlet temperature measured by the thermocouple 37 provided in the secondary sodium-based hot-leg 24 becomes equal to or lower than the set temperature (temporarily 350 ° C.), the switching valves 14 and 32 are closed and the switching valve 15 is closed. Open 28. As a result, the water supply flow path and the recirculation flow path are switched, and the water is supplied to the steam generator 1 in this procedure. Since the switching valve 14 is closed, the feed water heated by the steam in the feed water heater 8 is guided to the upper portion of the feed water separator 3 from the feed water passage 27 and then sprayed from the spray nozzle 29 to the steam in the feed water separator 3. To be done. The feed water that has exchanged heat with the steam joins the saturated water in the steam separator 3 and reaches the steam generator 1 from the recirculation flow path 23. And the steam separated by the steam separator 3 is
Steam flow path 17,3 similar to the sodium sensible heat removal mode of steam
After passing through 3, 34 and 35, the water is condensed in the condenser 5, and reaches the feed water heater 8 from the deaerator 6 and the feed water pump 7.

上記のように崩壊熱除去モードでは、給水が気水分離器
3内の蒸気にスプレイされ、蒸気と熱交換した後気水分
離器3内の飽和水と合流するので、蒸気発生器1の入口
部における給水温度を、飽和温度付近の約300℃まで上
昇させることができる。これにより、蒸気発生器1で熱
交換する2次ナトリウムの出口温度は、給水温度以下に
は下がらないので、一体貫流型蒸気発生器において高温
待機モードでの運転が可能となる。本実施例では原子炉
出力や2次ナトリウム入口温度により、水蒸気系のバル
ブ開閉を制御しループ構成を切り換えることができる。
As described above, in the decay heat removal mode, the feed water is sprayed into the steam in the steam separator 3 and, after heat exchange with the steam, merges with the saturated water in the steam separator 3, so the inlet of the steam generator 1 The feed water temperature in the section can be raised to about 300 ° C, which is near the saturation temperature. As a result, the outlet temperature of the secondary sodium that exchanges heat with the steam generator 1 does not drop below the feed water temperature, so that the integrated once-through steam generator can be operated in the high temperature standby mode. In the present embodiment, it is possible to control the valve opening / closing of the steam system and switch the loop configuration by the reactor output or the secondary sodium inlet temperature.

第5図は、運転モードを切り換えるフローチヤートを示
したものであり、原子炉トリツプ信号の有無、及び熱電
対37によつて計測される2次ナトリウム入口温度と設定
温度との大小比較により、定格運転モード,ナトリウム
顕熱除去モード,崩壊熱除去モードと、原子炉出力や2
次ナトリウム入口温度の変化に適応した運転が可能とな
り、2次ナトリウム出口温度の急激な過渡変化を抑制
し、原子炉冷却系設備に加わる熱衝撃を緩和できる。さ
らに、本実施例の崩壊熱除去モードでは、ナトリウム顕
熱を除去しないので再循環量が少なくてすみ、また、気
水分離器3と蒸気発生器1の入口部との高度差を充分確
保しているので、自然循環を利用した給水が可能とな
り、従来例,上記実施例と比較し再循環ポンプ9を削除
でき、また、Na温度が高い状態の顕熱モード運転に続き
崩壊熱除去モード運転をバルブ開閉操作を制御し連続的
に運転できる他、上記実施例と同様の作用効果を有す
る。
FIG. 5 shows a flow chart for switching the operation mode. The rating is determined by the presence or absence of the reactor trip signal and the comparison of the secondary sodium inlet temperature measured by the thermocouple 37 and the set temperature. Operation mode, sodium sensible heat removal mode, decay heat removal mode, reactor output and 2
The operation that adapts to the change in the secondary sodium inlet temperature can be performed, and the rapid transient change in the secondary sodium outlet temperature can be suppressed, and the thermal shock applied to the reactor cooling system equipment can be mitigated. Further, in the decay heat removal mode of the present embodiment, since the sensible heat of sodium is not removed, the recirculation amount can be small, and a sufficient height difference between the steam separator 3 and the inlet of the steam generator 1 can be secured. Therefore, it is possible to supply water using natural circulation, the recirculation pump 9 can be eliminated as compared with the conventional example and the above-mentioned example, and the sensible heat mode operation in the state where the Na temperature is high is followed by the decay heat removal mode operation. The valve can be operated continuously by controlling the valve opening / closing operation, and has the same effect as that of the above embodiment.

〔発明の効果〕〔The invention's effect〕

以上記述したように本発明の蒸気発生器プラントにおい
ては、一体貫流型の再循環方式で高温待機モード運転が
可能で、かつ、原子炉冷却設備に加わる熱衝撃を緩和で
きる効果を有するものである。
As described above, in the steam generator plant of the present invention, it is possible to operate in the high temperature standby mode by the integrated flow-through type recirculation system, and to have the effect of mitigating the thermal shock applied to the reactor cooling equipment. .

【図面の簡単な説明】[Brief description of drawings]

第1図,第2図はそれぞれ本発明の蒸気発生器プラント
の異なる実施例を示し、第1図は原子炉トリツプ状態の
説明図、第2図は定格運転状態の説明図、第3図,第4
図はそれぞれ第2図の状態からナトリウム顕熱除去モー
ド,崩壊熱除去モードに変化後の状態の説明図、第5図
は第2図ないし第4図の運転モード切換えを示すフロー
チヤート、第6図は従来の蒸気発生プラントの原子炉ト
リツプ状態の説明図である。 1……蒸気発生器、2……蒸発管、3……気水分離器、
4……タービン、5……復水器、6……脱気器、7……
給水ポンプ、8……給水加熱器、9……再循環ポンプ、
12,13,14,15,28,30,31,32……切換バルブ、16,17,18,3
3,34,35……蒸気流路、22,27……給水流路、23,36……
再循環流路、24……二次ナトリウム系ホツトレグ、29…
…スプレイノズル、37……熱電対。
1 and 2 respectively show different embodiments of the steam generator plant of the present invention. FIG. 1 is an explanatory diagram of a reactor trip state, FIG. 2 is an explanatory diagram of a rated operating state, FIG. Fourth
FIG. 5 is an explanatory diagram of the state after changing from the state of FIG. 2 to the sodium sensible heat removal mode and the decay heat removal mode, respectively, and FIG. 5 is a flow chart showing the operation mode switching of FIGS. 2 to 4, and FIG. The figure is an explanatory view of a reactor trip state of a conventional steam generation plant. 1 ... Steam generator, 2 ... Evaporation tube, 3 ... Steam separator,
4 ... Turbine, 5 ... Condenser, 6 ... Deaerator, 7 ...
Water supply pump, 8 ... Water supply heater, 9 ... Recirculation pump,
12,13,14,15,28,30,31,32 …… Switching valve, 16,17,18,3
3,34,35 …… Steam flow path, 22,27 …… Water supply flow path, 23,36 ……
Recirculation flow path, 24 ... Secondary sodium-based hot-leg, 29 ...
… Spray nozzle, 37… thermocouple.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】二次ナトリウムが二次ナトリウム系ポンプ
によって内部に循環されるととともに該内部に両端をそ
れぞれ給水流路及び蒸気流路に連通される蒸発管が内蔵
された蒸気発生器と、該蒸気流路に配設された気水分離
器と、該気水分離器からの蒸気が順次第1の蒸気流路切
換バルブ、タービン、復水器、脱気器を経て水となり給
水ポンプ、給水加熱器及び給水流路切換バルブを経て連
通し循環供給される上記給水流路と、上記給水加熱器、
上記給水流路切換バルブ下流位置及び上記気水分離器底
部を連通する再循環流路切換バルブが取り付けられてい
る再循環流路と、上記気水分離器下流の蒸気流路に設け
られた上記第1の蒸気流路切換バルブ上流の該蒸気流路
から分岐し上記タービン下流の上記復水器に連通される
第2の蒸気流路切換バルブが設けられている蒸気流路
と、原子炉トリツプ信号に基づき上記給水ポンプ、上記
第1及び第2蒸気流路切換バルブ、上記給水流路切換バ
ルブ、及び上記再循環流路切換バルブを自動的に制御し
て、上記第1の蒸気流路切換バルブと上記給水流路切換
バルブとを閉じ、上記第2の蒸気流路切換バルブと上記
再循環流路切換バルブとを開いて給水を上記蒸気発生器
に供給し、原子炉トリップ直後において上気二次ナトリ
ウム系ポンプから上記蒸気発生器に流入する定格温度に
近い高温の二次ナトリウムを冷却するナトリウム顕熱除
去モードのループ構成に切り換える制御装置とを設けた
ものにおいて、上記給水加熱器下流の上記給水流路切換
バルブとの間の位置で上記給水流路から分岐し上記気水
分離器内上部に配設されたスプレイノズルに連通され上
記制御装置によって制御されるスプレイノズル切換バル
ブが取り付けられたスプレイノズル給水流路と、上記再
循環流路に設けられた再循環ポンプとが設けられている
ことを特徴とする蒸気発生器プラント。
1. A steam generator in which secondary sodium is circulated internally by a secondary sodium pump, and inside of which an evaporation pipe having both ends respectively connected to a water supply flow path and a steam flow path is incorporated, A steam separator disposed in the steam flow path, and steam from the steam separator is turned into water through a first steam flow path switching valve, a turbine, a condenser, and a deaerator in order to become a water supply pump, The water supply flow path, which is circulated and supplied through the water supply heater and the water supply flow path switching valve, and the water supply heater,
A recirculation flow passage to which a recirculation flow passage switching valve that communicates the downstream position of the feed water flow passage switching valve and the bottom of the steam separator is attached, and the steam passage downstream of the steam separator. A first steam flow path switching valve, a steam flow path provided with a second steam flow path switching valve that branches from the steam flow path upstream and communicates with the condenser downstream of the turbine, and a reactor trip. Based on a signal, the water supply pump, the first and second steam flow path switching valves, the water supply flow path switching valve, and the recirculation flow path switching valve are automatically controlled to switch the first steam flow path. The valve and the feed water flow path switching valve are closed, the second steam flow path switching valve and the recirculation flow path switching valve are opened to supply the feed water to the steam generator, and the upper air is supplied immediately after the reactor trip. Above secondary sodium pump In the one provided with a controller for switching to a loop configuration of a sodium sensible heat removal mode for cooling secondary sodium having a high temperature close to the rated temperature flowing into the steam generator, the feed water flow path switching valve downstream of the feed water heater and And a spray nozzle water supply passage to which a spray nozzle switching valve, which is branched from the water supply passage at a position between the two and communicates with a spray nozzle disposed in the upper part of the steam separator, and which is controlled by the control device, And a recirculation pump provided in the recirculation flow path, the steam generator plant.
【請求項2】二次ナトリウムが二次ナトリウム系ポンプ
によってが内部に循環されるとともに該内部には両端を
それぞれ給水流路及び蒸気流路に連通される蒸気管が内
蔵された蒸気発生器と、該蒸気流路に配設された気水分
離器と、該気水分離器からの蒸気が順次蒸気流路切換バ
ルブ、タービン、復水器、脱気器を経て水となり給水ポ
ンプ、給水加熱器及び給水流路切換バルブを経て連通し
循環供給される上記給水流路と、上記給水加熱器、上記
給水流路切換バルブ下流位置及び上記気水分離器底部を
連通する再循環流路切換バルブが取り付けられている再
循環流路と、原子炉トリップ信号に基づき上記給水ポン
プ、上記蒸気流路切換バルブ、上記給水路切換バルブ、
及び上記再循環流路切換バルブを自動的に制御する制御
装置とを設けたものにおいて、上記タービン及び上記給
水加熱器を連通し切換バルブが設けられている第1のバ
イパス蒸気流路と、上記水分離器の下流で上記タービン
に連通し形成され上記蒸気流路切換バルブが設けられた
上記蒸気流路の該蒸気流路切換バルブ上流側及び上記タ
ービン、上記給水熱器間を結ぶ上記第1のバイパス上記
流路の上記切換バルブの下流間の連通し切換バルブが設
けられた第2のバイパス蒸気流路と、上記給水加熱器及
び上記復水器間を連通されている第3のバイパス蒸気流
路と、上記気水分離器の底部側及び上記脱気器間を連通
し切換バルブが設けられた第2の再循環流路と、上記給
水加熱器下流の上記給水流路切換バルブとの間の位置で
上記給水流路から分岐し上記気水分離器内上部に配設さ
れたスプレイノズルに連通され上記制御装置によって制
御されるスプレイノズル切換バルブが取り付けられたス
プレイノズル給水流路と、上記蒸気発生器に連通された
2次ナトリウム系ホツトレグに取り付けられナトリウム
温度を検出し、検出されたナトリウム温度が設定温度以
下の場合には上記制御装置により、上記第2の再循環流
路に設けた切換バルブ及び上記給水加熱器下流の上記給
水流路切換バルブを開き、上記気水分離器底部の上記再
循環流路及び上記スプレイノズル給水流路に設けた上記
切換バルブを閉じて給水を上記蒸気発生器に供給し、原
子炉トリップ直後において上気二次ナトリウム系ポンプ
から上気蒸気発生器に流入する定格温度に近い高温の二
次ナトリウムを冷却するナトリウム顕熱除去モードのル
ープの構成から、上記第2の再循環流路に設けた切換バ
ルブ及び上記給水加熱器下流の上記給水路切換バルブを
閉じ、上記気水分離器底部の上記再循環流路及び上記ス
プレイノズル給水流路に設けた上記切換バルブを開い
て、上記気水分離器内に給水をスプレイし、上記気水分
離器内の蒸気と熱交換した後上記蒸気発生器に供給し
て、上記二次ナトリウム系ポンプから上記蒸気発生器に
流入する定格温度より低温の二次ナトリウムを冷却し
て、定格出力の数%以下に相当する原子炉の崩壊熱を除
去する崩壊熱除去モードのループ構成に切り換わる信号
を発する熱電対とが設けられていることを特徴とする蒸
気発生器プラント。
2. A steam generator in which secondary sodium is circulated inside by a secondary sodium pump, and a steam pipe having both ends connected to a feed water passage and a steam passage is built in the inside of the steam generator. , A steam separator disposed in the steam flow path, and steam from the steam separator is turned into water through a steam flow path switching valve, a turbine, a condenser, and a deaerator in order to become a water supply pump, water heating Recirculation flow passage switching valve that communicates the water supply flow passage that is circulated and supplied through the water supply device and the water supply flow passage switching valve, the feed water heater, the downstream position of the water supply flow passage switching valve, and the bottom of the steam separator. A recirculation flow path to which is attached, based on a reactor trip signal, the water supply pump, the steam flow path switching valve, the water supply path switching valve,
And a control device for automatically controlling the recirculation flow passage switching valve, wherein the turbine and the feed water heater are in communication with each other, and a first bypass steam flow passage provided with a switching valve, The first passage connecting the steam passage switching valve upstream side of the steam passage having the steam passage switching valve formed in communication with the turbine downstream of the water separator and the turbine and the feed water heater. By-pass of the second bypass steam passage provided with a switching valve for communicating between the downstream side of the switching valve of the flow passage and the third bypass steam communicating between the feed water heater and the condenser. A flow path, a second recirculation flow path provided with a switching valve for communicating between the bottom side of the steam separator and the deaerator, and the feed water flow path switching valve downstream of the feed water heater. From the water supply channel at the position between A spray nozzle water supply passage having a spray nozzle switching valve which is connected to a spray nozzle disposed in the upper portion of the steam separator and is controlled by the control device, and 2 connected to the steam generator. The sodium temperature is attached to the next sodium type hot leg, and when the detected sodium temperature is equal to or lower than the set temperature, the control device causes the switching valve provided in the second recirculation flow path and the feed water heater downstream. The feed water flow path switching valve is opened, and the switching valves provided in the recirculation flow path at the bottom of the steam separator and the spray nozzle feed water flow path are closed to supply the feed water to the steam generator, Immediately after the trip, sodium that cools the high temperature secondary sodium near the rated temperature flowing into the upper air steam generator from the upper air secondary sodium pump Due to the loop configuration of the heat removal mode, the switching valve provided in the second recirculation passage and the water supply passage switching valve downstream of the feedwater heater are closed, and the recirculation passage at the bottom of the steam separator is Open the switching valve provided in the spray nozzle water supply flow path, spray the feed water in the steam separator, and after supplying heat to the steam in the steam separator, supply to the steam generator, Loop of decay heat removal mode that cools secondary sodium having a temperature lower than the rated temperature flowing into the steam generator from the secondary sodium pump to remove decay heat of the reactor corresponding to several percent or less of the rated output A steam generator plant, which is provided with a thermocouple that emits a signal that switches to a configuration.
JP60272261A 1985-12-03 1985-12-03 Steam generator plant Expired - Lifetime JPH0756368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60272261A JPH0756368B2 (en) 1985-12-03 1985-12-03 Steam generator plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60272261A JPH0756368B2 (en) 1985-12-03 1985-12-03 Steam generator plant

Publications (2)

Publication Number Publication Date
JPS62131104A JPS62131104A (en) 1987-06-13
JPH0756368B2 true JPH0756368B2 (en) 1995-06-14

Family

ID=17511378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60272261A Expired - Lifetime JPH0756368B2 (en) 1985-12-03 1985-12-03 Steam generator plant

Country Status (1)

Country Link
JP (1) JPH0756368B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108665991B (en) * 2018-05-29 2023-06-16 西安热工研究院有限公司 System and method for starting nuclear power unit of high-temperature gas cooled reactor in polar hot state

Also Published As

Publication number Publication date
JPS62131104A (en) 1987-06-13

Similar Documents

Publication Publication Date Title
JP7308042B2 (en) Thermal storage device, power plant, and operation control method during fast cutback
US3175953A (en) Steam-cooled nuclear reactor power plant
JP2020085415A (en) Boiler system and power generation plant and operation method of boiler system
JPH03221702A (en) Duplex type heat exchanger for waste heat recovery
JPH0756368B2 (en) Steam generator plant
JPH11257096A (en) Gas turbine power plant
JPS6160242B2 (en)
JP2001508164A (en) Operation method of forced circulation boiler and boiler to which the method is applied
JP2002156493A (en) Site heat supply equipment of nuclear power station
JPH09112801A (en) Pressured fluidized bed boiler generating system
JPS6122724B2 (en)
CN214956034U (en) Water vapor working condition switching system of nuclear power direct-flow evaporator
JP3044159B2 (en) High-speed standby operation device of fast reactor
JPS5922043B2 (en) Cold energy power generation plant
JPH09210301A (en) Emergency protective apparatus for fluidized bed boiler
JPS5814909A (en) Degassing apparatus
JP3759083B2 (en) Steam turbine plant
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JP2921947B2 (en) Waste heat recovery boiler
JPS63194110A (en) Once-through boiler
JPS6156402B2 (en)
JP2002156492A (en) Nuclear power generation system
JPH0443996A (en) Steam flow rate controller for fast reactor plant
JPS6140763Y2 (en)
JPH0695152B2 (en) Reactor decay heat removal device