JPH0756203A - Formation of polarization inversion grating and optical waveguide - Google Patents

Formation of polarization inversion grating and optical waveguide

Info

Publication number
JPH0756203A
JPH0756203A JP5218150A JP21815093A JPH0756203A JP H0756203 A JPH0756203 A JP H0756203A JP 5218150 A JP5218150 A JP 5218150A JP 21815093 A JP21815093 A JP 21815093A JP H0756203 A JPH0756203 A JP H0756203A
Authority
JP
Japan
Prior art keywords
optical waveguide
substrate
polarization inversion
proton exchange
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5218150A
Other languages
Japanese (ja)
Inventor
Satoshi Makio
諭 牧尾
Fumio Nitanda
文雄 二反田
Masazumi Sato
正純 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP5218150A priority Critical patent/JPH0756203A/en
Publication of JPH0756203A publication Critical patent/JPH0756203A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]

Abstract

PURPOSE:To generate SHG light with high efficiency by realizing the ideal polorization inversion grating of a rectangular shape. CONSTITUTION:A proton exchange region 16, the polarization inversion grating 12 extending outside this region and an optical waveguide 13 are simultaneously formed by a proton exchange treatment on an LiTaO3 substrate 11. A grating pattern mask is first formed on the front surface of this substrate and a metallic film over the entire rear surface thereof. The substrate is subjected to the proton exchange treatment at >=50 deg.C/min temp. gradient at the time of the treatment and >=50 deg.C/min temp. falling speed from the treatment temp. to form the proton exchange region 16 and the polarization inversion grating 12 extending outside this region. An aluminum nitride ceramic plate is used for a substrate holder of this time to electrically insulate the substrate 11. The refractive index of the proton exchange region 16 is thereafter increased by the heat treatment. The optical waveguide is thus easily realized by one time of photolithography and the SHG element having the high efficiency is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非線形強誘電体光学材料
であるLiTaO3やLiNbO3基板を用いた第2高調
波発生素子(以下SHG素子)における分極反転格子の
形成方法に関わり、SHG素子の高効率化に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a polarization inversion grating in a second harmonic generation element (hereinafter referred to as SHG element) using a LiTaO 3 or LiNbO 3 substrate which is a non-linear ferroelectric optical material. It is related to high efficiency of.

【0002】[0002]

【従来の技術】近年、小型軽量の青色光源として、波長
830nmの半導体レーザを導波路型のSHG素子で半
分の波長415nmの青色の光に変換することが注目さ
れている。例えば特開昭61−18934公報に記載さ
れているようにLiNbO3基板上にプロトン交換法
(LiNbO3のLiイオンとプロトンを一部置換して
光導波路を形成する方法)により光導波路を形成し、上
記光導波路の一端に基本波を入射し、チェレンコフ放射
によりSHG光を発生させることが提案させている。こ
れを図2に示す。さらに最近では例えばElectronics Le
tters,25,11(1989年)の第731〜732頁で論
じられているように、分極反転を用いて位相整合を行う
方法が提案された。すなわち図3に示すようにLiNb
3基板上にTi拡散によって周期格子を作製し、約1
100℃に加熱して周期格子層だけの分極を反転させ、
その後プロトン交換法によって光導波路を作製し、基本
波を入射しSHG光を取り出すものである。LiTaO
3基板を用いる場合には例えばAppl.Phys.Lett.58(24)
(1991年)第2732〜2734頁で論じられてい
るようにTi拡散の替わりにプロトン交換法によって周
期格子を作製し、約600℃に加熱し周期格子層だけ分
極を反転させ、さらにプロトン交換法によって光導波路
を作製する方法も試みられている。これを図4に示す。
2. Description of the Related Art In recent years, as a compact and lightweight blue light source, attention has been paid to converting a semiconductor laser having a wavelength of 830 nm into blue light having a wavelength of 415 nm, which is half that of a semiconductor type laser. For example, as described in JP-A-61-18934, an optical waveguide is formed on a LiNbO 3 substrate by a proton exchange method (a method of partially replacing Li ions and protons of LiNbO 3 to form an optical waveguide). It is proposed that a fundamental wave be incident on one end of the above-mentioned optical waveguide and SHG light be generated by Cherenkov radiation. This is shown in FIG. More recently, for example, Electronics Le
A method of performing phase matching using polarization reversal has been proposed, as discussed in pages 731-732 of tters, 25, 11 (1989). That is, as shown in FIG.
A periodic lattice was prepared by diffusion of Ti on an O 3 substrate,
It is heated to 100 ℃ and the polarization of the periodic lattice layer is reversed.
After that, an optical waveguide is produced by the proton exchange method, and the fundamental wave is incident to take out SHG light. LiTaO
When using three substrates, for example Appl.Phys.Lett.58 (24)
(1991) As discussed on pages 2732-2734, a periodic lattice was prepared by the proton exchange method instead of Ti diffusion, heated to about 600 ° C. to invert the polarization only in the periodic lattice layer, and then the proton exchange method. A method of manufacturing an optical waveguide has also been attempted. This is shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術には、次に示すような問題点があった。図2に示
すチェレンコフ放射を用いる方法では22に示すように
発生するSHG光のビーム形状が三日月型となり、極め
て波面収差が大きく、これを回折限界まで絞り込むこと
はほとんど不可能である。上記例に対して新しく提案さ
れた図3および図4に示す分極反転を用いて位相整合を
行う方法はSHG光がコリメートされた光であるため、
チェレンコフ放射光と比較して集光が極めて容易である
という利点を持つ。しかし、分極反転格子の断面形状
が、Ti拡散法で形成されたものは31に示すように三
角形であり、プロトン交換法では41に示すように半円
形であるため、理想的な矩型断面の分極反転格子を持つ
SHG素子本来の効率でSHG光を発生できていない。
また、Ti拡散領域は強い光によって屈折率が変化する
光損傷が起きやすくなることやプロトン交換領域では非
線形光学係数が低下して本来のSHG発生効率が得られ
ないことなど問題があった。また、従来から用いられて
きたプロトン交換処理の方法は、図5に示すガラス容器
を用いる方法で行われる。この場合、プロトン源である
酸によってはガラス容器51が侵されることや基板の全
方位がプロトン交換されることにより、酸による化学損
傷性の結晶方位による違いにより基板の表面が荒れた
り、割れてしまう問題点があった。さらに、従来の方法
では分極反転格子の作製と光導波路の作製が別々の工程
で、2回以上のフォトリソグラフィを行わなければなら
ないなど問題があった。本発明の目的は理想的な矩型状
の分極反転格子と光導波路を1回のフォトリソグラフィ
で容易に作製した高効率のSHG素子を作製することに
ある。
However, the above-mentioned prior art has the following problems. In the method using Cherenkov radiation shown in FIG. 2, the beam shape of the SHG light generated as shown by 22 is crescent-shaped, and the wavefront aberration is extremely large, and it is almost impossible to narrow it down to the diffraction limit. The newly proposed method for performing phase matching using polarization inversion shown in FIGS. 3 and 4 for the above example is SHG light that is collimated light.
Compared with Cherenkov radiation, it has the advantage that it is extremely easy to collect light. However, the cross-sectional shape of the domain-inverted lattice formed by the Ti diffusion method is triangular as shown at 31 and is semicircular as shown at 41 by the proton exchange method. SHG light cannot be generated with the original efficiency of the SHG element having the polarization inversion grating.
In addition, there are problems that the Ti diffusion region is prone to optical damage in which the refractive index changes due to strong light, and that the nonlinear optical coefficient decreases in the proton exchange region and the original SHG generation efficiency cannot be obtained. The conventionally used method of proton exchange treatment is a method using a glass container shown in FIG. In this case, the glass container 51 is attacked by the acid as the proton source and all the orientations of the substrate are proton-exchanged, so that the surface of the substrate is roughened or cracked due to the difference in the chemical orientation of the chemical damage due to the crystal orientation. There was a problem that would end up. Furthermore, the conventional method has a problem that the production of the polarization inversion grating and the production of the optical waveguide have to be performed in separate steps and photolithography must be performed twice or more. An object of the present invention is to manufacture a highly efficient SHG element in which an ideal rectangular polarization inversion grating and an optical waveguide are easily manufactured by one-time photolithography.

【0004】[0004]

【課題を解決するための手段】本発明は、LiTa
3、LiNbO3またはMgドープされたLiTaO3
およびLiNbO3基板上にプロトン交換熱処理により
周期的組成変調領域を形成し、かつ該組成変調領域外の
一様な組成領域に伸びる該組成変調領域とほぼ同期した
周期的分極反転格子を形成し、プロトン交換による該周
期的組成変調領域を光導波路とすることを特徴とする分
極反転格子と光導波路の形成方法であり、それを用いた
第2高調波発生素子である。本発明は基板表面には周期
的分極反転格子形成のためのパターニングされた金属膜
マスク、裏面は全面に金属膜を形成した基板を用いて周
期的分極反転格子と光導波路を形成することを特徴とす
る。また、前記周期的分極反転格子形成後、熱処理によ
り基板表面のプロトン交換領域の屈折率を高くすること
で光導波路とすることを特徴とする。本発明は更に、前
記熱処理温度が200℃以上でありかつ熱処理時間が2
0分以内であることを特徴とする。本発明は更に、前記
熱処理において処理温度までの昇温時もしくは処理温度
からの降温時の一方または両方に50℃/分以上の温度
変化速度を含むことを特徴とする。本発明は更に、前記
周期的分極反転格子は先端が単一ないし複数のスパイク
状の尖った形状を持つことを特徴とする。本発明は更
に、前記プロトン交換処理は酸を基板上に表面張力を利
用して塗布し、熱処理を行うことで基板の一表面のみを
プロトン交換することを特徴とする。本発明は更に、前
記プロトン交換処理はプレート型ヒーターを用いること
を特徴とする。本発明は更に、前記プロトン交換処理に
おいて処理温度までの昇温時もしくは処理温度からの降
温時の一方または両方に50℃/分以上の温度変化速度
を含むことを特徴とする。本発明は更に、前記酸はピロ
燐酸、燐酸、安息香酸、ステアリン酸を用いることを特
徴とする。本発明は更に、前記プロトン交換処理におけ
る基板ホルダーとして、熱伝導性と絶縁性に優れた窒化
アルミニュームセラミックス(AlN)板を用い、基板
をホルダーにて電気的に絶縁されていることを特徴とす
る。そして本発明は、上述の分極反転格子と光導波路の
形成方法によって製造した第2高調波発生素子を提供す
る。本発明の目的は図1に示すようにプロトン交換領域
の外の一様な組成領域に伸びる分極反転格子を作製する
ことで理想的な矩型状の分極反転格子を実現し、さらに
プロトン交換領域を光導波路とすることで、高効率のS
HG光を発生させる素子を簡単な工程で作製することに
ある。LiTaO3またはLiNbO3基板におけるスパ
イク状分域の存在は、例えばJ.Appl.Phys.vol.46,No.3
(1975年)の1063頁に見られるように良く知ら
れていたが、これまでスパイク状分域を制御する手段は
なかった。本発明はこのスパイク状分域の生成を人為的
に制御することで、分域が基板のc軸方向に垂直に延び
る性質を利用して、高効率SHG素子を達成するという
ものである。そこで我々はスパイク状分域領域が出現す
る条件について検討したところ、LiTaO3またはL
iNbO3基板が比較的急速な熱履歴を受けたときにス
パイク状分域領域が多く出現することを見いだした。こ
のことは急速な熱変化に対応して分極の大きさが急激に
変化し、そのため分域壁周辺に実効的な電界が発生する
ためであり、このためスパイク状分域が分極の方向であ
るc軸に沿って成長するものと考えられる。また、同様
の現象は熱変化だけでなく例えば応力によってもスパイ
ク状分域を生成できる可能性があると考えられる。この
ため分域の芽を周期的に形成すれば、このスパイク状分
域を周期的に配置することができると考えるに至った。
分域の芽としては、局所的に分極の大きさあるいはその
向きが周辺部分と異なった領域が分域の芽となりうる可
能性があると考えられる。さらに、基板裏面に金属膜を
形成することで基板表面のプロトン交換のための金属マ
スク部分との間、つまり基板厚さ方向に電界が誘起さ
れ、スパイク状分域の成長が促進されるものと考えられ
る。また、スパイク状分域の芽となるプロトン交換領域
は図10で示すように熱処理を行うことで屈折率が高く
なり、光導波路として構成することができる。以上の考
えに基づき、LiTaO3またはLiNbO3基板の一様
な組成領域内に周期的分極反転格子を形成するために、
プロトン交換による周期的な格子パタ−ンを形成する時
に適当な昇降温速度の熱履歴を与え周期的なスパイク状
の分極反転格子を形成し、その後、再熱処理を加えるこ
とでプロトン交換領域を光導波路とすれば、光導波路内
に実質的に矩型の分極反転格子が形成できる。この方法
を用いれば分極反転格子と光導波路を1回のフォトリソ
グラフィ−だけで作製できるという考えにいたった。さ
らに、図7に示すようにプロトン交換処理の方法とし
て、プロトン交換源である酸の表面張力を用いて基板表
面に酸を保持し、プレート型ヒーターにより急激な熱履
歴を与えながら結晶基板の一面のみにプロトン交換を行
うことで周期的なスパイク状の分極反転格子を形成でき
る。また、基板ホルダーとして熱伝導性および絶縁性が
良い窒化アルミニュームセラミックス板を用い、基板ホ
ルダーにて基板を電気的に絶縁する。その結果として容
易に高効率のSHG素子を実現できると考えた。
The present invention is based on LiTa.
O 3 , LiNbO 3 or Mg-doped LiTaO 3
And forming a periodic composition modulation region on the LiNbO 3 substrate by a proton exchange heat treatment, and forming a periodic domain-inverted lattice almost in synchronization with the composition modulation region extending to a uniform composition region outside the composition modulation region, A method of forming a polarization inversion grating and an optical waveguide, characterized in that the periodic composition modulation region by proton exchange is used as an optical waveguide, and is a second harmonic generation element using the same. The present invention is characterized in that a periodically poled grating and an optical waveguide are formed using a patterned metal film mask for forming a periodically poled grating on the front surface of the substrate and a substrate having a metal film formed on the entire back surface. And Further, after the formation of the periodically poled lattice, heat treatment is performed to increase the refractive index of the proton exchange region on the surface of the substrate to form an optical waveguide. The present invention further provides that the heat treatment temperature is 200 ° C. or higher and the heat treatment time is 2
Characterized by being within 0 minutes. The present invention is further characterized in that in the heat treatment, a temperature change rate of 50 ° C./minute or more is included in one or both of a temperature increase to a treatment temperature and a temperature decrease from the treatment temperature. The present invention is further characterized in that the periodically poled grating has a single or a plurality of spike-like sharp tips. The present invention is further characterized in that in the proton exchange treatment, an acid is applied onto a substrate by utilizing surface tension and a heat treatment is performed to exchange protons only on one surface of the substrate. The present invention is further characterized in that the proton exchange treatment uses a plate heater. The present invention is further characterized in that, in the proton exchange treatment, a temperature change rate of 50 ° C./min or more is included in one or both of a temperature increase to a treatment temperature and a temperature decrease from the treatment temperature. The present invention is further characterized in that the acid is pyrophosphoric acid, phosphoric acid, benzoic acid or stearic acid. Further, the present invention is characterized in that an aluminum nitride ceramics (AlN) plate excellent in thermal conductivity and insulation is used as the substrate holder in the proton exchange treatment, and the substrate is electrically insulated by the holder. To do. Then, the present invention provides a second harmonic generation element manufactured by the above method for forming the polarization inversion grating and the optical waveguide. The object of the present invention is to realize an ideal rectangular polarization inversion lattice by producing a polarization inversion lattice extending to a uniform composition region outside the proton exchange region as shown in FIG. S is a highly efficient S
It is to manufacture an element for generating HG light by a simple process. The presence of spike-like domains in a LiTaO 3 or LiNbO 3 substrate has been reported, for example, in J. Appl. Phys. Vol. 46, No. 3
As is well known, as seen on page 1063 of (1975), there has hitherto been no means to control the spiked domains. The present invention intends to achieve a high-efficiency SHG device by artificially controlling the generation of this spike-shaped domain, and utilizing the property that the domain extends perpendicularly to the c-axis direction of the substrate. Therefore, we examined the conditions for the appearance of spike-shaped domain regions, and found that LiTaO 3 or L
It was found that many spike-shaped domain regions appeared when the iNbO 3 substrate was subjected to a relatively rapid thermal history. This is because the magnitude of the polarization changes rapidly in response to a rapid thermal change, which causes an effective electric field to be generated around the domain wall. Therefore, the spike domain is the direction of polarization. It is considered to grow along the c-axis. Further, it is considered that the similar phenomenon may generate spike-like domains not only due to thermal change but also due to stress, for example. Therefore, it was considered that the spike-like domains could be arranged periodically if the shoots of the domains were formed periodically.
It is considered that the buds in the domain may be the buds in the domain in which the magnitude or direction of polarization locally differs from that in the peripheral portion. Furthermore, by forming a metal film on the back surface of the substrate, an electric field is induced between the surface of the substrate and the metal mask portion for proton exchange, that is, in the thickness direction of the substrate, and growth of spike-shaped domains is promoted. Conceivable. Further, the proton exchange region, which becomes a sprout of the spike-shaped domain, has a higher refractive index by heat treatment as shown in FIG. 10, and can be configured as an optical waveguide. Based on the above idea, in order to form a periodically poled lattice within a uniform composition region of a LiTaO 3 or LiNbO 3 substrate,
When a periodic lattice pattern is formed by proton exchange, a thermal history of an appropriate rate of temperature increase / decrease is applied to form a periodic spike-like polarization-inverted lattice. If the waveguide is used, a substantially rectangular polarization inversion grating can be formed in the optical waveguide. This method has led to the idea that the domain-inverted grating and the optical waveguide can be produced only once by photolithography. Further, as shown in FIG. 7, as a method of proton exchange treatment, the surface tension of the acid, which is a proton exchange source, is used to hold the acid on the substrate surface, and a plate-type heater is used to provide a rapid thermal history to the surface of the crystal substrate. A periodic spike-like polarization inversion lattice can be formed by exchanging the protons only. Further, an aluminum nitride ceramics plate having good thermal conductivity and insulation is used as the substrate holder, and the substrate is electrically insulated by the substrate holder. As a result, it was thought that a highly efficient SHG element could be easily realized.

【0005】[0005]

【実施例】以下、本発明の実施例について詳しく説明す
る。図1は本発明によるSHG素子の実施例を示す構成
および動作説明図、図6はプロトン交換熱処理の方法を
示す図、図7(a)〜(f)は上記SHG素子の製造工
程を示す図である。図8はプロトン交換領域外に形成さ
れた分極反転格子、図9は半円状の分極反転格子を示す
写真である。図1において、11は表面が−c面である
LiTaO3単結晶基板で自発分極の向きは下向きであ
る。12はプロトン交換領域16と同時に形成された反
転分極であり、これらの部分では分極の向きは上向きで
ある。M.Didomenico Jr.らの文献 Journal of Applied
Physics Vol.40, No.2 720〜734頁によると非線
形光学係数の符号はLiNbO3またはLiTaO3等の
空間群R3cの強誘電体結晶の場合、自発分極の向きと
一致する。従って、本実施例の基板並びに光導波層の非
線形光学係数も周期的に反転されているといえる。13
はチャンネル型光導波路となり、基本波、SHG光もこ
の部分に閉じこめられて伝搬する。14は入射基本波で
結晶表面に垂直方向に偏光している。15は光導波層部
分で発生したSHG光であり、やはり結晶表面に垂直な
方向に偏光している。次にプロトン交換処理について説
明する。酸性の溶液に基板等を浸漬するプロトン交換に
より、基板表面からH+イオンが基板内に侵入して基板
のLiと交換され、組成変化層が形成される。特に燐酸
類は解離定数が安息香酸(C6H5COOH、融点121℃、沸点25
0℃)に比べ2〜3桁高く、Hの濃度が高いため組成変化の
度合いが大きくなる。また、300℃程度まで液体での
高温処理が可能であり、蒸発量が極めて少なく制御性や
作業性が良い。さらに、水に可溶なためサンプルおよび
容器や治具の洗浄が可能である。燐酸としてピロ燐酸(H
4P2O7、融点61℃、沸点300℃)を用いた。図6におい
て、表面が−z面であるLiTaO3単結晶基板11を
基板ホルダーである接地された白金板62上に置き、ピ
ロ燐酸63を基板11上に表面張力を利用して数滴たら
して保持する。プロトン交換温度に加熱されたプレート
型ヒーター64上に62の基板ホルダーを置き、数分〜
数時間プロトン交換を行う。プロトン交換後、基板を取
り出し水洗することで13のピロ燐酸を除去する。これ
により基板11の一面のみにプロトン交換層65が形成
される。プロトン交換はすべて大気中で行った。また、
選択的にプロトン交換するには、ピロ燐酸に溶けないT
a膜を基板表面につけフォトリソグラフィにより、格子
マスクを作製することで可能である。ここで基板ホルダ
ー62は熱伝導性および絶縁性が良い窒化アルミニュー
ムセラミックス板を用いることで、基板が電気的に絶縁
されている。また、プロトン交換時の酸は、燐酸、安息
香酸、ステアリン酸を用いることでも可能であることは
容易に類推する事ができる。次に、本発明の分極反転格
子と光導波路の形成方法を図7を用いて説明する。図は
光導波路と分極反転格子部分の断面図である。図7
(a)に示すようにLiTaO3基板11を用意する。
(b)11の−Z面上にTa膜71を30nmスパッタ
リングで成膜する。裏面の+Z面にAu膜73を50n
m蒸着する。(c)Ta膜71上にホトレジスト72を
スピンコートし、分極反転12を行う部分が光導波路幅
で窓あけされたホトマスクを用い、通常のホトリソグラ
フィ技術によりホトレジスト72のパターニングを行っ
た。ホトマスクのパタ−ン周期は1〜10μmで発生さ
せるSHG光の周期に合わせてあり、導波路幅は2〜6
μmの幅である。(d)パターニングしたホトレジスト
72をマスクとして、CF3Clガスを用いたRIEに
よるドライエッチングにより、Ta膜71をパターニン
グする。(e)ホトレジスト72をアセトンにより除去
し、ピロ燐酸を用いて図6で示したプロトン交換熱処理
を260℃、30〜60分で行い、プロトン交換層16
が形成されると同時にスパイク状分極反転層12を形成
させる。図6のヒーター64へ基板ホルダー62を置く
時と取り外す時に基板11は急激な熱変化を受ける。こ
の時のプロトン交換処理温度までの昇温速度を50℃/
分以上で行い、熱処理温度からの降温速度を50℃/分
以上で行うことによりプロトン交換領域16とスパイク
状分極反転格子12が作製できた。(f)Ta膜71を
NaOHの水溶液でエッチングする。熱処理を温度38
0℃で保持時間5分、熱処理温度までの昇温速度を50
℃/分以上で行い、熱処理温度からの降温速度を50℃
/分以上で行うことでプロトン交換部分の屈折率を高く
し光導波路を形成する。また、プロトンによる非線形光
学定数の低下を抑制できる。熱処理時間が20分以上行
うとプロトンの拡散が大きくなり過ぎるために光導波路
の損失が大きくなってしまう。作製された分極反転格子
の深さは基板表面に形成された光導波路およびプロトン
交換層の深さより大きく基板厚さより小さく、その幅は
プロトン交換パタ−ンの幅とほぼ等しく、光導波路の深
さの範囲ではほぼ矩型状の分極反転格子を実現できた。
最後に導波路端面を光学研磨することによりSHG素子
が作製される。以上示した作製方法で分極反転格子を作
製し、素子長1cmのSHG素子を作製した。基本波の
光源としてチタン−サファイヤレーザを用いて、作製し
たSHG素子に波長830nmの基本波を入射したとこ
ろ、415nmの青色SHG光が得られた。この時のS
HG光出力は10mWであり、規格化SHG効率は15
0%/W・cm2であった。この時の作製された分極反
転格子は図8で示すような理想的な矩型状に近い分極反
転格子が形成されており、先端がスパイク状であった。
次に、比較のためにプロトン交換領域のみが分極反転さ
れた別のSHG素子を作製した。この時作製された分極
反転格子の断面を観察するとは図9で示すような半円状
であった。次にSHG光出力を実施例と同様に測定した
ところこの時のSHG光出力は100nWであり、規格
化SHG効率は4%/W・cm2であった。 このこと
により、プロトン交換熱処理時にプロトン交換領域以外
に伸びるスパイク状分極反転格子を1回のフォトリソグ
ラフィ−の工程で容易に作製することができ、高効率の
SHG素子が実現できることが分かった。
EXAMPLES Examples of the present invention will be described in detail below. FIG. 1 is a configuration and operation explanatory view showing an embodiment of an SHG element according to the present invention, FIG. 6 is a view showing a method of proton exchange heat treatment, and FIGS. 7A to 7F are views showing a manufacturing process of the SHG element. Is. FIG. 8 is a photograph showing a polarization inversion lattice formed outside the proton exchange region, and FIG. 9 is a photograph showing a semicircular polarization inversion lattice. In FIG. 1, 11 is a LiTaO 3 single crystal substrate whose surface is the −c plane, and the direction of spontaneous polarization is downward. Reference numeral 12 is an inverted polarization formed at the same time as the proton exchange region 16, and the polarization direction is upward in these portions. M. Didomenico Jr. et al. Journal of Applied
According to Physics Vol.40, No.2, pages 720 to 734, the sign of the nonlinear optical coefficient coincides with the direction of spontaneous polarization in the case of a ferroelectric crystal of space group R3c such as LiNbO 3 or LiTaO 3 . Therefore, it can be said that the nonlinear optical coefficients of the substrate and the optical waveguide layer of this example are also periodically inverted. Thirteen
Becomes a channel type optical waveguide, and the fundamental wave and SHG light are also confined and propagated in this portion. Reference numeral 14 is an incident fundamental wave, which is polarized in a direction perpendicular to the crystal surface. Reference numeral 15 is SHG light generated in the optical waveguide layer portion, which is also polarized in a direction perpendicular to the crystal surface. Next, the proton exchange process will be described. By proton exchange by immersing the substrate or the like in an acidic solution, H + ions penetrate into the substrate from the surface of the substrate and are exchanged with Li of the substrate to form a composition change layer. In particular, phosphoric acids have a dissociation constant of benzoic acid (C 6 H 5 COOH, melting point 121 ° C, boiling point 25
It is two to three orders of magnitude higher than that at 0 ° C., and the concentration of H is high, so the degree of composition change is large. Further, it is possible to perform high-temperature treatment with a liquid up to about 300 ° C., and the evaporation amount is extremely small, and controllability and workability are good. Further, since it is soluble in water, it is possible to wash the sample, the container and the jig. Pyrophosphoric acid (H
4 P 2 O 7 , melting point 61 ° C., boiling point 300 ° C.) was used. In FIG. 6, a LiTaO 3 single crystal substrate 11 whose surface is the −z plane is placed on a grounded platinum plate 62 which is a substrate holder, and a few drops of pyrophosphoric acid 63 are placed on the substrate 11 using surface tension. Hold. Place the 62 substrate holder on the plate-type heater 64 heated to the proton exchange temperature for several minutes.
Proton exchange is performed for several hours. After the proton exchange, the substrate is taken out and washed with water to remove the pyrophosphoric acid of 13. As a result, the proton exchange layer 65 is formed only on one surface of the substrate 11. All proton exchange was performed in the atmosphere. Also,
For selective proton exchange, T which is insoluble in pyrophosphoric acid
This can be done by attaching a film to the surface of the substrate and producing a lattice mask by photolithography. Here, the substrate holder 62 is made of an aluminum nitride ceramics plate having good thermal conductivity and insulating properties, so that the substrate is electrically insulated. It can be easily inferred that phosphoric acid, benzoic acid, or stearic acid can be used as the acid for proton exchange. Next, the method of forming the polarization inversion grating and the optical waveguide of the present invention will be described with reference to FIG. The figure is a cross-sectional view of an optical waveguide and a domain-inverted grating. Figure 7
As shown in (a), a LiTaO 3 substrate 11 is prepared.
(B) A Ta film 71 is formed on the −Z surface of 11 by 30 nm sputtering. Au film 73 of 50n on the + Z surface on the back
m vapor deposition. (C) A photoresist 72 was spin-coated on the Ta film 71, and the photoresist 72 was patterned by a normal photolithography technique using a photomask in which a portion where the polarization inversion 12 was performed was opened by the optical waveguide width. The pattern period of the photomask is set to 1 to 10 μm in accordance with the period of SHG light generated, and the waveguide width is set to 2 to 6
The width is μm. (D) Using the patterned photoresist 72 as a mask, the Ta film 71 is patterned by dry etching by RIE using CF 3 Cl gas. (E) The photoresist 72 is removed with acetone, and the proton exchange heat treatment shown in FIG. 6 is performed using pyrophosphoric acid at 260 ° C. for 30 to 60 minutes to obtain the proton exchange layer 16
At the same time that is formed, the spike-shaped polarization inversion layer 12 is formed. The substrate 11 undergoes a rapid thermal change when the substrate holder 62 is placed on or removed from the heater 64 shown in FIG. At this time, the temperature rising rate up to the proton exchange treatment temperature is 50 ° C /
The proton exchange region 16 and the spike-shaped polarization inversion lattice 12 can be manufactured by performing the heating for more than 5 minutes and the temperature lowering rate from the heat treatment temperature at 50 ° C./minute or more. (F) The Ta film 71 is etched with an aqueous solution of NaOH. Heat treatment at temperature 38
Hold time 5 minutes at 0 ° C, heating rate up to heat treatment temperature 50
℃ / min or more, the rate of temperature decrease from the heat treatment temperature is 50 ℃
/ Min or more increases the refractive index of the proton exchange part to form an optical waveguide. Further, it is possible to suppress the decrease of the nonlinear optical constant due to the proton. If the heat treatment time is 20 minutes or more, the diffusion of protons becomes too large and the loss of the optical waveguide becomes large. The depth of the fabricated polarization inversion lattice is larger than the depth of the optical waveguide and the proton exchange layer formed on the substrate surface and smaller than the substrate thickness, and its width is almost equal to the width of the proton exchange pattern. In the range of, a rectangular polarization-inverted grating could be realized.
Finally, the SHG element is manufactured by optically polishing the end face of the waveguide. A polarization inversion grating was produced by the above-described production method, and an SHG element having an element length of 1 cm was produced. When a titanium-sapphire laser was used as a light source of the fundamental wave and a fundamental wave having a wavelength of 830 nm was incident on the manufactured SHG element, blue SHG light of 415 nm was obtained. S at this time
The HG light output is 10 mW and the standardized SHG efficiency is 15
It was 0% / W · cm 2 . The polarization inversion grating produced at this time had an ideal polarization inversion grating close to a rectangular shape as shown in FIG. 8, and the tip had a spike shape.
Next, for comparison, another SHG element in which only the proton exchange region was polarization-inverted was produced. Observation of the cross section of the domain-inverted grating produced at this time showed a semicircular shape as shown in FIG. Next, when the SHG light output was measured in the same manner as in the example, the SHG light output at this time was 100 nW, and the normalized SHG efficiency was 4% / W · cm 2 . As a result, it was found that a spike-shaped polarization inversion lattice extending outside the proton exchange region during the proton exchange heat treatment can be easily produced by one photolithography step, and a highly efficient SHG element can be realized.

【0006】[0006]

【発明の効果】以上の説明から明らかなように、本発明
によれば、プロトン交換熱処理時にプロトン交換領域以
外に伸びるスパイク状分極反転格子を作製することで理
想的な矩型状の分極反転格子を実現することができ、1
回のフォトリソグラフィ−の工程で高効率のSHG光を
発生できるSHG素子が容易に実現できる。
As is apparent from the above description, according to the present invention, it is possible to form an ideal rectangular polarization inversion lattice by producing a spike-like polarization inversion lattice extending outside the proton exchange region during the proton exchange heat treatment. Can be realized 1
It is possible to easily realize an SHG element capable of generating highly efficient SHG light in a single photolithography process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を説明するための構造図であ
る。
FIG. 1 is a structural diagram for explaining an embodiment of the present invention.

【図2】チェレンコフ輻射を用いた従来のSHG素子を
示す図である。
FIG. 2 is a diagram showing a conventional SHG element using Cherenkov radiation.

【図3】三角形状の分極反転格子を用いた従来のSHG
素子を示す図である。
FIG. 3 is a conventional SHG using a triangular polarization inversion grating.
It is a figure which shows an element.

【図4】半円状の分極反転格子を用いた従来のSHG素
子を示す図である。
FIG. 4 is a diagram showing a conventional SHG element using a semi-circular polarization inversion grating.

【図5】従来のプロトン交換の方法を示す図である。FIG. 5 is a diagram showing a conventional proton exchange method.

【図6】本発明によるプロトン交換熱処理方法を示す図
である。
FIG. 6 is a diagram showing a proton exchange heat treatment method according to the present invention.

【図7】(a)〜(f)はそれぞれ本発明に係るスパイ
ク状分極反転格子と光導波路の作製方法を示す図であ
る。
7 (a) to 7 (f) are diagrams showing a method of manufacturing a spike-shaped polarization inversion grating and an optical waveguide according to the present invention, respectively.

【図8】プロトン交換領域とスパイク状分極反転格子を
示す基板上に形成された微細なパタ−ンを表している写
真である。
FIG. 8 is a photograph showing a fine pattern formed on a substrate showing a proton exchange region and a spike-shaped polarization inversion lattice.

【図9】半円状分極反転格子を示す基板上に形成された
微細なパタ−ンを表している写真である。
FIG. 9 is a photograph showing a fine pattern formed on a substrate showing a semi-circular polarization inversion grating.

【図10】プロトン交換導波路の熱処理時間に対する屈
折率を示す図である。
FIG. 10 is a diagram showing a refractive index of a proton exchange waveguide with respect to heat treatment time.

【符号の説明】[Explanation of symbols]

11 基板(LiTaO3) 12 分極反転領域 13 チャンネル型光導波路 14 基本波入射光 15 SHG出力光 16 プロトン交換領域 21 基板(LiNbO3) 22 チェレンコフSHG光 31 三角状分極反転領域 41 半円状分極反転領域 51 ガラス容器 52 基板 53 酸 54 恒温槽 62 窒化アルミニュームセラミックス基板ホルダー 63 ピロ燐酸 64 プレート型ヒーター 65 プロトン交換層 71 Ta膜 72 ホトレジスト 73 Au膜11 substrate (LiTaO 3 ) 12 polarization inversion region 13 channel type optical waveguide 14 fundamental wave incident light 15 SHG output light 16 proton exchange region 21 substrate (LiNbO 3 ) 22 Cherenkov SHG light 31 triangular polarization inversion region 41 semicircular polarization inversion Area 51 Glass Container 52 Substrate 53 Acid 54 Constant Temperature Bath 62 Aluminum Nitride Ceramics Substrate Holder 63 Pyrophosphoric Acid 64 Plate Type Heater 65 Proton Exchange Layer 71 Ta Film 72 Photoresist 73 Au Film

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 LiTaO3,LiNbO3,またはMg
ドープLiTaO3またはLiNbO3基板上にプロトン
交換熱処理により周期的組成変調領域を形成し、かつ該
組成変調領域外の一様な組成領域に伸びる該組成変調領
域とほぼ同期した周期的分極反転格子を形成し、プロト
ン交換による該周期的組成変調領域を光導波路とする分
極反転格子と光導波路の形成方法において、前記基板表
面には周期的分極反転格子形成のためのパターニングさ
れた金属膜マスク、裏面は全面に金属膜を形成した基板
を用いて周期的分極反転格子と光導波路を形成すること
を特徴とする分極反転格子と光導波路の形成方法。
1. LiTaO 3 , LiNbO 3 , or Mg
A periodic composition modulation region is formed on a doped LiTaO 3 or LiNbO 3 substrate by a proton exchange heat treatment, and a periodic polarization inversion lattice extending in a uniform composition region outside the composition modulation region and substantially synchronized with the composition polarization region is formed. In the method of forming a polarization inversion grating and an optical waveguide in which the periodic composition modulation region is formed by proton exchange as an optical waveguide, and a patterned metal film mask for forming the periodic polarization inversion grating on the surface of the substrate, the back surface Is a method for forming a polarization inversion grating and an optical waveguide, which comprises forming a periodic polarization inversion grating and an optical waveguide using a substrate on which a metal film is formed.
【請求項2】 前記周期的分極反転格子形成後、熱処理
により基板表面のプロトン交換領域の屈折率を高くする
ことで光導波路とすることを特徴とする請求項1の分極
反転格子と光導波路の形成方法。
2. The polarization inversion grating and the optical waveguide according to claim 1, wherein after the formation of the periodic polarization inversion grating, an optical waveguide is formed by increasing the refractive index of the proton exchange region on the substrate surface by heat treatment. Forming method.
【請求項3】 前記熱処理温度が200℃以上でありか
つ熱処理時間が20分以内であることを特徴とする請求
項2の分極反転格子と光導波路の形成方法。
3. The method for forming a polarization inversion grating and an optical waveguide according to claim 2, wherein the heat treatment temperature is 200 ° C. or higher and the heat treatment time is 20 minutes or less.
【請求項4】 前記熱処理において処理温度までの昇温
時もしくは処理温度からの降温時の一方または両方に5
0℃/分以上の温度変化速度を含むことを特徴とする請
求項2または3のいずれかの項に記載の分極反転格子基
板の形成方法。
4. In the heat treatment, when the temperature is raised to a treatment temperature or when the temperature is lowered from the treatment temperature, either or both of them.
The method for forming a domain-inverted grating substrate according to claim 2 or 3, wherein the method includes a temperature change rate of 0 ° C / minute or more.
【請求項5】 前記周期的分極反転格子は先端が単一な
いし複数のスパイク状の尖った形状を持つことを特徴と
する請求項1ないし4のいずれかの項に記載の分極反転
格子と光導波路の形成方法。
5. The polarization inversion grating and the optical waveguide according to claim 1, wherein the periodic polarization inversion grating has a tip having a single or a plurality of spike-like sharp points. Waveguide formation method.
【請求項6】 前記プロトン交換処理は酸を基板上に表
面張力を利用して塗布し、熱処理を行うことで基板の一
表面のみをプロトン交換することを特徴とする請求項1
ないし5のいずれかの項に記載の分極反転格子と光導波
路の形成方法。
6. The proton exchange treatment is characterized in that an acid is applied onto a substrate by utilizing surface tension and a heat treatment is performed to exchange protons only on one surface of the substrate.
6. The method for forming a polarization inversion grating and an optical waveguide according to any one of items 1 to 5.
【請求項7】 前記プロトン交換処理はプレート型ヒー
ターを用いることを特徴とする請求項6の分極反転格子
と光導波路の形成方法。
7. The method of forming a polarization inversion grating and an optical waveguide according to claim 6, wherein a plate-type heater is used for the proton exchange treatment.
【請求項8】 前記プロトン交換処理において処理温度
までの昇温時もしくは処理温度からの降温時の一方また
は両方に50℃/分以上の温度変化速度を含むことを特
徴とする請求項1ないし7のいずれかの項に記載の分極
反転格子と光導波路の形成方法。
8. The temperature change rate of 50 ° C./minute or more is included in one or both of a temperature increase to a treatment temperature and a temperature decrease from the treatment temperature in the proton exchange treatment. 2. A method for forming a domain-inverted grating and an optical waveguide according to any one of 1.
【請求項9】 前記酸はピロ燐酸、燐酸、安息香酸、ス
テアリン酸を用いることを特徴とする請求項1ないし8
のいずれかの項に記載の分極反転格子と光導波路の形成
方法。
9. The acid used is pyrophosphoric acid, phosphoric acid, benzoic acid, or stearic acid.
2. A method for forming a domain-inverted grating and an optical waveguide according to any one of 1.
【請求項10】 前記プロトン交換処理における基板ホ
ルダーとして、基板を電気的に絶縁していることを特徴
とする請求項1ないし9のいずれかの項に記載の分極反
転格子と光導波路の形成方法。
10. The method for forming a polarization inversion grating and an optical waveguide according to claim 1, wherein the substrate is electrically insulated as a substrate holder in the proton exchange treatment. .
【請求項11】 前記基板ホルダーとしてAlN板を用
いることを特徴とする請求項1ないし10のいずれかの
項に記載の分極反転格子と光導波路の形成方法。
11. The method of forming a polarization inversion grating and an optical waveguide according to claim 1, wherein an AlN plate is used as the substrate holder.
JP5218150A 1993-08-10 1993-08-10 Formation of polarization inversion grating and optical waveguide Pending JPH0756203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5218150A JPH0756203A (en) 1993-08-10 1993-08-10 Formation of polarization inversion grating and optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5218150A JPH0756203A (en) 1993-08-10 1993-08-10 Formation of polarization inversion grating and optical waveguide

Publications (1)

Publication Number Publication Date
JPH0756203A true JPH0756203A (en) 1995-03-03

Family

ID=16715431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5218150A Pending JPH0756203A (en) 1993-08-10 1993-08-10 Formation of polarization inversion grating and optical waveguide

Country Status (1)

Country Link
JP (1) JPH0756203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011045893A1 (en) * 2009-10-16 2011-04-21 パナソニック株式会社 Method for manufacturing optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011045893A1 (en) * 2009-10-16 2011-04-21 パナソニック株式会社 Method for manufacturing optical element

Similar Documents

Publication Publication Date Title
JPH10503602A (en) Fabrication of patterned polarized dielectric structures and devices
Makio et al. Fabrication of periodically inverted domain structures in LiTaO3 and LiNbO3 using proton exchange
US7170671B2 (en) High efficiency wavelength converters
Mizuuchi et al. Fabrication of first‐order periodically domain‐inverted structure in LiTaO3
US5521750A (en) Process for forming proton exchange layer and wavelength converting element
JP3332363B2 (en) Method of manufacturing domain-inverted region, optical wavelength conversion element using the same, and method of manufacturing the same
US5412502A (en) Second harmonic generating element and the production method thereof
JPH0756203A (en) Formation of polarization inversion grating and optical waveguide
JPH0756201A (en) Formation of polarization inversion grating and optical waveguide
JPH0756202A (en) Formation of polarization inversion grating and optical waveguide
JP2948042B2 (en) How to use the second harmonic generation element
JP3165756B2 (en) Second harmonic generation element and method of manufacturing the same
JPH05241216A (en) Second harmonic wave generating element
Åhlfeldt et al. Single‐domain layers formed in multidomain LiTaO3 by proton exchange and heat treatment
JPH06130436A (en) Second harmonic generating element and its manufacture
JPH05241215A (en) Second harmonic wave generating element
RU2811419C2 (en) Nonlinear optical element with quasicontinuous circuit and method of its manufacture
JPH06123905A (en) Second harmonic wave generating element and its production
JPH05341342A (en) Second higher harmonic generating element and its production
JPH05241217A (en) Second harmonic wave generating element
JP3316987B2 (en) Method of forming domain-inverted grating and optical waveguide
JP2973642B2 (en) Manufacturing method of optical wavelength conversion element
JP2921209B2 (en) Manufacturing method of wavelength conversion element
JP3842427B2 (en) Optical waveguide component and manufacturing method thereof
JPH0561083A (en) Nonlinear ferroelectric optical element and its production