JPH0756153A - Liquid crystal optical element and its production - Google Patents

Liquid crystal optical element and its production

Info

Publication number
JPH0756153A
JPH0756153A JP20656493A JP20656493A JPH0756153A JP H0756153 A JPH0756153 A JP H0756153A JP 20656493 A JP20656493 A JP 20656493A JP 20656493 A JP20656493 A JP 20656493A JP H0756153 A JPH0756153 A JP H0756153A
Authority
JP
Japan
Prior art keywords
liquid crystal
optical element
metal oxide
crystal optical
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20656493A
Other languages
Japanese (ja)
Inventor
Masao Yamamoto
雅夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20656493A priority Critical patent/JPH0756153A/en
Publication of JPH0756153A publication Critical patent/JPH0756153A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To embody a liquid crystal optical element whose electric charge holding characteristic is excellent. CONSTITUTION:A pair of upper and lower substrates 11 and 12 where electrodes 13 are provided is stuck through resin 14 functioning both as a spacer and a seal, and a compound obtained by mixing an adsorption material 16 in a composition consisting of liquid crystal and a polymerizing material is inserted and held between the substrates 11 and 12. After an electric field is impressed on the compound through the electrodes 13, the polymerization of the polymerizing material is finished and the liquid crystal optical element using the high polymer distribution type liquid crystal 15 is completed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶が高分子樹脂マト
リクス中に分散保持された高分子分散型液晶を用いた液
晶光学素子及びその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal optical element using a polymer-dispersed liquid crystal in which a liquid crystal is dispersed and held in a polymer resin matrix, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、液晶分子の屈折率と同じ屈折率を
有する高分子に、ネマチック液晶を分散保持させた高分
子分散型液晶を、電極を有する上下一対の基板間に挟み
込み、電界の有無により、液晶の屈折率を変化させ、散
乱状態と透過状態とを切り換える液晶光学素子が多くの
研究、開発者の注目を集めている(特表昭58−501
631号公報、特開昭60−252687号公報、特表
昭61−502128号公報)。
2. Description of the Related Art In recent years, a polymer-dispersed liquid crystal in which a nematic liquid crystal is dispersed and held in a polymer having the same refractive index as that of liquid crystal molecules is sandwiched between a pair of upper and lower substrates having electrodes to determine the presence or absence of an electric field. The liquid crystal optical element that changes the refractive index of the liquid crystal to switch between the scattering state and the transmitting state has attracted much research and developer attention.
631, Japanese Patent Laid-Open No. 60-252687, and Japanese Patent Laid-Open No. 61-502128).

【0003】図7は、この液晶光学素子の表示原理を示
す概略図である。
FIG. 7 is a schematic view showing the display principle of this liquid crystal optical element.

【0004】電圧無印加状態(同図(a))では、液晶
74の分子軸がランダムな方向を向くため液晶領域の屈
折率が周囲の高分子相75の屈折率と異なり、液晶光学
素子に入った入射光72は散乱光73となり、その結
果、散乱状態が得られる。一方、電極71に電界を印加
する(同図(b))と、液晶74の分子軸が電界方向に
配列し、基板に垂直に入射した光に対しては、液晶領域
の屈折率が周囲の高分子相75の屈折率とほぼ一致する
ため、光の散乱が生じず透過光76となり、その結果、
透過状態が得られる。
In the state where no voltage is applied ((a) in the figure), since the molecular axes of the liquid crystal 74 are oriented in random directions, the refractive index of the liquid crystal region is different from that of the surrounding polymer phase 75, and the liquid crystal optical element has a different refractive index. The incident light 72 that has entered becomes scattered light 73, and as a result, a scattered state is obtained. On the other hand, when an electric field is applied to the electrode 71 ((b) in the figure), the molecular axes of the liquid crystal 74 are aligned in the direction of the electric field, and for light incident perpendicularly on the substrate, the refractive index of the liquid crystal region is around. Since the refractive index of the polymer phase 75 is almost the same as that of the polymer phase 75, light is not scattered and the transmitted light 76 is obtained.
A transparent state is obtained.

【0005】この高分子分散型液晶を用いた液晶光学素
子は、光の散乱を利用するため、偏光板を使用する必要
がなく、従来のツイステッドネマチック(TN)型の液
晶光学素子のように、直線偏光を得るために、偏光板を
使用しなければならない液晶光学素子に比べ、明るく、
視野角の広い表示が可能になる。さらに、従来のTN型
等の液晶光学素子は、配向処理や上下基板間隔を正確に
制御する必要があり、大面積の表示に関しては、表示む
らが出易いという課題を有していたが、高分子分散型液
晶を用いた液晶光学素子は、配向処理が不要で基板間隔
の制御も厳密でなく、大面積の液晶光学素子も容易に作
製できるという特徴を有する。
Since the liquid crystal optical element using the polymer-dispersed liquid crystal utilizes light scattering, it is not necessary to use a polarizing plate, and unlike a conventional twisted nematic (TN) type liquid crystal optical element, Compared to liquid crystal optical elements that require the use of polarizing plates to obtain linearly polarized light,
A wide viewing angle display is possible. Further, the conventional TN type liquid crystal optical element or the like needs to accurately control the alignment treatment and the upper and lower substrate intervals, and thus has a problem that display unevenness is likely to occur when displaying a large area. The liquid crystal optical element using the molecular dispersion type liquid crystal is characterized in that alignment treatment is not necessary, the substrate spacing is not strictly controlled, and a large area liquid crystal optical element can be easily manufactured.

【0006】[0006]

【発明が解決しようとする課題】ところで、高分子分散
型液晶を用いた液晶光学素子で、高い散乱状態を得るに
は、液晶相の屈折率と高分子相の屈折率との差を大きく
する必要があるため、液晶材料として高屈折率を有する
シアノ系の液晶材料が一般的によく用いられる。しか
し、シアノ系の液晶材料は、極性が高く、また誘電率異
方性(Δε)も大きいため,不純物を取り込み易いとい
う欠点を有する。従って、高分子分散型液晶を製造する
際、重合性材料などと混合した時、その中に含まれるイ
オン性物質などの不純物が液晶中に溶け出し、その結果
液晶の比抵抗が低下する。このように液晶の比抵抗が低
下するため、シアノ系の液晶を使用した高分子分散型液
晶を用いた液晶光学素子は、一般に電荷の保持特性が悪
く、それが原因でアクティブマトリクス駆動時に表示不
良を引き起こすという問題を有していた。
By the way, in order to obtain a high scattering state in a liquid crystal optical element using a polymer dispersed liquid crystal, the difference between the refractive index of the liquid crystal phase and the refractive index of the polymer phase is increased. Therefore, a cyano-based liquid crystal material having a high refractive index is often used as the liquid crystal material. However, the cyano-based liquid crystal material has a high polarity and a large dielectric anisotropy (Δε), and thus has a drawback that impurities are easily taken in. Therefore, when a polymer-dispersed liquid crystal is produced, when mixed with a polymerizable material or the like, impurities such as an ionic substance contained therein are dissolved into the liquid crystal, and as a result, the specific resistance of the liquid crystal is lowered. Since the specific resistance of the liquid crystal is lowered in this way, a liquid crystal optical element using a polymer-dispersed liquid crystal that uses a cyano-based liquid crystal generally has poor charge retention characteristics, which causes display failure during active matrix driving. Had the problem of causing.

【0007】本発明は、このような従来の高分子分散型
液晶の課題を考慮し、液晶の比抵抗の低下を抑え、電荷
の保持特性を劣化させない高分子分散型液晶を用いた液
晶光学素子の製造法と、表示性能の良い液晶光学素子を
提供することを目的とするものである。
In view of such problems of the conventional polymer-dispersed liquid crystal, the present invention suppresses the decrease in the specific resistance of the liquid crystal and prevents the deterioration of the charge retention characteristics. And a liquid crystal optical element having good display performance.

【0008】[0008]

【課題を解決するための手段】液晶の比抵抗の低下に
は、上記したように液晶中へのイオン性物質などの不純
物の溶け込みが関係していると考えられる。従って、液
晶の比抵抗の低下を抑えるには、高分子分散型液晶中に
存在するイオン性物質などの不純物を軽減する必要があ
る。本発明の請求項1から請求項4記載の液晶光学素子
は、少なくとも一方の基板上に設けた電極が透明である
上下一対の基板間に挟持した高分子分散型液晶が吸着材
を混合した高分子分散型液晶であることを特徴とする液
晶光学素子であり、本発明の請求項5及び請求項6記載
の液晶光学素子の製造法は、液晶と重合性材料から成る
組成物に吸着材を混合した混合物を、電極を設けた上下
一対の基板間に挟持し、前記混合物に電界を印加した
後、重合性材料の重合を完了し、液晶光学素子を製造す
ることを特徴とする液晶光学素子の製造法であり、本発
明請求項11記載の液晶光学素子の製造法は、液晶と重
合性材料から成る組成物に吸着材を混合した混合物を電
極を設けた上下一対の基板間に挟持し、重合性材料の重
合を行い、基板間に高分子分散型液晶を形成した後、高
分子分散型液晶に電界を印加し、液晶光学素子を完成す
ることを特徴とする液晶光学素子の製造法である。ま
た、本発明請求項16から請求項19記載の液晶光学素
子は、高分子分散型液晶を挟持する電極を有する基板
が、電極上に吸着材を混合した塗膜を設けた構成の基板
であることを特徴とする液晶光学素子であり、本発明の
請求項20及び請求項21記載の液晶光学素子の製造法
は、液晶と重合性材料からなる組成物を吸着材を混合し
た塗膜を設けた電極付きの基板間に挟持し、前記組成物
に電界を印加した後、重合性材料の重合を完了し、液晶
光学素子を製造することを特徴とする液晶光学素子の製
造法であり、本発明の請求項26記載の液晶光学素子の
製造法は、液晶と重合性材料からなる組成物を吸着材を
混合した塗膜を設けた電極付きの基板間に挟持し、重合
性材料の重合を完了し、形成した高分子分散型液晶に電
界を印加し、液晶光学素子を完成することを特徴とする
液晶光学素子の製造法である。
As described above, it is considered that the dissolution of impurities such as ionic substances into the liquid crystal is related to the decrease in the specific resistance of the liquid crystal. Therefore, in order to suppress the decrease in the specific resistance of the liquid crystal, it is necessary to reduce impurities such as ionic substances present in the polymer dispersed liquid crystal. In the liquid crystal optical element according to any one of claims 1 to 4 of the present invention, a polymer-dispersed liquid crystal sandwiched between a pair of upper and lower substrates having transparent electrodes provided on at least one substrate is mixed with an adsorbent. A liquid crystal optical element characterized by being a molecular dispersion type liquid crystal, and the method for producing a liquid crystal optical element according to claim 5 and 6 of the present invention is to use an adsorbent in a composition comprising liquid crystal and a polymerizable material. A liquid crystal optical element, characterized in that the mixed mixture is sandwiched between a pair of upper and lower substrates provided with electrodes, an electric field is applied to the mixture, polymerization of a polymerizable material is completed, and a liquid crystal optical element is manufactured. The method of manufacturing a liquid crystal optical element according to claim 11 of the present invention comprises sandwiching a mixture of a composition comprising liquid crystal and a polymerizable material with an adsorbent between a pair of upper and lower substrates provided with electrodes. , The polymerizable material is polymerized, and After forming the dispersion type liquid crystal, an electric field is applied to the polymer-dispersed liquid crystal, a manufacturing method of the liquid crystal optical element, characterized in that to complete the liquid crystal optical element. Further, in the liquid crystal optical element according to claims 16 to 19 of the present invention, the substrate having electrodes holding the polymer-dispersed liquid crystal in between is a substrate having a coating film prepared by mixing an adsorbent on the electrodes. A method for producing a liquid crystal optical element according to claims 20 and 21 of the present invention is a liquid crystal optical element characterized in that a coating film is prepared by mixing an adsorbent with a composition comprising liquid crystal and a polymerizable material. A method for producing a liquid crystal optical element, which comprises sandwiching the substrate with electrodes, applying an electric field to the composition, and then completing the polymerization of a polymerizable material to produce a liquid crystal optical element. The method for producing a liquid crystal optical element according to claim 26 of the present invention is characterized in that a composition comprising a liquid crystal and a polymerizable material is sandwiched between substrates with an electrode provided with a coating film in which an adsorbent is mixed to polymerize the polymerizable material. An electric field is applied to the completed, polymer-dispersed liquid crystal to form a liquid crystal. A method for producing a liquid crystal optical element, characterized in that to complete the academic element.

【0009】[0009]

【作用】液晶と重合性材料から成る組成物に吸着材を混
合した混合物に電界を印加することで、重合性材料等に
含まれるイオン性物質などの不純物が吸着材に吸着され
る。その結果、引き続き前記重合性材料の重合を完了す
ることで、高分子分散型液晶の液晶中の不純物の濃度が
減少し、液晶の比抵抗の低下が抑制され、電荷の保持特
性の劣化は起こらず、表示性能のすぐれた液晶光学素子
が実現できる。また、前記重合性材料の重合を完了し、
形成した高分子分散型液晶に電界を印加しても同様に電
荷の保持特性のよい、表示性能のすぐれた液晶光学素子
が実現できる。さらに、吸着材を高分子分散型液晶中に
混合する代わりに、高分子分散型液晶を挟持する電極を
設けた基板の表面に吸着材を混合した塗膜を設け、重合
性材料の重合前あるいは重合後に電界を印加しても同様
の作用が達成できる。つまり、液晶と重合性材料から成
る組成物に電界を印加すると、重合性材料等に含まれる
イオン性物質などの不純物が上下基板の表面に設けた吸
着材を混合した塗膜に吸着され、その結果高分子分散型
液晶中に存在するイオン性物質などの不純物が軽減さ
れ、液晶の比抵抗の低下や電荷の保持特性の劣化は起こ
らず、表示性能のすぐれた液晶光学素子が実現できる。
尚、吸着材としては、無機系の材料が望ましく、シリカ
系、アルミナ系やゼオライト等の金属酸化物及び活性
炭、多孔質ガラスなどが使用できる。これら吸着材の混
合量は、特に限定されないが、大体の目安として、高分
子分散型液晶中に混合する場合は、高分子分散型液晶に
対して0.01〜5重量%が適当であり、塗膜中に混合
するときは、塗膜材料に対して0.01〜5重量%が適
当である。混合量が0.01重量%より少ないときは、
不純物の吸着能が低下し、液晶光学素子の電荷保持特性
が劣化し、反対に混合量が5重量%より多いときは、液
晶光学素子の透過率に悪影響する。吸着材の大きさは、
特に限定されないが、一般的に吸着材として用いられる
数nm〜数μmのものが望ましい。
By applying an electric field to a mixture obtained by mixing a composition composed of liquid crystal and a polymerizable material with an adsorbent, impurities such as ionic substances contained in the polymerizable material are adsorbed by the adsorbent. As a result, by successively completing the polymerization of the polymerizable material, the concentration of impurities in the liquid crystal of the polymer-dispersed liquid crystal is reduced, the decrease in the specific resistance of the liquid crystal is suppressed, and the deterioration of the charge retention property does not occur. Therefore, a liquid crystal optical element with excellent display performance can be realized. Also, complete the polymerization of the polymerizable material,
Even when an electric field is applied to the formed polymer-dispersed liquid crystal, a liquid crystal optical element having excellent charge retention characteristics and excellent display performance can be realized. Further, instead of mixing the adsorbent in the polymer-dispersed liquid crystal, a coating film in which the adsorbent is mixed is provided on the surface of the substrate on which the electrodes sandwiching the polymer-dispersed liquid crystal are provided to prevent the polymerization of the polymerizable material. Similar effects can be achieved by applying an electric field after the polymerization. That is, when an electric field is applied to a composition composed of liquid crystal and a polymerizable material, impurities such as ionic substances contained in the polymerizable material are adsorbed on the coating film mixed with the adsorbents provided on the surfaces of the upper and lower substrates. As a result, impurities such as ionic substances existing in the polymer-dispersed liquid crystal are reduced, the specific resistance of the liquid crystal is not lowered and the charge retention property is not deteriorated, and a liquid crystal optical element having excellent display performance can be realized.
The adsorbent is preferably an inorganic material, and silica-based, alumina-based, metal oxides such as zeolite, activated carbon, and porous glass can be used. The admixture amount of these adsorbents is not particularly limited, but as a rough guide, when mixed in the polymer-dispersed liquid crystal, 0.01 to 5% by weight is appropriate with respect to the polymer-dispersed liquid crystal, When mixed in the coating film, 0.01 to 5% by weight is suitable for the coating material. When the mixing amount is less than 0.01% by weight,
The adsorbability of impurities decreases, the charge retention characteristics of the liquid crystal optical element deteriorate, and when the mixing amount is more than 5% by weight, the transmittance of the liquid crystal optical element is adversely affected. The size of the adsorbent is
Although not particularly limited, those having a size of several nm to several μm which are generally used as an adsorbent are desirable.

【0010】[0010]

【実施例】以下、本発明の請求項1から請求項15記載
の液晶光学素子及びその製造法について、図面を参照し
ながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The liquid crystal optical elements according to the first to fifteenth aspects of the present invention and the manufacturing method thereof will be described below with reference to the drawings.

【0011】図1は、本発明の請求項1から請求項4記
載の高分子分散型液晶を用いて作製した液晶光学素子の
概略を示す図である。電極13を設けた上下一対の基板
11、12をスペーサ兼シール樹脂14を介して貼り合
わせ空セルを完成する。完成した空セルに金属酸化物な
どの吸着材16を混合した高分子分散型液晶15を挟持
し、液晶光学素子を完成した。
FIG. 1 is a diagram showing an outline of a liquid crystal optical element produced by using the polymer-dispersed liquid crystal according to the first to fourth aspects of the present invention. A pair of upper and lower substrates 11 and 12 provided with electrodes 13 are bonded via a spacer / sealing resin 14 to complete an empty cell. A liquid crystal optical element was completed by sandwiching a polymer-dispersed liquid crystal 15 in which an adsorbent 16 such as a metal oxide was mixed in the completed empty cell.

【0012】図2は、本発明の請求項5から請求項10
記載の高分子分散型液晶を用いた液晶光学素子の製造法
の概略を示す図である。電極23を設けた上下一対の基
板21、22をスペーサ兼シール樹脂24を介して貼り
合わせ完成した空セルに、開口部より液晶と未硬化の光
重合性あるいは熱重合性の重合性材料からなる組成物2
5に金属酸化物などの吸着材26を混合した混合物を注
入する。注入完了後、前記混合物に電極23を通して電
界27を一定時間印加する。その後、引き続いて電界除
去後、あるいは電界を印加しながら重合性材料の重合を
完了し、高分子分散型液晶からなる液晶光学素子を完成
した。
FIG. 2 shows the fifth to tenth aspects of the present invention.
It is a figure which shows the outline of the manufacturing method of the liquid crystal optical element using the polymer dispersion type liquid crystal described. A pair of upper and lower substrates 21 and 22 provided with electrodes 23 are bonded together via a spacer / sealing resin 24 to form an empty cell. The empty cell is made of a liquid crystal and an uncured photopolymerizable or thermopolymerizable polymerizable material. Composition 2
A mixture in which the adsorbent 26 such as a metal oxide is mixed is injected into 5. After the injection is completed, an electric field 27 is applied to the mixture through the electrode 23 for a certain time. After that, after the electric field is removed or the electric field is applied, the polymerization of the polymerizable material is completed to complete a liquid crystal optical element made of a polymer-dispersed liquid crystal.

【0013】図3は、本発明の請求項11から請求項1
5記載の高分子分散型液晶を用いた液晶光学素子の製造
法の概略を示す図である。電極33を設けた上下一対の
基板31、32を用意し、スペーサ兼シール樹脂34を
介して貼り合わせ完成した空セルに、開口部より液晶と
未硬化の光重合性あるいは熱重合性の重合性材料からな
る組成物に金属酸化物などの吸着材36を混合した混合
物を注入する。注入完了後、重合性材料の重合を完了し
高分子分散型液晶35を形成した後、前記高分子分散型
液晶に電極33を通して電界37を一定時間印加し、高
分子分散型液晶からなる液晶光学素子を完成した。以
下、具体的実施例をあげさらに詳しく説明する。
FIG. 3 shows claims 11 to 1 of the present invention.
FIG. 6 is a diagram showing an outline of a method for producing a liquid crystal optical element using the polymer-dispersed liquid crystal described in 5. A pair of upper and lower substrates 31 and 32 provided with electrodes 33 are prepared, and an empty cell completed by bonding via a spacer / sealing resin 34 is filled with liquid crystal and uncured photopolymerizable or thermopolymerizable through an opening. A mixture in which an adsorbent 36 such as a metal oxide is mixed with a composition of materials is injected. After the injection is completed, the polymerization of the polymerizable material is completed to form the polymer-dispersed liquid crystal 35, and then the electric field 37 is applied to the polymer-dispersed liquid crystal through the electrode 33 for a certain period of time to form a polymer-dispersed liquid crystal optical. The element is completed. Hereinafter, specific examples will be described in more detail.

【0014】(実施例1)インジウム・錫酸化物よりな
る透明電極(ITO電極)を形成した2枚のガラス基板
を開口部を残し、ITO電極面が互いに対向するように
スペーサとして直径13μmのガラス繊維を分散した紫
外線硬化型樹脂で貼り合わせ、光源に超高圧水銀灯を用
いて、紫外線により前記樹脂を硬化接着し、空セルを完
成した。
(Example 1) Two glass substrates having transparent electrodes (ITO electrodes) made of indium / tin oxide are left open, and glass having a diameter of 13 μm is used as a spacer so that the ITO electrode surfaces face each other. The fibers were pasted together with an ultraviolet curable resin, and an ultrahigh pressure mercury lamp was used as a light source to cure and adhere the resin with ultraviolet rays to complete an empty cell.

【0015】次に、液晶材料として、E8(メルクジャ
パン(株)製)を8.200g、高分子形成モノマーと
して、2エチルヘキシルアクリレート0.600gと2
ヒドロキシエチルアクリレート0.600g、オリゴマ
ーとしてビスコート823(大阪有機化学工業(株)
製)を0.600g、光重合開始剤としてベンジルジメ
チルケタール(日本化薬(株)製)を0.060gを用
意し、前記材料からなる組成物を50℃に加熱し相溶状
態にした後、粒子径が0.2μmの酸化アルミニウムを
0.020g混合した。引き続き、前記混合物を50℃
で十分撹拌した後、上記した製造法で作製した空セルに
50℃で、開口部から注入した。注入完了後、開口部を
封止し、50℃で光源に超高圧水銀灯を用いて紫外線
(強度:57mW/cm2)を10秒照射し、高分子分
散型液晶からなる液晶セルを完成した。 こうして完成
した液晶セルについて、電荷の保持特性を評価した。電
荷の保持特性は、フレーム周期30Hz、電圧±5V、
ON時間60μ秒の矩形波を液晶セルに印加した時の電
圧の保持特性を指標に評価した。電圧の保持特性は、電
圧保持率Rとして定量化た。電圧保持率は、電極間の電
位を測定し、その積分値を100%保持の積分値で割っ
た値として定義した。電圧保持率100%とは、ON時
間内に蓄積された電圧が、その後フレーム期間に渡り電
圧変化が全く起こらないものである。図8に電圧保持率
の測定波形と測定例を示す。図8(b)において、電圧
保持率Rは(数1)で表される。
Next, 8.200 g of E8 (manufactured by Merck Japan Ltd.) as a liquid crystal material and 0.600 g of 2 ethylhexyl acrylate as a polymer-forming monomer were added.
Hydroxyethyl acrylate 0.600 g, Biscoat 823 as an oligomer (Osaka Organic Chemical Industry Co., Ltd.)
(Prepared) and 0.660 g of benzyl dimethyl ketal (manufactured by Nippon Kayaku Co., Ltd.) as a photopolymerization initiator were prepared, and the composition comprising the above materials was heated to 50 ° C. to make them compatible with each other. Then, 0.020 g of aluminum oxide having a particle diameter of 0.2 μm was mixed. Then, the mixture is heated to 50 ° C.
After sufficiently stirring at 50 ° C., it was injected into the empty cell prepared by the above-described manufacturing method at 50 ° C. through the opening. After the injection was completed, the opening was sealed and irradiated with ultraviolet rays (intensity: 57 mW / cm 2 ) for 10 seconds at 50 ° C. using a super-high pressure mercury lamp as a light source to complete a liquid crystal cell composed of polymer dispersed liquid crystal. The charge retention characteristics of the liquid crystal cell thus completed were evaluated. The charge retention characteristics are: frame cycle 30 Hz, voltage ± 5 V,
The voltage holding characteristics when a rectangular wave having an ON time of 60 μs was applied to the liquid crystal cell was evaluated as an index. The voltage holding characteristic was quantified as a voltage holding ratio R. The voltage holding ratio was defined as the value obtained by measuring the potential between the electrodes and dividing the integrated value by the integrated value of 100% holding. The voltage holding ratio of 100% means that the voltage accumulated within the ON time does not change at all during the frame period thereafter. FIG. 8 shows a measurement waveform of the voltage holding ratio and a measurement example. In FIG. 8B, the voltage holding ratio R is represented by (Equation 1).

【0016】[0016]

【数1】 [Equation 1]

【0017】今回作製した液晶セルの電圧保持率は、4
0℃で60.5%であった。
The voltage holding ratio of the liquid crystal cell manufactured this time is 4
It was 60.5% at 0 ° C.

【0018】(実施例2)インジウム・錫酸化物よりな
る透明電極(ITO電極)を形成した2枚のガラス基板
を開口部を残し、ITO電極面が互いに対向するように
スペーサとして直径13μmのガラス繊維を分散した紫
外線硬化型樹脂で貼り合わせ、光源に超高圧水銀灯を用
いて、紫外線により前記樹脂を硬化接着し、空セルを完
成した。
(Example 2) Two glass substrates having transparent electrodes (ITO electrodes) made of indium / tin oxide are left open, and glass having a diameter of 13 μm is used as a spacer so that the ITO electrode surfaces face each other. The fibers were pasted together with an ultraviolet curable resin, and an ultrahigh pressure mercury lamp was used as a light source to cure and adhere the resin with ultraviolet rays to complete an empty cell.

【0019】次に、液晶材料として、E8(メルクジャ
パン(株)製)を8.200g、高分子形成モノマーと
して、2エチルヘキシルアクリレート0.600gと2
ヒドロキシエチルアクリレート0.600g、オリゴマ
ーとしてビスコート823(大阪有機化学工業(株)
製)を0.600g、光重合開始剤としてベンジルジメ
チルケタール(日本化薬(株)製)を0.060gを用
意し、前記材料からなる組成物を50℃に加熱し相溶状
態にした後、粒子径が0.2μmの酸化チタンを0.0
20g混合した。引き続き、前記混合物を50℃で十分
撹拌した後、上記した製造法で作製した空セルに50℃
で、開口部から注入した。注入完了後、50℃で前記混
合物にITO電極を通して、5V、30Hzの交流電界
を30分印加した。開口部を封止し、電界を除去した
後、直ちに50℃で超高圧水銀灯を光源に用いて紫外線
(強度:57mW/cm2)を10秒照射し、高分子分
散型液晶からなる液晶セルを完成した。こうして完成し
た液晶セルの電圧保持率は、40℃で65.5%であっ
た。
Next, 8.200 g of E8 (manufactured by Merck Japan Ltd.) as a liquid crystal material and 0.600 g of 2 ethylhexyl acrylate as a polymer-forming monomer were added.
Hydroxyethyl acrylate 0.600 g, Biscoat 823 as an oligomer (Osaka Organic Chemical Industry Co., Ltd.)
(Prepared) and 0.660 g of benzyl dimethyl ketal (manufactured by Nippon Kayaku Co., Ltd.) as a photopolymerization initiator were prepared, and the composition comprising the above materials was heated to 50 ° C. to make them compatible with each other. , Titanium oxide with a particle size of 0.2 μm to 0.0
20 g were mixed. Then, after thoroughly stirring the mixture at 50 ° C., 50 ° C. was added to the empty cell prepared by the above manufacturing method.
Then, it was injected from the opening. After the injection was completed, an AC electric field of 5 V and 30 Hz was applied to the mixture through the ITO electrode at 50 ° C. for 30 minutes. Immediately after the opening was sealed and the electric field was removed, ultraviolet rays (intensity: 57 mW / cm 2 ) were irradiated for 10 seconds at 50 ° C. using an ultra-high pressure mercury lamp as a light source to form a liquid crystal cell composed of polymer-dispersed liquid crystal. completed. The voltage holding ratio of the liquid crystal cell thus completed was 65.5% at 40 ° C.

【0020】(実施例3)インジウム・錫酸化物よりな
る透明電極(ITO電極)を形成した2枚のガラス基板
を開口部を残し、ITO電極面が互いに対向するように
スペーサとして直径13μmのガラス繊維を分散した紫
外線硬化型樹脂で貼り合わせ、光源に超高圧水銀灯を用
いて、紫外線により前記樹脂を硬化接着し、空セルを完
成した。
(Embodiment 3) A glass having a diameter of 13 μm is used as a spacer so that two ITO glass substrates having transparent electrodes (ITO electrodes) made of indium / tin oxide are left open and the ITO electrode surfaces face each other. The fibers were pasted together with an ultraviolet curable resin, and an ultrahigh pressure mercury lamp was used as a light source to cure and adhere the resin with ultraviolet rays to complete an empty cell.

【0021】次に、液晶材料として、E8(メルクジャ
パン(株)製)を8.200g、高分子形成モノマーと
して、2エチルヘキシルアクリレート0.600gと2
ヒドロキシエチルアクリレート0.600g、オリゴマ
ーとしてビスコート823(大阪有機化学工業(株)
製)を0.600g、光重合開始剤としてベンジルジメ
チルケタール(日本化薬(株)製)を0.060gを用
意し、前記材料からなる組成物を50℃に加熱し相溶状
態にした後、粒子径が0.2μmの酸化チタンを0.0
20g混合した。引き続き、前記混合物を50℃で十分
撹拌した後、上記した製造法で作製した空セルに50℃
で、開口部から注入した。注入完了後、50℃で前記混
合物にITO電極を通して、5V、30Hzの交流電界
を30分印加した。開口部を封止し、50℃で電界(5
V、30Hz)を印加しながら超高圧水銀灯を光源に用
いて紫外線(強度:57mW/cm2)を10秒照射
し、高分子分散型液晶からなる液晶セルを完成した。こ
うして完成した液晶セルの電圧保持率は、40℃で6
5.2%であった。
Next, 8.200 g of E8 (manufactured by Merck Japan Ltd.) as a liquid crystal material and 0.600 g of 2 ethylhexyl acrylate as a polymer-forming monomer were added.
Hydroxyethyl acrylate 0.600 g, Biscoat 823 as an oligomer (Osaka Organic Chemical Industry Co., Ltd.)
(Prepared) and 0.660 g of benzyl dimethyl ketal (manufactured by Nippon Kayaku Co., Ltd.) as a photopolymerization initiator were prepared, and the composition comprising the above materials was heated to 50 ° C. to make them compatible with each other. , Titanium oxide with a particle size of 0.2 μm to 0.0
20 g were mixed. Then, after thoroughly stirring the mixture at 50 ° C., 50 ° C. was added to the empty cell prepared by the above manufacturing method.
Then, it was injected from the opening. After the injection was completed, an AC electric field of 5 V and 30 Hz was applied to the mixture through the ITO electrode at 50 ° C. for 30 minutes. The opening is sealed and the electric field (5
(V, 30 Hz) was applied and ultraviolet rays (intensity: 57 mW / cm 2 ) were irradiated for 10 seconds using a super-high pressure mercury lamp as a light source to complete a liquid crystal cell composed of polymer dispersed liquid crystal. The voltage holding ratio of the liquid crystal cell thus completed is 6 at 40 ° C.
It was 5.2%.

【0022】(実施例4)インジウム・錫酸化物よりな
る透明電極(ITO電極)を形成した2枚のガラス基板
を開口部を残し、ITO電極面が互いに対向するように
スペーサとして直径13μmのガラス繊維を分散した紫
外線硬化型樹脂で貼り合わせ、光源に超高圧水銀灯を用
いて、紫外線により前記樹脂を硬化接着し、空セルを完
成した。
(Embodiment 4) A glass having a diameter of 13 μm was used as a spacer so that two ITO glass substrates having transparent electrodes (ITO electrodes) formed of indium tin oxide were left open and the ITO electrode surfaces face each other. The fibers were pasted together with an ultraviolet curable resin, and an ultrahigh pressure mercury lamp was used as a light source to cure and adhere the resin with ultraviolet rays to complete an empty cell.

【0023】次に、液晶材料として、E8(メルクジャ
パン(株)製)を8.200g、高分子形成モノマーと
して、2エチルヘキシルアクリレート0.600gと2
ヒドロキシエチルアクリレート0.600g、オリゴマ
ーとしてビスコート823(大阪有機化学工業(株)
製)を0.600g、光重合開始剤としてベンジルジメ
チルケタール(日本化薬(株)製)を0.060gを用
意し、前記材料からなる組成物を50℃に加熱し相溶状
態にした後、粒子径が0.2μmの酸化アルミニウムを
0.010gと粒子径が0.2μmの二酸化ケイ素0.
010g及び粒子径が0.2μmの酸化カルシウムを
0.010g混合した。前記混合物を50℃で十分撹拌
した後、上記した製造法で作製した空セルに50℃で、
開口部から注入した。注入完了後、開口部を封止し、5
0℃で光源に超高圧水銀灯を用いて紫外線(強度:57
mW/cm2)を10秒照射し、高分子分散型液晶から
なる液晶セルを完成した。こうして完成した液晶セルの
電圧保持率は、40℃で62.8%であった。
Next, 8.200 g of E8 (manufactured by Merck Japan Ltd.) as a liquid crystal material and 0.600 g of 2 ethylhexyl acrylate as a polymer-forming monomer were used.
Hydroxyethyl acrylate 0.600 g, Biscoat 823 as an oligomer (Osaka Organic Chemical Industry Co., Ltd.)
(Prepared) and 0.660 g of benzyl dimethyl ketal (manufactured by Nippon Kayaku Co., Ltd.) as a photopolymerization initiator were prepared, and the composition comprising the above materials was heated to 50 ° C. to make them compatible with each other. , 0.010 g of aluminum oxide having a particle diameter of 0.2 μm and silicon dioxide of 0.2 μm having a particle diameter of 0.2 μm.
010 g and 0.010 g of calcium oxide having a particle diameter of 0.2 μm were mixed. After sufficiently stirring the mixture at 50 ° C., the mixture was added to the empty cell prepared by the above-described manufacturing method at 50 ° C.,
It was injected through the opening. After the injection is completed, the opening is sealed and 5
Ultraviolet light (intensity: 57
mW / cm 2 ) was irradiated for 10 seconds to complete a liquid crystal cell made of polymer dispersed liquid crystal. The voltage holding ratio of the liquid crystal cell thus completed was 62.8% at 40 ° C.

【0024】(実施例5)インジウム・錫酸化物よりな
る透明電極(ITO電極)を形成した2枚のガラス基板
を開口部を残し、ITO電極面が互いに対向するように
スペーサとして直径13μmのガラス繊維を分散した紫
外線硬化型樹脂で貼り合わせ、光源に超高圧水銀灯を用
いて、紫外線により前記樹脂を硬化接着し、空セルを完
成した。
(Embodiment 5) A glass having a diameter of 13 μm is used as a spacer so that two ITO glass substrates having transparent electrodes (ITO electrodes) formed of indium tin oxide are left open and the ITO electrode surfaces face each other. The fibers were pasted together with an ultraviolet curable resin, and an ultrahigh pressure mercury lamp was used as a light source to cure and adhere the resin with ultraviolet rays to complete an empty cell.

【0025】次に、液晶材料として、E8(メルクジャ
パン(株)製)を8.200g、高分子形成モノマーと
して、2エチルヘキシルアクリレート0.600gと2
ヒドロキシエチルアクリレート0.600g、オリゴマ
ーとしてビスコート823(大阪有機化学工業(株)
製)を0.600g、光重合開始剤としてベンジルジメ
チルケタール(日本化薬(株)製)を0.060gを用
意し、前記材料からなる組成物に粒子径が0.2μmの
ケイ酸アルミニウムを0.020g混合した。前記混合
物を50℃で十分撹拌した後、上記した製造法で作製し
た空セルに50℃で、開口部から注入した。注入完了
後、開口部を封止し、50℃で超高圧水銀灯を光源に用
いて紫外線(強度:57mW/cm2)を10秒照射
し、高分子分散型液晶を形成した後、80℃で前記高分
子分散型液晶にITO電極を通して、5V、30Hzの
交流電界を30分印加し、液晶セルを完成した。こうし
て完成した液晶セルの電圧保持率は、40℃で61.5
%であった。
Next, 8.200 g of E8 (manufactured by Merck Japan Co., Ltd.) as a liquid crystal material and 0.600 g of 2 ethylhexyl acrylate as a polymer-forming monomer were added.
Hydroxyethyl acrylate 0.600 g, Biscoat 823 as an oligomer (Osaka Organic Chemical Industry Co., Ltd.)
0.600 g, and benzyl dimethyl ketal (manufactured by Nippon Kayaku Co., Ltd.) 0.060 g as a photopolymerization initiator, and aluminum silicate having a particle diameter of 0.2 μm is added to the composition composed of the above materials. 0.020 g was mixed. After sufficiently stirring the mixture at 50 ° C., the mixture was injected into the empty cell prepared by the above-described manufacturing method at 50 ° C. through the opening. After the injection was completed, the opening was sealed and irradiated with ultraviolet rays (intensity: 57 mW / cm 2 ) at 50 ° C. for 10 seconds using an ultra-high pressure mercury lamp as a light source to form a polymer dispersed liquid crystal, and then at 80 ° C. An AC electric field of 5 V and 30 Hz was applied to the polymer dispersed liquid crystal through an ITO electrode for 30 minutes to complete a liquid crystal cell. The voltage holding ratio of the completed liquid crystal cell is 61.5 at 40 ° C.
%Met.

【0026】次に、比較のための実験例を示す。Next, an experimental example for comparison will be shown.

【0027】(比較例1)インジウム・錫酸化物よりな
る透明電極(ITO電極)を形成した2枚のガラス基板
を開口部を残し、ITO電極面が互いに対向するように
スペーサとして直径13μmのガラス繊維を分散した紫
外線硬化型樹脂で貼り合わせ、光源に超高圧水銀灯を用
いて、紫外線により前記樹脂を硬化接着し、空セルを完
成した。
(Comparative Example 1) A glass having a diameter of 13 μm was used as a spacer so that the ITO electrode surfaces face each other with two glass substrates having transparent electrodes (ITO electrodes) made of indium tin oxide formed thereon. The fibers were pasted together with an ultraviolet curable resin, and an ultrahigh pressure mercury lamp was used as a light source to cure and adhere the resin with ultraviolet rays to complete an empty cell.

【0028】次に、液晶材料として、E8(メルクジャ
パン(株)製)を8.200g、高分子形成モノマーと
して、2エチルヘキシルアクリレート0.600gと2
ヒドロキシエチルアクリレート0.600g、オリゴマ
ーとしてビスコート823(大阪有機化学工業(株)
製)を0.600g、光重合開始剤としてベンジルジメ
チルケタール(日本化薬(株)製)を0.060gを用
意し、前記した材料からなる組成物を50℃で十分撹拌
した後、上記した製造法で作製した空セルに50℃で、
開口部から注入した。注入完了後、開口部を封止し、5
0℃で光源に超高圧水銀灯を用いて紫外線(強度:57
mW/cm2)を10秒照射し、高分子分散型液晶から
なる液晶セルを完成した。こうして完成した液晶セルの
電圧保持率は40℃で38.1%で吸着材を含んだ高分
子分散型液晶を用いた(実施例1)の液晶セルに比べか
なり低い値を示した。
Next, 8.200 g of E8 (manufactured by Merck Japan Co., Ltd.) as a liquid crystal material and 0.600 g of 2 ethylhexyl acrylate as a polymer forming monomer were added.
Hydroxyethyl acrylate 0.600 g, Biscoat 823 as an oligomer (Osaka Organic Chemical Industry Co., Ltd.)
Prepared) and 0.060 g of benzyl dimethyl ketal (manufactured by Nippon Kayaku Co., Ltd.) as a photopolymerization initiator were prepared, and the composition comprising the above materials was sufficiently stirred at 50 ° C. In an empty cell made by the manufacturing method at 50 ° C,
It was injected through the opening. After the injection is completed, the opening is sealed and 5
Ultraviolet light (intensity: 57
mW / cm 2 ) was irradiated for 10 seconds to complete a liquid crystal cell made of polymer dispersed liquid crystal. The voltage holding ratio of the liquid crystal cell thus completed was 38.1% at 40 ° C., which was considerably lower than that of the liquid crystal cell using the polymer dispersed liquid crystal containing the adsorbent (Example 1).

【0029】尚、電界処理を行う温度は限定されるもの
ではないが、本発明の実施例のように重合性材料の重合
前に電界処理を行う場合は、液晶と重合性材料からなる
組成物が相溶状態を示す温度で、また重合性材料の重合
を完了し形成した高分子分散型液晶に電界処理を行う場
合は、高分子分散型液晶に使用した液晶が等方性を示す
温度で電界処理を行う方が液晶セルの電圧保持率は高く
なる。低温では、不純物の移動が悪く吸着材や塗膜への
吸着が悪くその結果電圧保持率はあまり高くならない。
電界処理を行う電界の強度や周波数及び印加時間は上記
実施例に示したものに限定されず、適宜変更して使用で
きる。また、交流に限らず液晶や重合性材料等の材料が
劣化しない範囲で直流電界を印加してもよい。
Although the temperature at which the electric field treatment is carried out is not limited, when the electric field treatment is carried out before the polymerization of the polymerizable material as in the embodiment of the present invention, a composition comprising a liquid crystal and the polymerizable material is used. At a temperature at which the polymer-dispersed liquid crystal formed by completing the polymerization of the polymerizable material is subjected to an electric field treatment at a temperature at which the liquid crystal used for the polymer-dispersed liquid crystal exhibits isotropicity. The voltage holding ratio of the liquid crystal cell is higher when the electric field treatment is performed. At low temperatures, the migration of impurities is poor and the adsorption to adsorbents and coatings is poor, and as a result, the voltage holding ratio does not increase so much.
The strength and frequency of the electric field to be subjected to the electric field treatment and the application time are not limited to those shown in the above embodiment, and can be appropriately changed and used. Further, a DC electric field may be applied in a range where materials such as liquid crystal and a polymerizable material are not deteriorated as well as AC.

【0030】高分子分散型液晶に使用する液晶材料は、
上記実施例に記載したE8に限定されるものではなく、
その他のシアノ系液晶や、さらにはフッ素系液晶など種
々のネマチック液晶さらにはコレステリック液晶等を用
いてもよい。今回の実施例では、高分子分散型液晶とし
て液晶相がドロプレット状に分離した形態の高分子分散
型液晶を用いて説明しているが、これに限らず、高分子
の三次元編目構造内に液晶が連続相を形成している形態
の高分子分散型液晶でも同様の効果が達成できる。ま
た、今回の実施例では、高分子分散型液晶中の液晶の割
合は、約82重量%にしているが、これに限定されるも
のでない。高分子形成モノマーとしては、今回、2エチ
ルヘキシルアクリレートや2ヒドロキシエチルアクリレ
ートを用いたが、それに限定されるものではなく、ネオ
ペンチルグリコールドアクリレート、ヘキサンジオール
ジアクリレート、ジエチレングリコールジアクリレー
ト、トリプロピレングリコールジアクリレート、ポリエ
チレングリコールジアクリレート、トリメチロールプロ
パントリアクリレートなど一般に市販されているアクリ
ル系モノマー、さらには広く、アクリル系以外の市販品
も応用可能である。オリゴマーも実施例に示したビスコ
ート823(大阪有機化学工業(株)製)に限定される
ものでない。
The liquid crystal material used for the polymer dispersed liquid crystal is
It is not limited to E8 described in the above embodiment,
Other cyano liquid crystals, various nematic liquid crystals such as fluorine liquid crystals, and cholesteric liquid crystals may be used. In this example, the polymer dispersed liquid crystal is described by using the polymer dispersed liquid crystal in which the liquid crystal phase is separated into droplets, but the invention is not limited to this. The same effect can be achieved with a polymer-dispersed liquid crystal in which the liquid crystal forms a continuous phase. Further, in this example, the ratio of the liquid crystal in the polymer dispersed liquid crystal is set to about 82% by weight, but it is not limited to this. As the polymer-forming monomer, 2 ethylhexyl acrylate or 2 hydroxyethyl acrylate was used this time, but it is not limited thereto. Neopentyl glycol acrylate, hexanediol diacrylate, diethylene glycol diacrylate, tripropylene glycol diacrylate. , Commercially available acrylic monomers such as polyethylene glycol diacrylate and trimethylolpropane triacrylate, and widely applicable commercial products other than acrylic monomers. The oligomer is not limited to Viscoat 823 (manufactured by Osaka Organic Chemical Industry Co., Ltd.) shown in the examples.

【0031】また、重合開始剤もベンジルジメチルケタ
ール(日本化薬(株)製)に限定されるものでなく、メ
ルク(株)製のダロキュア1173やチバガイキー
(株)製のイルガキュア184、イルガキュア651な
どでもよい。
Also, the polymerization initiator is not limited to benzyl dimethyl ketal (manufactured by Nippon Kayaku Co., Ltd.), and Darocur 1173 manufactured by Merck Co., Ltd., Irgacure 184, Irgacure 651 manufactured by Ciba-Gaiki, etc. But it's okay.

【0032】さらに、使用する高分子材料は、上記実施
例で示した光硬化性樹脂に限定されるものではなく、熱
硬化性樹脂や熱可塑性樹脂であってもよい。
Further, the polymer material used is not limited to the photo-curable resin shown in the above embodiment, but may be a thermosetting resin or a thermoplastic resin.

【0033】次に、本発明の請求項16から請求項30
記載の液晶光学素子及びその製造法について、図面を参
照しながら説明する。図4は、本発明の請求項16から
請求項19記載の高分子分散型液晶を用いて作製した液
晶光学素子の概略を示す図である。電極43上に金属酸
化物などの吸着材46を含んだ塗膜47を設けた上下一
対の基板41、42をスペーサ兼シール樹脂44を介し
て貼り合わせ空セルを完成する。完成した空セルに高分
子分散型液晶45を挟持し、液晶光学素子を完成した。
Next, claim 16 to claim 30 of the present invention.
The described liquid crystal optical element and its manufacturing method will be described with reference to the drawings. FIG. 4 is a diagram schematically showing a liquid crystal optical element produced by using the polymer dispersed liquid crystal according to claims 16 to 19 of the present invention. A pair of upper and lower substrates 41 and 42 provided with a coating film 47 containing an adsorbent 46 such as a metal oxide on the electrode 43 are bonded via a spacer / sealing resin 44 to complete an empty cell. A polymer dispersed liquid crystal 45 was sandwiched between the completed empty cells to complete a liquid crystal optical element.

【0034】図5は、本発明の請求項20から請求項2
5記載の高分子分散型液晶を用いた液晶光学素子の製造
法の概略を示す図である。電極53上に金属酸化物など
の吸着材56を含んだ塗膜58を設けた上下一対の基板
51、52をスペーサ兼シール樹脂54を介して貼り合
わせ空セルに、開口部より液晶と未硬化の光重合性ある
いは熱重合性の重合性材料からなる組成物55を注入す
る。注入完了後、前記組成物55に電極53を通して電
界57を一定時間印加する。その後、引き続いて電界除
去後、あるいは電界を印加しながら重合性材料の重合を
完了し、高分子分散型液晶からなる液晶光学素子を完成
した。
FIG. 5 shows claims 20 to 2 of the present invention.
FIG. 6 is a diagram showing an outline of a method for producing a liquid crystal optical element using the polymer-dispersed liquid crystal described in 5. A pair of upper and lower substrates 51, 52 having a coating film 58 containing an adsorbent 56 such as a metal oxide on the electrode 53 are bonded via a spacer / sealing resin 54 to an empty cell, and liquid crystal and uncured from the opening. The composition 55 made of the photopolymerizable or heat-polymerizable polymerizable material is injected. After the injection is completed, an electric field 57 is applied to the composition 55 through the electrode 53 for a certain period of time. After that, after the electric field is removed or the electric field is applied, the polymerization of the polymerizable material is completed to complete a liquid crystal optical element made of a polymer-dispersed liquid crystal.

【0035】図6は、本発明の請求項26から請求項3
0記載の高分子分散型液晶を用いた液晶光学素子の製造
法の概略を示す図である。電極63上に金属酸化物など
の吸着材66を含んだ塗膜68を設けた上下一対の基板
61、62をスペーサ兼シール樹脂64を介して貼り合
わせ空セルに、開口部より液晶と未硬化の光重合性ある
いは熱重合性の重合性材料からなる組成物を注入する。
注入完了後、前記重合性材料の重合を完了し、基板間6
1、62に形成した高分子分散型液晶65に電極63を
通して電界67を一定時間印加し、高分子分散型液晶か
らなる液晶光学素子を完成した。
FIG. 6 shows claims 26 to 3 of the present invention.
FIG. 3 is a diagram showing an outline of a method for producing a liquid crystal optical element using the polymer-dispersed liquid crystal described in 0. A pair of upper and lower substrates 61, 62 having a coating film 68 containing an adsorbent 66 such as a metal oxide on the electrode 63 are bonded via a spacer / sealing resin 64 to an empty cell, and liquid crystal and uncured from the opening. The composition comprising the photopolymerizable or heat-polymerizable polymerizable material is injected.
After the injection is completed, the polymerization of the polymerizable material is completed, and the space between the substrates 6
An electric field 67 was applied to the polymer dispersed liquid crystal 65 formed in Nos. 1 and 62 through the electrode 63 for a certain period of time to complete a liquid crystal optical element made of the polymer dispersed liquid crystal.

【0036】以下、具体的実施例をあげさらに詳しく説
明する。
Hereinafter, the present invention will be described in more detail with reference to specific examples.

【0037】(実施例6)ポリイミドワニス(日産化学
(株)製:商品名SE−4110)の3.0重量%溶液
を用意した。前記ポリイミド溶液100gに粒子径が
0.2μmの酸化アルミニウムを0.5g混合した溶液
を調整した。続いて、インジウム・錫酸化物よりなる透
明電極(ITO電極)を形成したガラス基板を2枚用意
し、各ガラス基板のITO電極上に前記した酸化アルミ
ニウムを混合したポリイミド溶液を2300rpm.、
60秒の条件で回転塗布した後、260℃、1時間で焼
成し、酸化アルミニウムを混合したポリイミドの塗膜を
設けた。このポリイミド塗膜の膜厚は約80nmであっ
た。
Example 6 A 3.0% by weight solution of a polyimide varnish (manufactured by Nissan Kagaku Co., Ltd .: trade name SE-4110) was prepared. A solution was prepared by mixing 100 g of the polyimide solution with 0.5 g of aluminum oxide having a particle size of 0.2 μm. Subsequently, two glass substrates having transparent electrodes (ITO electrodes) made of indium / tin oxide were prepared, and a polyimide solution prepared by mixing the above-described aluminum oxide on the ITO electrodes of each glass substrate was set to 2300 rpm. ,
After spin coating under the condition of 60 seconds, it was baked at 260 ° C. for 1 hour to form a polyimide coating film mixed with aluminum oxide. The film thickness of this polyimide coating film was about 80 nm.

【0038】このように処理した2枚のガラス基板を開
口部を残し、ポリイミド塗膜面が互いに対向するように
スペーサとして直径13μmのガラス繊維を分散した紫
外線硬化型樹脂で貼り合わせ、光源に超高圧水銀灯を用
いて、紫外線により前記樹脂を硬化接着し、空セルを完
成した。次に、液晶材料としてE8(メルクジャパン
(株)製)を8.200g、高分子形成モノマーとし
て、2エチルヘキシルアクリレート0.600gと2ヒ
ドロキシエチルアクリレート0.600g、オリゴマー
としてビスコート828(大阪有機化学工業(株)製)
を0.600g、光重合開始剤としてベンジルジメチル
ケタール(日本化薬(株)製)を0.060gを用意
し、前記材料からなる組成物を50℃で十分撹拌した
後、上記した製造法で作製した空セルに50℃で、開口
部から注入した。注入完了後、開口部を封止し、50℃
で光源に超高圧水銀灯を用いて紫外線(強度:57mW
/cm2)を10秒照射し、高分子分散型液晶からなる
液晶セルを完成した。こうして完成した液晶セルの電圧
保持率は40℃で62.1%であった。
The two glass substrates thus treated were bonded together with a UV curable resin in which glass fibers having a diameter of 13 μm were dispersed as spacers so that the polyimide coating surfaces face each other, leaving the openings, and the superposed light source. Using a high pressure mercury lamp, the resin was cured and adhered by ultraviolet rays to complete an empty cell. Next, 8.200 g of E8 (manufactured by Merck Japan Ltd.) as a liquid crystal material, 0.600 g of 2 ethylhexyl acrylate and 0.600 g of 2 hydroxyethyl acrylate as a polymer-forming monomer, and Biscoat 828 (Osaka Organic Chemical Industry) as an oligomer. (Made by Co., Ltd.)
Was prepared and 0.060 g of benzyl dimethyl ketal (manufactured by Nippon Kayaku Co., Ltd.) as a photopolymerization initiator was prepared, and the composition comprising the above materials was sufficiently stirred at 50 ° C. It injected at 50 degreeC into the produced empty cell from the opening part. After the injection is completed, the opening is sealed and the temperature is 50 ° C.
Ultraviolet light (intensity: 57mW
/ Cm 2 ) for 10 seconds to complete a liquid crystal cell made of polymer dispersed liquid crystal. The voltage holding ratio of the liquid crystal cell thus completed was 62.1% at 40 ° C.

【0039】(実施例7)ポリイミドワニス(日産化学
(株)製:商品名SE−4110)の3.0重量%溶液
を用意した。前記ポリイミド溶液100gに粒子径が
0.2μmの酸化アルミニウムを0.5g混合した溶液
を調整した。続いて、インジウム・錫酸化物よりなる透
明電極(ITO電極)を形成したガラス基板を2枚用意
し、各ガラス基板のITO電極上に前記した酸化アルミ
ニウムを混合したポリイミド溶液を2300rpm.、
60秒の条件で回転塗布した後、260℃、1時間で焼
成し、酸化アルミニウムを混合したポリイミドの塗膜を
設けた。このポリイミド塗膜の膜厚は約80nmであっ
た。
Example 7 A 3.0% by weight solution of a polyimide varnish (manufactured by Nissan Kagaku Co., Ltd .: trade name SE-4110) was prepared. A solution was prepared by mixing 100 g of the polyimide solution with 0.5 g of aluminum oxide having a particle size of 0.2 μm. Subsequently, two glass substrates having transparent electrodes (ITO electrodes) made of indium / tin oxide were prepared, and a polyimide solution prepared by mixing the above-described aluminum oxide on the ITO electrodes of each glass substrate was set to 2300 rpm. ,
After spin coating under the condition of 60 seconds, it was baked at 260 ° C. for 1 hour to form a polyimide coating film mixed with aluminum oxide. The film thickness of this polyimide coating film was about 80 nm.

【0040】このように処理した2枚のガラス基板を開
口部を残し、ポリイミド塗膜面が互いに対向するように
スペーサとして直径13μmのガラス繊維を分散した紫
外線硬化型樹脂で貼り合わせ、光源に超高圧水銀灯を用
いて、紫外線により前記樹脂を硬化接着し、空セルを完
成した。次に、液晶材料としてE8(メルクジャパン
(株)製)を8.200g、高分子形成モノマーとし
て、2エチルヘキシルアクリレート0.600gと2ヒ
ドロキシエチルアクリレート0.600g、オリゴマー
としてビスコート828(大阪有機化学工業(株)製)
を0.600g、光重合開始剤としてベンジルジメチル
ケタール(日本化薬(株)製)を0.060gを用意
し、前記材料からなる組成物を50℃で十分撹拌し相溶
状態にした後、上記した製造法で作製した空セルに50
℃で、開口部から注入した。注入完了後、50℃で前記
組成物にITO電極を通して、5V、30Hzの交流電
界を30分印加した。開口部を封止し、電界を除去した
後、直ちに50℃で超高圧水銀灯を光源に用いて紫外線
(強度:57mW/cm2)を10秒照射し、高分子分
散型液晶からなる液晶セルを完成した。こうして完成し
た液晶セルの電圧保持率は40℃で64.0%であっ
た。
The two glass substrates thus treated were bonded together with a UV curable resin in which glass fibers having a diameter of 13 μm were dispersed as spacers so that the polyimide coating surfaces face each other, leaving the openings, and the superposed light source. Using a high pressure mercury lamp, the resin was cured and adhered by ultraviolet rays to complete an empty cell. Next, 8.200 g of E8 (manufactured by Merck Japan Ltd.) as a liquid crystal material, 0.600 g of 2 ethylhexyl acrylate and 0.600 g of 2 hydroxyethyl acrylate as a polymer-forming monomer, and Biscoat 828 (Osaka Organic Chemical Industry) as an oligomer. (Made by Co., Ltd.)
Was prepared, and 0.060 g of benzyl dimethyl ketal (manufactured by Nippon Kayaku Co., Ltd.) as a photopolymerization initiator was prepared, and the composition comprising the materials was sufficiently stirred at 50 ° C. to make them compatible with each other. 50 in the empty cell manufactured by the above-mentioned manufacturing method.
Poured through the opening at ° C. After the injection was completed, an AC electric field of 5 V and 30 Hz was applied to the composition through an ITO electrode at 50 ° C. for 30 minutes. Immediately after the opening was sealed and the electric field was removed, ultraviolet rays (intensity: 57 mW / cm 2 ) were irradiated for 10 seconds at 50 ° C. using an ultra-high pressure mercury lamp as a light source to form a liquid crystal cell composed of polymer-dispersed liquid crystal. completed. The voltage holding ratio of the liquid crystal cell thus completed was 64.0% at 40 ° C.

【0041】(実施例8)ポリイミドワニス(日産化学
(株)製:商品名SE−4110)の3.0重量%溶液
を用意した。前記ポリイミド溶液100gに粒子径が
0.2μmの酸化アルミニウムを0.5g混合した溶液
を調整した。続いて、インジウム・錫酸化物よりなる透
明電極(ITO電極)を形成したガラス基板を2枚用意
し、各ガラス基板のITO電極上に前記した酸化アルミ
ニウムを混合したポリイミド溶液を2300rpm.、
60秒の条件で回転塗布した後、260℃、1時間で焼
成し、酸化アルミニウムを混合したポリイミドの塗膜を
設けた。このポリイミド塗膜の膜厚は約80nmであっ
た。
Example 8 A 3.0% by weight solution of a polyimide varnish (manufactured by Nissan Kagaku Co., Ltd .: trade name SE-4110) was prepared. A solution was prepared by mixing 100 g of the polyimide solution with 0.5 g of aluminum oxide having a particle size of 0.2 μm. Subsequently, two glass substrates having transparent electrodes (ITO electrodes) made of indium / tin oxide were prepared, and a polyimide solution prepared by mixing the above-described aluminum oxide on the ITO electrodes of each glass substrate was set to 2300 rpm. ,
After spin coating under the condition of 60 seconds, it was baked at 260 ° C. for 1 hour to form a polyimide coating film mixed with aluminum oxide. The film thickness of this polyimide coating film was about 80 nm.

【0042】このように処理した2枚のガラス基板を開
口部を残し、ポリイミド塗膜面が互いに対向するように
スペーサとして直径13μmのガラス繊維を分散した紫
外線硬化型樹脂で貼り合わせ、光源に超高圧水銀灯を用
いて、紫外線により前記樹脂を硬化接着し、空セルを完
成した。次に、液晶材料としてE8(メルクジャパン
(株)製)を8.200g、高分子形成モノマーとし
て、2エチルヘキシルアクリレート0.600gと2ヒ
ドロキシエチルアクリレート0.600g、オリゴマー
としてビスコート828(大阪有機化学工業(株)製)
を0.600g、光重合開始剤としてベンジルジメチル
ケタール(日本化薬(株)製)を0.060gを用意
し、前記材料からなる組成物を50℃で十分撹拌し相溶
状態にした後、上記した製造法で作製した空セルに50
℃で、開口部から注入した。注入完了後、50℃で前記
組成物にITO電極を通して、5V、30Hzの交流電
界を30分印加した。開口部を封止し、電界(5V、3
0Hz)を印加しながら、50℃で超高圧水銀灯を光源
に用いて紫外線(強度:57mW/cm2)を10秒照
射し、高分子分散型液晶からなる液晶セルを完成した。
こうして完成した液晶セルの電圧保持率は40℃で6
4.7%であった。
The two glass substrates thus treated were bonded together with a UV curable resin in which glass fibers having a diameter of 13 μm were dispersed as spacers so that the polyimide coating surfaces face each other, leaving the openings, and the superposed light source. Using a high pressure mercury lamp, the resin was cured and adhered by ultraviolet rays to complete an empty cell. Next, 8.200 g of E8 (manufactured by Merck Japan Ltd.) as a liquid crystal material, 0.600 g of 2 ethylhexyl acrylate and 0.600 g of 2 hydroxyethyl acrylate as a polymer-forming monomer, and Biscoat 828 (Osaka Organic Chemical Industry) as an oligomer. (Made by Co., Ltd.)
Was prepared, and 0.060 g of benzyl dimethyl ketal (manufactured by Nippon Kayaku Co., Ltd.) as a photopolymerization initiator was prepared, and the composition comprising the materials was sufficiently stirred at 50 ° C. to make them compatible with each other. 50 in the empty cell manufactured by the above-mentioned manufacturing method.
Poured through the opening at ° C. After the injection was completed, an AC electric field of 5 V and 30 Hz was applied to the composition through an ITO electrode at 50 ° C. for 30 minutes. The opening is sealed and the electric field (5 V, 3
While applying 0 Hz), ultraviolet rays (intensity: 57 mW / cm 2 ) were irradiated at 50 ° C. for 10 seconds using an ultra-high pressure mercury lamp as a light source to complete a liquid crystal cell composed of a polymer-dispersed liquid crystal.
The voltage holding ratio of the completed liquid crystal cell is 6 at 40 ° C.
It was 4.7%.

【0043】(実施例9)ポリイミドワニス(日産化学
(株)製:商品名SE−4110)の3.0重量%溶液
を用意した。前記ポリイミド溶液100gに粒子径が
0.2μmの酸化アルミニウムを0.5g混合した溶液
を調整した。続いて、インジウム・錫酸化物よりなる透
明電極(ITO電極)を形成したガラス基板を2枚用意
し、各ガラス基板のITO電極上に前記した酸化アルミ
ニウムを混合したポリイミド溶液を2300rpm.、
60秒の条件で回転塗布した後、260℃、1時間で焼
成し、酸化アルミニウムを混合したポリイミドの塗膜を
設けた。このポリイミド塗膜の膜厚は約80nmであっ
た。
Example 9 A 3.0% by weight solution of polyimide varnish (manufactured by Nissan Kagaku Co., Ltd .: trade name SE-4110) was prepared. A solution was prepared by mixing 100 g of the polyimide solution with 0.5 g of aluminum oxide having a particle size of 0.2 μm. Subsequently, two glass substrates having transparent electrodes (ITO electrodes) made of indium / tin oxide were prepared, and a polyimide solution prepared by mixing the above-described aluminum oxide on the ITO electrodes of each glass substrate was set to 2300 rpm. ,
After spin coating under the condition of 60 seconds, it was baked at 260 ° C. for 1 hour to form a polyimide coating film mixed with aluminum oxide. The film thickness of this polyimide coating film was about 80 nm.

【0044】このように処理した2枚のガラス基板を開
口部を残し、ポリイミド塗膜面が互いに対向するように
スペーサとして直径13μmのガラス繊維を分散した紫
外線硬化型樹脂で貼り合わせ、光源に超高圧水銀灯を用
いて、紫外線により前記樹脂を硬化接着し、空セルを完
成した。次に、液晶材料としてE8(メルクジャパン
(株)製)を8.200g、高分子形成モノマーとし
て、2エチルヘキシルアクリレート0.600gと2ヒ
ドロキシエチルアクリレート0.600g、オリゴマー
としてビスコート828(大阪有機化学工業(株)製)
を0.600g、光重合開始剤としてベンジルジメチル
ケタール(日本化薬(株)製)を0.060gを用意
し、前記材料からなる組成物を50℃で十分撹拌し相溶
状態にした後、上記した製造法で作製した空セルに50
℃で、開口部から注入した。注入完了後、開口部を封止
し、超高圧水銀灯を光源に用いて紫外線(強度:57m
W/cm2)を10秒照射し、高分子分散型液晶を形成
した後、80℃で前記高分子分散型液晶にITO電極を
通して、5V、30Hzの交流電界を30分印加し、液
晶セルを完成した。こうして完成した液晶セルの電圧保
持率は40℃で60.5%であった。
The two glass substrates thus treated were bonded together with a UV curable resin in which glass fibers having a diameter of 13 μm were dispersed as spacers so that the polyimide coating surfaces face each other, leaving the openings, and the superposed light source. Using a high pressure mercury lamp, the resin was cured and adhered by ultraviolet rays to complete an empty cell. Next, 8.200 g of E8 (manufactured by Merck Japan Ltd.) as a liquid crystal material, 0.600 g of 2 ethylhexyl acrylate and 0.600 g of 2 hydroxyethyl acrylate as a polymer-forming monomer, and Biscoat 828 (Osaka Organic Chemical Industry) as an oligomer. (Made by Co., Ltd.)
Was prepared, and 0.060 g of benzyl dimethyl ketal (manufactured by Nippon Kayaku Co., Ltd.) as a photopolymerization initiator was prepared, and the composition comprising the materials was sufficiently stirred at 50 ° C. to make them compatible with each other. 50 in the empty cell manufactured by the above-mentioned manufacturing method.
Poured through the opening at ° C. After the injection is completed, the opening is sealed and the ultra-high pressure mercury lamp is used as a light source to emit ultraviolet rays (strength: 57 m
W / cm 2 ) for 10 seconds to form a polymer-dispersed liquid crystal, and then an AC electric field of 5 V and 30 Hz is applied to the polymer-dispersed liquid crystal at 80 ° C. for 30 minutes through an ITO electrode to form a liquid crystal cell. completed. The voltage holding ratio of the liquid crystal cell thus completed was 60.5% at 40 ° C.

【0045】(実施例10)ポリイミドワニス(日産化
学(株)製:商品名SE−4110)の3.0重量%溶
液を用意した。前記ポリイミド溶液100gに粒子径が
0.2μmの酸化アルミニウム0.2gと粒子径が0.
2μmの二酸化ケイ素0.2g及び酸化カルシウム0.
2gを混合した溶液を調整した。続いて、インジウム・
錫酸化物よりなる透明電極(ITO電極)を形成したガ
ラス基板を2枚用意し、各ガラス基板のITO電極上に
前記した金属酸化物を混合したポリイミド溶液を230
0rpm.、60秒の条件で回転塗布した後、260
℃、1時間で焼成し、金属酸化物を混合したポリイミド
の塗膜を設けた。このポリイミド塗膜の膜厚は約80n
mであった。
Example 10 A 3.0% by weight solution of polyimide varnish (manufactured by Nissan Kagaku Co., Ltd .: trade name SE-4110) was prepared. In 100 g of the polyimide solution, 0.2 g of aluminum oxide having a particle size of 0.2 μm and a particle size of 0.
0.2 g of silicon dioxide of 2 μm and calcium oxide of 0.
A solution prepared by mixing 2 g was prepared. Next, indium
Two glass substrates on which transparent electrodes (ITO electrodes) made of tin oxide are formed are prepared, and a polyimide solution prepared by mixing the above-mentioned metal oxide on the ITO electrodes of each glass substrate
0 rpm. After spin coating for 60 seconds, 260
The film was baked at 1 ° C. for 1 hour to form a polyimide coating film mixed with a metal oxide. The film thickness of this polyimide coating is about 80n
It was m.

【0046】このように処理した2枚のガラス基板を開
口部を残し、ポリイミド塗膜面が互いに対向するように
スペーサとして直径13μmのガラス繊維を分散した紫
外線硬化型樹脂で貼り合わせ、光源に超高圧水銀灯を用
いて、紫外線により前記樹脂を硬化接着し、空セルを完
成した。次に、液晶材料としてE8(メルクジャパン
(株)製)を8.200g、高分子形成モノマーとし
て、2エチルヘキシルアクリレート0.600gと2ヒ
ドロキシエチルアクリレート0.600g、オリゴマー
としてビスコート828(大阪有機化学工業(株)製)
を0.600g、光重合開始剤としてベンジルジメチル
ケタール(日本化薬(株)製)を0.060gを用意
し、前記材料からなる組成物を50℃で十分撹拌した
後、上記した製造法で作製した空セルに50℃で、開口
部から注入した。注入完了後、開口部を封止し、50℃
で光源に超高圧水銀灯を用いて紫外線(強度:57mW
/cm2)を10秒照射し、高分子分散型液晶からなる
液晶セルを完成した。こうして完成した液晶セルの電圧
保持率は40℃で63.0%であった。
The two glass substrates thus treated were bonded together with a UV curable resin in which glass fibers having a diameter of 13 μm were dispersed as spacers so that the polyimide coating surfaces face each other, leaving the openings, and the superposed light source. Using a high pressure mercury lamp, the resin was cured and adhered by ultraviolet rays to complete an empty cell. Next, 8.200 g of E8 (manufactured by Merck Japan Ltd.) as a liquid crystal material, 0.600 g of 2 ethylhexyl acrylate and 0.600 g of 2 hydroxyethyl acrylate as a polymer-forming monomer, and Biscoat 828 (Osaka Organic Chemical Industry) as an oligomer. (Made by Co., Ltd.)
Was prepared and 0.060 g of benzyl dimethyl ketal (manufactured by Nippon Kayaku Co., Ltd.) as a photopolymerization initiator was prepared, and the composition comprising the above materials was sufficiently stirred at 50 ° C. It injected at 50 degreeC into the produced empty cell from the opening part. After the injection is completed, the opening is sealed and the temperature is 50 ° C.
Ultraviolet light (intensity: 57mW
/ Cm 2 ) for 10 seconds to complete a liquid crystal cell made of polymer dispersed liquid crystal. The voltage holding ratio of the liquid crystal cell thus completed was 63.0% at 40 ° C.

【0047】次に比較のための実験例を説明する。Next, an experimental example for comparison will be described.

【0048】(比較例2)インジウム・錫酸化物よりな
る透明電極(ITO電極)を形成したガラス基板を2枚
用意し、各ガラス基板のITO電極上にポリイミドワニ
ス(日産化学(株)製:商品名SE−4110)の3.
0%溶液を2300rpm.、60秒の条件で回転塗布
した後、260℃、1時間で焼成し、ポリイミドの塗膜
を設けた。このポリイミド塗膜の膜厚は約80nmであ
った。このように処理した2枚のガラス基板を開口部を
残し、ポリイミド塗膜面が互いに対向するようにスペー
サとして直径13μmのガラス繊維を分散した紫外線硬
化型樹脂で貼り合わせ、光源に超高圧水銀灯を用いて、
紫外線により前記樹脂を硬化接着し、空セルを完成し
た。次に、液晶材料としてE8(メルクジャパン(株)
製)を8.200g、高分子形成モノマーとして、2エ
チルヘキシルアクリレート0.600gと2ヒドロキシ
エチルアクリレート0.600g、オリゴマーとしてビ
スコート828(大阪有機化学工業(株)製)を0.6
00g、光重合開始剤としてベンジルジメチルケタール
(日本化薬(株)製)を0.060gを用意し、前記材
料からなる組成物を50℃で十分撹拌し相溶状態にした
後、上記した製造法で作製した空セルに50℃で、開口
部から注入した。注入完了後、開口部を封止し、超高圧
水銀灯を光源に用いて紫外線(強度:57mW/cm2
を10秒照射し、高分子分散型液晶からなる液晶セルを
完成した。こうして完成した液晶セルの電圧保持率は4
0℃で48.6%で、吸着材を混合したポリイミド塗膜
を用いた実施例6記載の液晶セルに比べ低い値を示し
た。
(Comparative Example 2) Two glass substrates having transparent electrodes (ITO electrodes) made of indium / tin oxide were prepared, and polyimide varnish (manufactured by Nissan Chemical Industries, Ltd.) was placed on the ITO electrodes of each glass substrate. Product name SE-4110) 3.
0% solution at 2300 rpm. After spin coating for 60 seconds, the coating was baked at 260 ° C. for 1 hour to form a polyimide coating film. The film thickness of this polyimide coating film was about 80 nm. The two glass substrates thus treated were bonded together with a UV curable resin in which glass fibers having a diameter of 13 μm were dispersed as spacers so that the polyimide coating surfaces face each other, leaving the openings, and an ultrahigh pressure mercury lamp was used as a light source. make use of,
The resin was cured and adhered by ultraviolet rays to complete an empty cell. Next, as a liquid crystal material, E8 (Merck Japan Ltd.)
8.200 g, as a polymer-forming monomer, 0.600 g of 2-ethylhexyl acrylate and 0.600 g of 2-hydroxyethyl acrylate, and as an oligomer, 0.6% of Viscoat 828 (manufactured by Osaka Organic Chemical Industry Co., Ltd.).
00 g, 0.060 g of benzyl dimethyl ketal (manufactured by Nippon Kayaku Co., Ltd.) as a photopolymerization initiator were prepared, and the composition comprising the above materials was sufficiently stirred at 50 ° C. to make them compatible with each other, and then the above-mentioned production was performed. It was injected into the empty cell prepared by the method at 50 ° C. through the opening. After the injection is completed, the opening is sealed and the ultra-high pressure mercury lamp is used as a light source to emit ultraviolet rays (intensity: 57 mW / cm 2 )
Was irradiated for 10 seconds to complete a liquid crystal cell made of polymer dispersed liquid crystal. The voltage holding ratio of the completed liquid crystal cell is 4
The value was 48.6% at 0 ° C., which was lower than that of the liquid crystal cell described in Example 6 using a polyimide coating film mixed with an adsorbent.

【0049】(比較例3)インジウム・錫酸化物よりな
る透明電極(ITO電極)を形成したガラス基板を2枚
用意し、各ガラス基板のITO電極上にポリイミドワニ
ス(日産化学(株)製:商品名SE−4110)の3.
0%溶液を2300rpm.、60秒の条件で回転塗布
した後、260℃、1時間で焼成し、ポリイミドの塗膜
を設けた。このポリイミド塗膜の膜厚は約80nmであ
った。
(Comparative Example 3) Two glass substrates having transparent electrodes (ITO electrodes) made of indium / tin oxide were prepared, and polyimide varnish (manufactured by Nissan Kagaku Co., Ltd.) was placed on the ITO electrodes of each glass substrate. Product name SE-4110) 3.
0% solution at 2300 rpm. After spin coating for 60 seconds, the coating was baked at 260 ° C. for 1 hour to form a polyimide coating film. The film thickness of this polyimide coating film was about 80 nm.

【0050】このように処理した2枚のガラス基板を開
口部を残し、ポリイミド塗膜面が互いに対向するように
スペーサとして直径13μmのガラス繊維を分散した紫
外線硬化型樹脂で貼り合わせ、光源に超高圧水銀灯を用
いて、紫外線により前記樹脂を硬化接着し、空セルを完
成した。次に、液晶材料としてE8(メルクジャパン
(株)製)を8.200g、高分子形成モノマーとし
て、2エチルヘキシルアクリレート0.600gと2ヒ
ドロキシエチルアクリレート0.600g、オリゴマー
としてビスコート828(大阪有機化学工業(株)製)
を0.600g、光重合開始剤としてベンジルジメチル
ケタール(日本化薬(株)製)を0.060gを用意
し、前記材料からなる組成物を50℃で十分撹拌し相溶
状態にした後、上記した製造法で作製した空セルに50
℃で、開口部から注入した。注入完了後、50℃で前記
組成物にITO電極を通して、5V、30Hzの交流電
界を30分印加した。開口部を封止し、電界を除去した
後、直ちに50℃で超高圧水銀灯を光源に用いて紫外線
(強度:57mW/cm2)を10秒照射し、高分子分
散型液晶からなる液晶セルを完成した。こうして完成し
た液晶セルの電圧保持率は40℃で51.6%で、吸着
材を混合したポリイミド塗膜を用い、電界処理を施した
実施例7や実施例8記載の液晶セルに比べ低い値を示し
た。
The two glass substrates thus treated were bonded together with a UV curable resin in which glass fibers having a diameter of 13 μm were dispersed as spacers so that the polyimide coating surfaces face each other, leaving the openings, and the superposed light source. Using a high pressure mercury lamp, the resin was cured and adhered by ultraviolet rays to complete an empty cell. Next, 8.200 g of E8 (manufactured by Merck Japan Ltd.) as a liquid crystal material, 0.600 g of 2 ethylhexyl acrylate and 0.600 g of 2 hydroxyethyl acrylate as a polymer-forming monomer, and Biscoat 828 (Osaka Organic Chemical Industry) as an oligomer. (Made by Co., Ltd.)
Was prepared, and 0.060 g of benzyl dimethyl ketal (manufactured by Nippon Kayaku Co., Ltd.) as a photopolymerization initiator was prepared, and the composition comprising the materials was sufficiently stirred at 50 ° C. to make them compatible with each other. 50 in the empty cell manufactured by the above-mentioned manufacturing method.
Poured through the opening at ° C. After the injection was completed, an AC electric field of 5 V and 30 Hz was applied to the composition through an ITO electrode at 50 ° C. for 30 minutes. Immediately after the opening was sealed and the electric field was removed, ultraviolet rays (intensity: 57 mW / cm 2 ) were irradiated for 10 seconds at 50 ° C. using an ultra-high pressure mercury lamp as a light source to form a liquid crystal cell composed of polymer-dispersed liquid crystal. completed. The voltage holding ratio of the liquid crystal cell thus completed was 51.6% at 40 ° C., which was lower than those of the liquid crystal cells described in Example 7 and Example 8 in which electric field treatment was performed using a polyimide coating film mixed with an adsorbent. showed that.

【0051】(比較例4)インジウム・錫酸化物よりな
る透明電極(ITO電極)を形成したガラス基板を2枚
用意し、各ガラス基板のITO電極上にポリイミドワニ
ス(日産化学(株)製:商品名SE−4110)の3.
0%溶液を2300rpm.、60秒の条件で回転塗布
した後、260℃、1時間で焼成し、ポリイミドの塗膜
を設けた。このポリイミド塗膜の膜厚は約80nmであ
った。
(Comparative Example 4) Two glass substrates having transparent electrodes (ITO electrodes) made of indium / tin oxide were prepared, and polyimide varnish (manufactured by Nissan Chemical Industries, Ltd.) was placed on the ITO electrodes of each glass substrate. Product name SE-4110) 3.
0% solution at 2300 rpm. After spin coating for 60 seconds, the coating was baked at 260 ° C. for 1 hour to form a polyimide coating film. The film thickness of this polyimide coating film was about 80 nm.

【0052】このように処理した2枚のガラス基板を開
口部を残し、ポリイミド塗膜面が互いに対向するように
スペーサとして直径13μmのガラス繊維を分散した紫
外線硬化型樹脂で貼り合わせ、光源に超高圧水銀灯を用
いて、紫外線により前記樹脂を硬化接着し、空セルを完
成した。次に、液晶材料としてE8(メルクジャパン
(株)製)を8.200g、高分子形成モノマーとし
て、2エチルヘキシルアクリレート0.600gと2ヒ
ドロキシエチルアクリレート0.600g、オリゴマー
としてビスコート828(大阪有機化学工業(株)製)
を0.600g、光重合開始剤としてベンジルジメチル
ケタール(日本化薬(株)製)を0.060gを用意
し、前記材料からなる組成物を50℃で十分撹拌し相溶
状態にした後、上記した製造法で作製した空セルに50
℃で、開口部から注入した。注入完了後、開口部を封止
し、超高圧水銀灯を光源に用いて紫外線(強度:57m
W/cm2)を10秒照射し、高分子分散型液晶を形成
した後、80℃で前記高分子分散型液晶にITO電極を
通して、5V、30Hzの交流電界を30分印加し、液
晶セルを完成した。こうして完成した液晶セルの電圧保
持率は40℃で50.0%で、吸着材を混合したポリイ
ミド塗膜を用い、高分子分散型液晶を形成後に電界処理
を施した実施例9記載の液晶セルに比べ低い値を示し
た。
The two glass substrates thus treated were bonded together with a UV curable resin in which glass fibers having a diameter of 13 μm were dispersed as spacers so that the polyimide coating surfaces face each other, leaving the openings, and the superposed light source. Using a high pressure mercury lamp, the resin was cured and adhered by ultraviolet rays to complete an empty cell. Next, 8.200 g of E8 (manufactured by Merck Japan Ltd.) as a liquid crystal material, 0.600 g of 2 ethylhexyl acrylate and 0.600 g of 2 hydroxyethyl acrylate as a polymer-forming monomer, and Biscoat 828 (Osaka Organic Chemical Industry) as an oligomer. (Made by Co., Ltd.)
Was prepared, and 0.060 g of benzyl dimethyl ketal (manufactured by Nippon Kayaku Co., Ltd.) as a photopolymerization initiator was prepared, and the composition comprising the materials was sufficiently stirred at 50 ° C. to make them compatible with each other. 50 in the empty cell manufactured by the above-mentioned manufacturing method.
Poured through the opening at ° C. After the injection is completed, the opening is sealed and the ultra-high pressure mercury lamp is used as a light source to emit ultraviolet rays (strength: 57 m
W / cm 2 ) for 10 seconds to form a polymer-dispersed liquid crystal, and then an AC electric field of 5 V and 30 Hz is applied to the polymer-dispersed liquid crystal at 80 ° C. for 30 minutes through an ITO electrode to form a liquid crystal cell. completed. The voltage holding ratio of the liquid crystal cell thus completed was 50.0% at 40 ° C., and the liquid crystal cell of Example 9 was subjected to an electric field treatment after forming a polymer dispersed liquid crystal using a polyimide coating film mixed with an adsorbent. Showed a lower value than

【0053】尚、電界処理を行う温度は限定されるもの
ではないが、本発明の上記実施例のように重合性材料の
重合前に電界処理を行う場合は、液晶と重合性材料から
なる組成物が相溶状態を示す温度で、また重合性材料の
重合を完了し形成した高分子分散型液晶に電界処理を行
う場合は、高分子分散型液晶に使用した液晶が等方性を
示す温度で電界処理を行う方が液晶セルの電圧保持率は
高くなる。低温では、不純物の移動が悪く吸着材や塗膜
への吸着が悪くその結果電圧保持率はあまり高くならな
い。電界処理を行う電界の強度や周波数及び印加時間は
実施例に示したものに限定されず、適宜変更して使用で
きる。また、交流に限らず液晶や重合性材料等の材料が
劣化しない範囲で直流電界を印加してもよい。
Although the temperature at which the electric field treatment is carried out is not limited, when the electric field treatment is carried out before the polymerization of the polymerizable material as in the above-mentioned embodiment of the present invention, the composition of the liquid crystal and the polymerizable material is used. When the polymer-dispersed liquid crystal formed by completing the polymerization of the polymerizable material is subjected to an electric field treatment, the temperature at which the liquid-crystal used for the polymer-dispersed liquid crystal is isotropic. The voltage holding ratio of the liquid crystal cell is higher when the electric field treatment is carried out at. At low temperatures, the migration of impurities is poor and the adsorption to adsorbents and coatings is poor, and as a result, the voltage holding ratio does not increase so much. The intensity and frequency of the electric field to be subjected to the electric field treatment and the application time are not limited to those shown in the examples, and can be appropriately changed and used. Further, a DC electric field may be applied in a range where materials such as liquid crystal and a polymerizable material are not deteriorated as well as AC.

【0054】基板の電極上に設ける塗膜は、上記実施例
に記載したように両側の基板上で同じ塗膜を用いてもよ
いし、両側の基板上で異なる塗膜を用いてもよい。ま
た、塗膜中に混合する吸着材も両側の基板上の塗膜に異
なる吸着材を混合してもよい。さらに塗膜材料として
は、実施例に記載したポリイミドに限らず種々の有機系
材料が使用可能である。さらに、これらの塗膜は、ラビ
ング処理などにより配向処理されていてもよい。今回の
実施例では、これら塗膜の膜厚は80nmのものを用い
たが、これに限定されるものでない。これら塗膜は、片
側の基板上にのみ設けても使用可能である。
As the coating film provided on the electrodes of the substrate, the same coating film may be used on the substrates on both sides as described in the above embodiment, or different coating films may be used on the substrates on both sides. Further, as the adsorbent mixed in the coating film, different adsorbents may be mixed in the coating films on both the substrates. Further, the coating material is not limited to the polyimide described in the examples, and various organic materials can be used. Further, these coating films may be subjected to orientation treatment by rubbing treatment or the like. In this example, the thickness of these coating films was 80 nm, but the present invention is not limited to this. These coating films can be used even if they are provided only on one side of the substrate.

【0055】高分子分散型液晶に使用する液晶材料は、
上記実施例に記載したE8に限定されるものではなく、
その他のシアノ系液晶や、さらにはフッ素系液晶など種
々のネマチック液晶さらにはコレステリック液晶等を用
いてもよい。今回の実施例では、高分子分散型液晶とし
て液晶相がドロプレット状に分離した形態の高分子分散
型液晶を用いて説明しているが、これに限らず、高分子
の三次元編目構造内に液晶が連続相を形成している形態
の高分子分散型液晶でも同様の効果が達成できる。ま
た、今回の実施例では、高分子分散型液晶中の液晶の割
合は、約82重量%にしているが、これに限定されるも
のでない。高分子形成モノマーとしては、今回、2エチ
ルヘキシルアクリレートや2ヒドロキシエチルアクリレ
ートを用いたが、それに限定されるものではなく、ネオ
ペンチルグリコールドアクリレート、ヘキサンジオール
ジアクリレート、ジエチレングリコールジアクリレー
ト、トリプロピレングリコールジアクリレート、ポリエ
チレングリコールジアクリレート、トリメチロールプロ
パントリアクリレートなど一般に市販されているアクリ
ル系モノマー、さらには広く、アクリル系以外の市販品
も応用可能である。オリゴマーも実施例に示したビスコ
ート828(大阪有機化学工業(株)製)に限定される
ものでない。
The liquid crystal material used for the polymer dispersed liquid crystal is
It is not limited to E8 described in the above embodiment,
Other cyano liquid crystals, various nematic liquid crystals such as fluorine liquid crystals, and cholesteric liquid crystals may be used. In this example, the polymer dispersed liquid crystal is described by using the polymer dispersed liquid crystal in which the liquid crystal phase is separated into droplets, but the invention is not limited to this. The same effect can be achieved with a polymer-dispersed liquid crystal in which the liquid crystal forms a continuous phase. Further, in this example, the ratio of the liquid crystal in the polymer dispersed liquid crystal is set to about 82% by weight, but it is not limited to this. As the polymer-forming monomer, 2 ethylhexyl acrylate or 2 hydroxyethyl acrylate was used this time, but it is not limited thereto. Neopentyl glycol acrylate, hexanediol diacrylate, diethylene glycol diacrylate, tripropylene glycol diacrylate. , Commercially available acrylic monomers such as polyethylene glycol diacrylate and trimethylolpropane triacrylate, and widely applicable commercial products other than acrylic monomers. The oligomer is not limited to Viscoat 828 (manufactured by Osaka Organic Chemical Industry Co., Ltd.) shown in the examples.

【0056】また、重合開始剤もベンジルジメチルケタ
ール(日本化薬(株)製)に限定されるものでなく、メ
ルク(株)製のダロキュア1173やチバガイキー
(株)製のイルガキュア184、イルガキュア651な
どでもよい。
Also, the polymerization initiator is not limited to benzyl dimethyl ketal (manufactured by Nippon Kayaku Co., Ltd.), and Darocur 1173 manufactured by Merck Co., Ltd., Irgacure 184 manufactured by Ciba-Gaiky Co., Ltd., Irgacure 651, etc. But it's okay.

【0057】さらに、使用する高分子材料は、実施例で
示した光硬化性樹脂に限定されるものではなく、熱硬化
性樹脂や熱可塑性樹脂であってもよい。
Further, the polymer material used is not limited to the photo-curable resin shown in the examples, and may be a thermosetting resin or a thermoplastic resin.

【0058】[0058]

【発明の効果】以上述べたところから明らかなように、
本発明は、高分子分散型液晶中に金属酸化物などからな
る吸着材を混合し、高分子分散型液晶に重合性材料の重
合前あるいは重合完了後に、高分子分散型液晶に電界を
印加することで、液晶光学素子の電荷保持特性を向上で
きる。
As is apparent from the above description,
According to the present invention, an adsorbent composed of a metal oxide or the like is mixed in a polymer-dispersed liquid crystal, and an electric field is applied to the polymer-dispersed liquid crystal before or after the polymerization of a polymerizable material is completed. As a result, the charge retention characteristics of the liquid crystal optical element can be improved.

【0059】また、吸着材を高分子分散型液晶中に混合
する代わりに、高分子分散型液晶を挟持する基板に、吸
着材を混合した塗膜を設けた基板を使用し、重合性材料
の重合前あるいは重合完了後に高分子分散型液晶に電界
を印加しても、同様に電荷保持特性の良好な液晶光学素
子が実現できる。
Instead of mixing the adsorbent in the polymer-dispersed liquid crystal, a substrate in which the adsorbent is mixed is provided on the substrate sandwiching the polymer-dispersed liquid crystal, and a substrate of the polymerizable material is used. Even if an electric field is applied to the polymer-dispersed liquid crystal before or after the polymerization, a liquid crystal optical element having a good charge retention property can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1から請求項4記載の高分子分
散型液晶を用いて作製した液晶光学素子の構成を示す断
面図である。
FIG. 1 is a cross-sectional view showing a configuration of a liquid crystal optical element produced by using the polymer-dispersed liquid crystal according to claims 1 to 4 of the present invention.

【図2】本発明の請求項5から請求項10記載の高分子
分散型液晶を用いた液晶光学素子の製造法の概略を示す
図である。
FIG. 2 is a diagram schematically showing a method for producing a liquid crystal optical element using the polymer-dispersed liquid crystal according to claims 5 to 10 of the present invention.

【図3】本発明の請求項11から請求項15記載の高分
子分散型液晶を用いた液晶光学素子の製造法の概略を示
す図である。
FIG. 3 is a diagram schematically showing a method for producing a liquid crystal optical element using the polymer dispersed liquid crystal according to claims 11 to 15 of the present invention.

【図4】本発明の請求項16から請求項19記載の高分
子分散型液晶を用いて作製した液晶光学素子の構成を示
す断面図である。
FIG. 4 is a cross-sectional view showing a configuration of a liquid crystal optical element produced by using the polymer-dispersed liquid crystal according to claims 16 to 19 of the present invention.

【図5】本発明の請求項20から請求項25記載の高分
子分散型液晶を用いた液晶光学素子の製造法の概略を示
す図である。
FIG. 5 is a diagram schematically showing a method for producing a liquid crystal optical element using the polymer-dispersed liquid crystal according to claims 20 to 25 of the present invention.

【図6】本発明の請求項26から請求項30記載の高分
子分散型液晶を用いた液晶光学素子の製造法の概略を示
す図である。
FIG. 6 is a diagram schematically showing a method for producing a liquid crystal optical element using the polymer-dispersed liquid crystal according to claim 26 to claim 30 of the present invention.

【図7】高分子分散型液晶を用いて作製した液晶光学素
子の表示原理を示す概略図である。
FIG. 7 is a schematic view showing a display principle of a liquid crystal optical element manufactured by using polymer-dispersed liquid crystal.

【図8】電圧保持率の測定法を説明する図である。FIG. 8 is a diagram illustrating a method of measuring a voltage holding ratio.

【符号の説明】[Explanation of symbols]

11 上側基板 46 吸着
材 12 下側基板 47 吸着
材を含んだ塗膜 13 電極 51 上側
基板 14 スペーサ兼シール樹脂 52 下側
基板 15 高分子分散型液晶 53 電極 16 吸着材 54 スペ
ーサ兼シール樹脂 21 上側基板 55 組成
物 22 下側基板 56 吸着
材 23 電極 57 電界 24 スペーサ兼シール樹脂 58 吸着
材を含んだ塗膜 25 組成物 61 上側
基板 26 吸着材 62 下側
基板 27 電界 63 電極 31 上側基板 64 スペ
ーサ兼シール樹脂 32 下側基板 65 高分
子分散型液晶 33 電極 66 吸着
材 34 スペーサ兼シール樹脂 67 電界 35 高分子分散型液晶 68 吸着
材を含んだ塗膜 36 吸着材 71 電極 37 電界 72 入射
光 41 上側基板 73 散乱
光 42 下側基板 74 液晶 43 電極 75 高分
子相 44 スペーサ兼シール樹脂 76 透過
光 45 高分子分散型液晶
11 Upper Substrate 46 Adsorbent 12 Lower Substrate 47 Coating Film Containing Adsorbent 13 Electrode 51 Upper Substrate 14 Spacer and Seal Resin 52 Lower Substrate 15 Polymer Dispersed Liquid Crystal 53 Electrode 16 Adsorbent 54 Spacer and Seal Resin 21 Upper Substrate 55 Composition 22 Lower substrate 56 Adsorbent 23 Electrode 57 Electric field 24 Spacer and sealing resin 58 Coating film containing adsorbent 25 Composition 61 Upper substrate 26 Adsorbent 62 Lower substrate 27 Electric field 63 Electrode 31 Upper substrate 64 Spacer Sealing resin 32 Lower substrate 65 Polymer dispersed liquid crystal 33 Electrode 66 Adsorbent 34 Spacer and sealing resin 67 Electric field 35 Polymer dispersed liquid crystal 68 Coating film containing adsorbent 36 Adsorbent 71 Electrode 37 Electric field 72 Incident light 41 Upper substrate 73 Scattered light 42 Lower substrate 74 Liquid crystal 43 Electrode 75 Polymer phase 44 P o and the seal resin 76 transmitted light 45 PDLC

Claims (30)

【特許請求の範囲】[Claims] 【請求項1】吸着材を混合した高分子分散型液晶を有す
ることを特徴とする液晶光学素子。
1. A liquid crystal optical element comprising a polymer-dispersed liquid crystal mixed with an adsorbent.
【請求項2】吸着材が金属酸化物であることを特徴とす
る請求項1記載の液晶光学素子。
2. The liquid crystal optical element according to claim 1, wherein the adsorbent is a metal oxide.
【請求項3】金属酸化物が酸点と塩基点の両者を有する
金属酸化物であることを特徴とする請求項2記載の液晶
光学素子。
3. The liquid crystal optical element according to claim 2, wherein the metal oxide is a metal oxide having both acid points and basic points.
【請求項4】金属酸化物が酸点を有する金属酸化物と塩
基点を有する金属酸化物の2種類の混合物であることを
特徴とする請求項2記載の液晶光学素子。
4. The liquid crystal optical element according to claim 2, wherein the metal oxide is a mixture of two kinds of a metal oxide having an acid point and a metal oxide having a basic point.
【請求項5】少なくとも一方の基板上に設けた電極が透
明である上下一対の基板間に、液晶と重合性材料からな
る組成物に吸着材を混合した混合物を挟持し、電極を通
して前記混合物に電界を印加した後、電界除去後に前記
重合性材料の重合を完了することを特徴とする液晶光学
素子の製造法。
5. A mixture of a composition comprising a liquid crystal and a polymerizable material and an adsorbent is sandwiched between a pair of upper and lower substrates having transparent electrodes provided on at least one substrate, and the mixture is passed through the electrodes to form the mixture. A method for producing a liquid crystal optical element, which comprises applying an electric field and then removing the electric field to complete the polymerization of the polymerizable material.
【請求項6】少なくとも一方の基板上に設けた電極が透
明である上下一対の基板間に、液晶と重合性材料からな
る組成物に吸着材を混合した混合物を挟持し、電極を通
して前記混合物に電界を印加しながら前記重合性材料の
重合を完了することを特徴とする液晶光学素子の製造
法。
6. A mixture of a composition comprising a liquid crystal and a polymerizable material and an adsorbent is sandwiched between a pair of upper and lower substrates having transparent electrodes provided on at least one substrate, and the mixture is passed through the electrodes to form the mixture. A method for producing a liquid crystal optical element, characterized in that the polymerization of the polymerizable material is completed while applying an electric field.
【請求項7】液晶と重合性材料からなる組成物に混合す
る吸着材が金属酸化物であることを特徴とする請求項5
または請求項6記載の液晶光学素子の製造法。
7. The adsorbent mixed with the composition comprising liquid crystal and a polymerizable material is a metal oxide.
Alternatively, the method for manufacturing a liquid crystal optical element according to claim 6.
【請求項8】金属酸化物が酸点と塩基点の両者を有する
金属酸化物であることを特徴とする請求項7記載の液晶
光学素子の製造法。
8. The method for producing a liquid crystal optical element according to claim 7, wherein the metal oxide is a metal oxide having both acid points and basic points.
【請求項9】金属酸化物が酸点を有する金属酸化物と塩
基点を有する金属酸化物の2種類の混合物であることを
特徴とする請求項7記載の液晶光学素子の製造法。
9. The method for producing a liquid crystal optical element according to claim 7, wherein the metal oxide is a mixture of two kinds of a metal oxide having an acid point and a metal oxide having a basic point.
【請求項10】液晶と重合性材料から成る組成物に吸着
材を混合した混合物に電界を印加する時の温度が、前記
組成物が相溶状態を示す温度であることを特徴とする請
求項5または請求項6記載の液晶光学素子の製造法。
10. The temperature at which an electric field is applied to a mixture obtained by mixing an adsorbent with a composition comprising liquid crystal and a polymerizable material is a temperature at which the composition exhibits a compatible state. 5. The method for producing a liquid crystal optical element according to claim 5 or claim 6.
【請求項11】少なくとも一方の基板上に設けた電極が
透明である上下一対の基板間に、液晶と重合性材料から
なる組成物に吸着材を混合した混合物を挟持し、前記重
合性材料の重合を行い、基板間に吸着材を含んだ高分子
分散型液晶を挟持した後、電極を通して前記高分子分散
型液晶に電界を印加することを特徴とする液晶光学素子
の製造法。
11. A mixture of a composition comprising a liquid crystal and a polymerizable material and an adsorbent is sandwiched between a pair of upper and lower substrates having transparent electrodes provided on at least one substrate, and the polymerizable material A method for producing a liquid crystal optical element, comprising polymerizing, sandwiching a polymer-dispersed liquid crystal containing an adsorbent between substrates, and then applying an electric field to the polymer-dispersed liquid crystal through electrodes.
【請求項12】液晶と重合性材料からなる組成物に混合
する吸着材が金属酸化物であることを特徴とする請求項
11記載の液晶光学素子の製造法。
12. The method for producing a liquid crystal optical element according to claim 11, wherein the adsorbent mixed with the composition comprising liquid crystal and a polymerizable material is a metal oxide.
【請求項13】金属酸化物が酸点と塩基点の両者を有す
る金属酸化物であることを特徴とする請求項12記載の
液晶光学素子の製造法。
13. The method for producing a liquid crystal optical element according to claim 12, wherein the metal oxide is a metal oxide having both acid points and basic points.
【請求項14】金属酸化物が酸点を有する金属酸化物と
塩基点を有する金属酸化物の2種類の混合物であること
を特徴とする請求項12記載の液晶光学素子の製造法。
14. The method for producing a liquid crystal optical element according to claim 12, wherein the metal oxide is a mixture of two kinds of a metal oxide having an acid point and a metal oxide having a basic point.
【請求項15】吸着材を含む高分子分散型液晶に電界を
印加する時の温度が、液晶が等方性を示す温度であるこ
とを特徴とする請求項11記載の液晶光学素子の製造
法。
15. The method for producing a liquid crystal optical element according to claim 11, wherein the temperature at which an electric field is applied to the polymer-dispersed liquid crystal containing an adsorbent is a temperature at which the liquid crystal exhibits isotropicity. .
【請求項16】少なくとも一方の基板上に設けた電極が
透明である上下一対の基板間に高分子分散型液晶を挟持
した液晶光学素子において、該基板が、電極上に吸着材
を混合した塗膜を設けた構成の基板であることを特徴と
する液晶光学素子。
16. A liquid crystal optical element in which a polymer-dispersed liquid crystal is sandwiched between a pair of upper and lower substrates having transparent electrodes provided on at least one substrate, and the substrate is coated with an adsorbent mixed. A liquid crystal optical element, which is a substrate having a structure provided with a film.
【請求項17】吸着材が金属酸化物であることを特徴と
する請求項16記載の液晶光学素子。
17. The liquid crystal optical element according to claim 16, wherein the adsorbent is a metal oxide.
【請求項18】金属酸化物が酸点と塩基点の両者を有す
る金属酸化物であることを特徴とする請求項17記載の
液晶光学素子。
18. The liquid crystal optical element according to claim 17, wherein the metal oxide is a metal oxide having both acid points and basic points.
【請求項19】金属酸化物が酸点を有する金属酸化物と
塩基点を有する金属酸化物の2種類の混合物であること
を特徴とする請求項17記載の液晶光学素子。
19. The liquid crystal optical element according to claim 17, wherein the metal oxide is a mixture of two kinds of a metal oxide having an acid point and a metal oxide having a basic point.
【請求項20】少なくとも一方の基板上に設けた電極が
透明である上下一対の基板の電極上に吸着材を混合した
塗膜を設け、該基板間に、液晶と重合性材料からなる組
成物を挟持し、電極を通して前記組成物に電界を印加し
た後、電界除去後に前記重合性材料の重合を完了するこ
とを特徴とする液晶光学素子の製造法。
20. A composition comprising a liquid crystal and a polymerizable material provided on a pair of upper and lower substrates having transparent electrodes provided on at least one substrate with a coating film mixed with an adsorbent, between the substrates. A method for producing a liquid crystal optical element, characterized in that after the electric field is applied to the composition through the electrodes, the polymerization of the polymerizable material is completed after the electric field is removed.
【請求項21】少なくとも一方の基板上に設けた電極が
透明である上下一対の基板の電極上に吸着材を混合した
塗膜を設け、該基板間に、液晶と重合性材料からなる組
成物を挟持し、電極を通して前記組成物に電界を印加し
ながら前記重合性材料の重合を完了することを特徴とす
る液晶光学素子の製造法。
21. A composition composed of a liquid crystal and a polymerizable material is provided between electrodes of a pair of upper and lower substrates having transparent electrodes provided on at least one substrate, and a coating film is provided between the substrates. A method for producing a liquid crystal optical element, characterized in that the polymerization of the polymerizable material is completed while an electric field is applied to the composition through the electrodes by sandwiching.
【請求項22】電極上に設けた塗膜に混合する吸着材が
金属酸化物であることを特徴とする請求項20または請
求項21記載の液晶光学素子の製造法。
22. The method of manufacturing a liquid crystal optical element according to claim 20, wherein the adsorbent mixed with the coating film provided on the electrode is a metal oxide.
【請求項23】金属酸化物が酸点と塩基点の両者を有す
る金属酸化物であることを特徴とする請求項22記載の
液晶光学素子の製造法。
23. The method for producing a liquid crystal optical element according to claim 22, wherein the metal oxide is a metal oxide having both acid points and basic points.
【請求項24】金属酸化物が酸点を有する金属酸化物と
塩基点を有する金属酸化物の2種類の混合物であること
を特徴とする請求項22記載の液晶光学素子の製造法。
24. The method for producing a liquid crystal optical element according to claim 22, wherein the metal oxide is a mixture of two kinds of a metal oxide having an acid point and a metal oxide having a basic point.
【請求項25】液晶と重合性材料から成る組成物に電界
を印加する時の温度が、前記組成物が相溶性を示す温度
であることを特徴とする請求項20または請求項21記
載の液晶光学素子の製造法。
25. The liquid crystal according to claim 20 or 21, wherein the temperature at which an electric field is applied to the composition comprising the liquid crystal and the polymerizable material is a temperature at which the composition exhibits compatibility. Optical element manufacturing method.
【請求項26】少なくとも一方の基板上に設けた電極が
透明である上下一対の基板の電極上に吸着材を混合した
塗膜を設け、該基板間に、液晶と重合性材料からなる組
成物を挟持し、前記組成物の重合を行い、基板間に高分
子分散型液晶を挟持した後、電極を通して前記高分子分
散型液晶に電界を印加することを特徴とする液晶光学素
子の製造法。
26. A composition comprising a liquid crystal and a polymerizable material provided on a pair of upper and lower substrates having transparent electrodes provided on at least one substrate with a coating film mixed with an adsorbent, between the substrates. And a polymer-dispersed liquid crystal is sandwiched between the substrates, and then an electric field is applied to the polymer-dispersed liquid crystal through electrodes to produce a liquid crystal optical element.
【請求項27】電極上に設けた塗膜に混合する吸着材が
金属酸化物であことを特徴とする請求項26記載の液晶
光学素子の製造法。
27. The method for producing a liquid crystal optical element according to claim 26, wherein the adsorbent mixed with the coating film provided on the electrode is a metal oxide.
【請求項28】金属酸化物が酸点と塩基点の両者を有す
る金属酸化物であることを特徴とする請求項27記載の
液晶光学素子の製造法。
28. The method for producing a liquid crystal optical element according to claim 27, wherein the metal oxide is a metal oxide having both acid points and basic points.
【請求項29】金属酸化物が酸点を有する金属酸化物と
塩基点を有する金属酸化物の2種類の混合物であること
を特徴とする請求項27記載の液晶光学素子の製造法。
29. The method for producing a liquid crystal optical element according to claim 27, wherein the metal oxide is a mixture of two kinds of a metal oxide having an acid site and a metal oxide having a basic site.
【請求項30】高分子分散型液晶に電界を印加するとき
の温度が、液晶が等方性を示す温度であることを特徴と
する請求項26記載の液晶光学素子の製造法。
30. The method for producing a liquid crystal optical element according to claim 26, wherein the temperature at which an electric field is applied to the polymer dispersed liquid crystal is a temperature at which the liquid crystal exhibits isotropicity.
JP20656493A 1993-08-20 1993-08-20 Liquid crystal optical element and its production Pending JPH0756153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20656493A JPH0756153A (en) 1993-08-20 1993-08-20 Liquid crystal optical element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20656493A JPH0756153A (en) 1993-08-20 1993-08-20 Liquid crystal optical element and its production

Publications (1)

Publication Number Publication Date
JPH0756153A true JPH0756153A (en) 1995-03-03

Family

ID=16525487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20656493A Pending JPH0756153A (en) 1993-08-20 1993-08-20 Liquid crystal optical element and its production

Country Status (1)

Country Link
JP (1) JPH0756153A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007156054A (en) * 2005-12-05 2007-06-21 Seiko Epson Corp Liquid crystal device, method of manufacturing liquid crystal device, and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007156054A (en) * 2005-12-05 2007-06-21 Seiko Epson Corp Liquid crystal device, method of manufacturing liquid crystal device, and electronic apparatus

Similar Documents

Publication Publication Date Title
JP3060656B2 (en) Liquid crystal display device
EP0313053B1 (en) Liquid crystal device
JPH08211366A (en) Liquid crystal display device and its production
JPH0659246A (en) Optical modulation element and its production
JP2000321562A (en) Liquid crystal optical device having reverse mode optical switching function and its production
JP2937684B2 (en) Liquid crystal display device and method of manufacturing the same
JPH0611694A (en) Liquid crystal optical element and its production
JPH0756153A (en) Liquid crystal optical element and its production
JP2880354B2 (en) Liquid crystal display device and method of manufacturing the same
JP2881073B2 (en) Electric field birefringence control type liquid crystal device and manufacturing method thereof
JP3225932B2 (en) Manufacturing method of liquid crystal display element
JPH11125808A (en) Liquid crystal optical element and its production
JP2794941B2 (en) Liquid crystal display device
JP2000098354A (en) Polymer dispersion type liquid crystal display device and its production
JPH06235908A (en) Liquid crystal optical element and its manufacture
JP3054005B2 (en) Liquid crystal display device and method of manufacturing the same
JP2550629B2 (en) Liquid crystal optical element and manufacturing method thereof
JP2002148600A (en) Polymer dispersion type liquid crystal element and method of manufacture
JP3337521B2 (en) Liquid crystal optical element and manufacturing method thereof
JPH09258189A (en) Liquid crystal display device and its production
JPH0695083A (en) Liquid crystal optical element
JPH09179102A (en) Liquid crystal optical element
JP2569677B2 (en) Liquid crystal optical element, method of manufacturing the same, dimmer and display device using the same
JPH05119301A (en) Production of liquid crystal display element
JPH0961797A (en) Liquid crystal optical element and its production