JPH0611694A - Liquid crystal optical element and its production - Google Patents

Liquid crystal optical element and its production

Info

Publication number
JPH0611694A
JPH0611694A JP19140392A JP19140392A JPH0611694A JP H0611694 A JPH0611694 A JP H0611694A JP 19140392 A JP19140392 A JP 19140392A JP 19140392 A JP19140392 A JP 19140392A JP H0611694 A JPH0611694 A JP H0611694A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal material
polymer compound
substrates
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19140392A
Other languages
Japanese (ja)
Other versions
JP2827720B2 (en
Inventor
Tomohisa Goto
智久 五藤
Goro Saito
悟郎 斉藤
Daisaku Nakada
大作 中田
Hideya Murai
秀哉 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19140392A priority Critical patent/JP2827720B2/en
Publication of JPH0611694A publication Critical patent/JPH0611694A/en
Application granted granted Critical
Publication of JP2827720B2 publication Critical patent/JP2827720B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To increase the light scattering intensity of a polymer-dispersion liq. crystal element to the theoretical maximum and to provide the element capable of easily realizing a reverse mode. CONSTITUTION:A soln. consisting of a photosetting high molecular compd. precursor 4 and a liq. crystal material 3 is held by two substrates 1, an electric field or a magnetic field is impressed to orient the material 3 in the specified manner, the soln. is irradiated with light, and the precursor is cured to form a dimmer layer. Even if the material 3 is extracted from the dimmer layer and another liq. crystal material is injected, the material is oriented in the same way when an electric field is not impressed. Consequently, the precursor is cured by using a liq. crystal material having negative permittivity anisotropy, then a liq. crystal material having positive permittivity anisotropy is injected, and an element having a high scattering intensity is obtained. When the precursor is cured by using a liq. crystal material having positive permittivity anisotropy and a liq. crystal material having negative permittivity anisotropy is injected, a reverse-mode element is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶材料−光硬化性化
合物界面の配向制御を行った透過散乱型の液晶光学素子
およびその製造方法に関するものであり、本発明の液晶
光学素子は、文字、図形等を表示する表示装置、入射光
の透過−遮断を制御する調光ガラス、光シャッター等に
利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission / scattering type liquid crystal optical element in which the orientation of a liquid crystal material-photocurable compound interface is controlled, and a method for producing the same. , Display devices for displaying figures, dimming glass for controlling transmission / blocking of incident light, optical shutters, etc.

【0002】[0002]

【従来の技術】液晶表示素子は、従来ネマチック液晶を
使用したTN型や、STN型のものが実用化されてい
る。しかしこれらは偏光板を要するため、明るさ、コン
トラストにおいて制限を受けるという欠点を有してい
る。一方、偏光板を要しない素子として特表昭58−5
01631号公報には、液晶材料をカプセル化し、高分
子中に分散する素子が開示されている。この高分子分散
液晶素子は、液晶分子の長軸方向または短軸方向のいず
れか一方の屈折率と高分子物質の屈折率とを等しくして
おき、液晶の向きを変えることにより透明−散乱状態を
制御している。また、液晶材料の屈折率の変化を利用し
た同様の素子として、液晶材料を光硬化性化合物中に分
散したもの(特開昭62−2231号公報)が知られて
いる。この高分子分散液晶素子は、ITO等の透明導電
膜を表面にコーティングした基板を透明導電膜が内側と
なるようにして組合わせ、液晶滴が分散している光硬化
性化合物を基板により挟持している。この液晶素子は、
2枚の基板間に光硬化性化合物と誘電異方性が正の液晶
材料との混合溶液を注入し、光を照射して作成する。光
を照射すると、光硬化性化合物が硬化する際に、液晶材
料が球状に分離される。この液晶素子の平均分子方向
は、電圧を印加しない状態で任意の方向を向いている。
この状態では、光硬化性高分子と液晶滴の屈折率は異な
るため、外部からの入射光は散乱される。一方、この液
晶素子に電圧を印加した場合、液晶材料の誘電率異方性
が正であるため、電圧を印加すると液晶の平均分子は基
板と垂直になるように配向する。液晶材料の持つ長軸方
向の屈折率が光硬化性高分子の屈折率と等しくなるよう
に設定してあるとすると、電圧印加時に外部から入射し
た光は散乱せずに透過する。さらに電圧を印加し液晶材
料を配向させながら光照射を行い硬化させると、電圧を
切っても電圧を印加した状態を維持することが報告され
ている(特開昭63−301922号公報)。
2. Description of the Related Art Liquid crystal display devices of the TN type and the STN type using nematic liquid crystals have been put into practical use. However, since these require polarizing plates, they have the drawback of being limited in brightness and contrast. On the other hand, as an element that does not require a polarizing plate
Japanese Patent Publication No. 01631 discloses an element in which a liquid crystal material is encapsulated and dispersed in a polymer. In this polymer-dispersed liquid crystal element, the refractive index of either the major axis direction or the minor axis direction of the liquid crystal molecule is made equal to the refractive index of the polymer substance, and the transparent-scattering state is obtained by changing the direction of the liquid crystal. Are in control. Further, as a similar device utilizing the change of the refractive index of the liquid crystal material, there is known one in which a liquid crystal material is dispersed in a photocurable compound (Japanese Patent Laid-Open No. 62-2231). In this polymer-dispersed liquid crystal element, a substrate coated with a transparent conductive film such as ITO is combined so that the transparent conductive film is on the inside, and a photocurable compound in which liquid crystal droplets are dispersed is sandwiched between the substrates. ing. This liquid crystal element
It is prepared by injecting a mixed solution of a photocurable compound and a liquid crystal material having a positive dielectric anisotropy between two substrates and irradiating with light. When irradiated with light, the liquid crystal material is spherically separated when the photocurable compound is cured. The average molecular direction of this liquid crystal element is an arbitrary direction without applying a voltage.
In this state, since the photocurable polymer and the liquid crystal droplet have different refractive indexes, incident light from the outside is scattered. On the other hand, when a voltage is applied to this liquid crystal element, since the dielectric anisotropy of the liquid crystal material is positive, the average molecules of the liquid crystal are aligned so as to be perpendicular to the substrate when a voltage is applied. If the refractive index of the liquid crystal material in the long axis direction is set to be equal to the refractive index of the photocurable polymer, light incident from the outside when a voltage is applied is transmitted without being scattered. Further, it has been reported that when a voltage is applied and the liquid crystal material is aligned while being irradiated with light to be cured, the state in which the voltage is applied is maintained even when the voltage is turned off (Japanese Patent Laid-Open No. 63-301922).

【0003】[0003]

【発明が解決しようとする課題】特表昭58−5016
31号公報に開示された高分子分散液晶素子で光散乱強
度を最大にしたいならば、液晶材料の屈折率と光硬化性
化合物の屈折率との差を最大にすればよい。すなわち液
晶材料の平均分子方向を基板に水平にすればよい。しか
し電圧を除いたときの液晶分子の方向はランダムであ
り、この液晶素子をマクロ的に観察した場合には、液晶
滴の屈折率は、液晶材料の長軸方向の屈折率と短軸方向
の屈折率との間をとる。このため、液晶材料と光硬化性
化合物との屈折率差は、液晶材料の持つ屈折率異方性よ
り小さくなり、光散乱状態が悪くなるという課題があ
る。また、特開昭63−301922号公報に記載の高
分子分散液晶素子は、電圧を切っても液晶分子の方向は
ランダムとならず、硬化時の配向状態を維持する。しか
し、通常は硬化時の配向状態を変えずに一定の配向状態
のまま使用している。配向状態を変える場合は、基板面
に対してある角度傾いて配向している液晶分子を基板と
垂直な方向に変えることしかできない。この場合にも、
上記と同様に液晶材料と高分子物質の屈折率との差は液
晶材料の持つ屈折率異方性より小さくなるという課題が
ある。本発明の目的は、以上の課題を解決し、光透過状
態と光散乱状態の比を理論的に最大の値とすることであ
る。また本発明の他の目的は、リバースモードを容易に
実現できる液晶光学素子を提供することである。
[Problems to be Solved by the Invention] Tokushusho Sho-50-5016
If it is desired to maximize the light scattering intensity in the polymer-dispersed liquid crystal device disclosed in JP-A-31-31, the difference between the refractive index of the liquid crystal material and the refractive index of the photocurable compound may be maximized. That is, the average molecular direction of the liquid crystal material may be horizontal to the substrate. However, the directions of the liquid crystal molecules when the voltage is removed are random, and when the liquid crystal element is macroscopically observed, the refractive index of the liquid crystal droplets depends on the refractive index in the major axis direction and the refractive index in the minor axis direction of the liquid crystal material. Takes between the refractive index. Therefore, there is a problem that the difference in refractive index between the liquid crystal material and the photocurable compound is smaller than the refractive index anisotropy of the liquid crystal material, and the light scattering state deteriorates. Further, in the polymer-dispersed liquid crystal element described in JP-A-63-301922, the directions of the liquid crystal molecules are not random even when the voltage is turned off, and the alignment state during curing is maintained. However, normally, the alignment state at the time of curing is not changed, and the alignment state is kept constant. When changing the alignment state, it is only possible to change the liquid crystal molecules which are aligned at an angle to the substrate surface in a direction perpendicular to the substrate. Also in this case,
Similar to the above, there is a problem that the difference in refractive index between the liquid crystal material and the polymer substance is smaller than the refractive index anisotropy of the liquid crystal material. An object of the present invention is to solve the above problems and to theoretically maximize the ratio of the light transmission state and the light scattering state. Another object of the present invention is to provide a liquid crystal optical element that can easily realize a reverse mode.

【0004】[0004]

【課題を解決するための手段】本発明は、電極層を有す
る少なくとも一方が透明な2枚の基板間に光硬化性高分
子化合物と液晶材料とを挟持してなる液晶光学素子であ
って、前記液晶材料が光硬化時とは異なる液晶材料であ
り、かつ前記光硬化性高分子化合物と前記液晶材料との
界面の相互作用により前記液晶材料が所定の方向に配向
していることを特徴とする液晶光学素子である(請求項
1)。その製造方法は、電極層を有する少なくとも一方
が透明な2枚の基板間に光硬化性高分子化合物前駆体と
液晶材料とからなる溶液を注入し、該液晶材料の分子軸
方向が基板に対して所定の配向状態を形成するようなフ
レデリック転移点以上の電界または磁界を基板間に印加
した状態で光を照射して前記光硬化性高分子化合物前駆
体を硬化させ、調光層を形成させた後、前記液晶材料を
基板間から抽出し、その空孔に別の液晶材料を注入する
ことを特徴とする(請求項2)。
The present invention provides a liquid crystal optical element having a photocurable polymer compound and a liquid crystal material sandwiched between two substrates having at least one transparent electrode layer. The liquid crystal material is a liquid crystal material different from that at the time of photo-curing, and the liquid crystal material is oriented in a predetermined direction by interaction of the interface between the photo-curable polymer compound and the liquid crystal material. And a liquid crystal optical element (claim 1). The manufacturing method is such that a solution comprising a photocurable polymer compound precursor and a liquid crystal material is injected between two substrates, at least one of which has an electrode layer and is transparent, and the molecular axis direction of the liquid crystal material is relative to the substrates. The light-curable polymer compound precursor is cured by irradiating light while applying an electric field or magnetic field above the Frederick transition point so as to form a predetermined alignment state between the substrates to form a dimming layer. After that, the liquid crystal material is extracted from between the substrates, and another liquid crystal material is injected into the holes (claim 2).

【0005】また、本発明は、電極層を有する少なくと
も一方が透明な2枚の基板間に、光硬化性高分子化合物
と液晶材料とを挟持してなる液晶光学素子であって、前
記液晶材料が光硬化時とは異なる液晶材料であり、かつ
前記液晶材料と前記光硬化性高分子化合物との界面の相
互作用により前記液晶材料が基板に対して垂直な方向に
配向していることを特徴とする液晶光学素子である(請
求項3)。その製造方法は、電極層を有する少なくとも
一方が透明な2枚の基板間に、光硬化性高分子化合物前
駆体と誘電異方性が正の液晶材料からなる溶液を注入
し、該液晶材料の分子軸方向が基板に対して垂直方向に
向くようなフレデリック転移点以上の電界または磁界を
基板間に印加した状態で光を照射して前記光硬化性高分
子化合物前駆体を硬化させ、調光層を形成させた後、前
記液晶材料を調光層から抽出し、その空孔に誘電異方性
が負の液晶材料を注入することを特徴とする(請求項
4)。請求項3および4の発明によれば、電圧無印加時
に液晶分子が基板に対して垂直に配向し、電圧印加時に
基板に対して平行となるため、液晶材料の持つ分子軸方
向の屈折率が光硬化性高分子化合物の屈折率と等しくな
るように設定してあるとすると電圧無印加時に透明状
態、電圧印加時に散乱状態となる液晶光学素子を実現す
ることができる。
Further, the present invention is a liquid crystal optical element comprising a photocurable polymer compound and a liquid crystal material sandwiched between two substrates having at least one transparent electrode layer. Is a liquid crystal material different from that at the time of photo-curing, and the liquid crystal material is oriented in a direction perpendicular to the substrate due to the interaction of the interface between the liquid crystal material and the photo-curable polymer compound. And a liquid crystal optical element (claim 3). The manufacturing method is such that a solution of a photocurable polymer compound precursor and a liquid crystal material having a positive dielectric anisotropy is injected between two substrates having at least one transparent electrode layer, and the liquid crystal material Dimming is performed by irradiating light while applying an electric field or magnetic field above the Frederick transition point such that the molecular axis direction is perpendicular to the substrate to the substrate to cure the photocurable polymer compound precursor. After forming the layer, the liquid crystal material is extracted from the light control layer, and a liquid crystal material having a negative dielectric anisotropy is injected into the holes (claim 4). According to the inventions of claims 3 and 4, since the liquid crystal molecules are aligned vertically to the substrate when no voltage is applied and are parallel to the substrate when a voltage is applied, the refractive index in the molecular axis direction of the liquid crystal material is If the refractive index of the photocurable polymer compound is set to be equal to that of the photocurable polymer compound, it is possible to realize a liquid crystal optical element that is in a transparent state when no voltage is applied and in a scattering state when a voltage is applied.

【0006】さらに、本発明は、電極層を有する少なく
とも一方が透明な2枚の基板間に、光硬化性高分子化合
物と液晶材料とを挟持してなる液晶光学素子であって、
前記液晶材料が光硬化時とは異なる液晶材料であり、か
つ前記液晶材料と前記光硬化性高分子化合物との界面の
相互作用により前記液晶材料が基板と平行な方向に配向
していることを特徴とする液晶光学素子である(請求項
5)。その製造方法は、電極層を有する少なくとも一方
が透明な2枚の基板間に、光硬化性高分子化合物前駆体
と誘電異方性が負の液晶材料とからなる溶液を注入し、
該液晶材料の分子軸方向が基板に対して平行方向に向く
ようなフレデリック転移点以上の電界または磁界を前記
基板間に印加した状態で光を照射して前記光硬化性高分
子化合物前駆体を硬化させ、調光層を形成させた後、前
記液晶材料を調光層から抽出し、その空孔に誘電異方性
が正の液晶材料を注入することを特徴とする(請求項
6)。請求項5および6の発明によれば、電圧無印加時
に液晶分子が基板に対して平行に配向し、電圧印加時に
基板に対して垂直となるため、液晶材料の持つ分子軸方
向の屈折率が光硬化性高分子化合物の屈折率と等しくな
るように設定してあるとすると、電圧無印加時に高い散
乱特性を示す液晶光学素子を実現することができる。
Further, the present invention is a liquid crystal optical element comprising a photocurable polymer compound and a liquid crystal material sandwiched between two substrates having at least one transparent electrode layer.
The liquid crystal material is a liquid crystal material different from that at the time of photo-curing, and the liquid crystal material is aligned in a direction parallel to the substrate by the interaction of the interface between the liquid crystal material and the photo-curable polymer compound. It is a characteristic liquid crystal optical element (Claim 5). The manufacturing method is to inject a solution composed of a photocurable polymer compound precursor and a liquid crystal material having a negative dielectric anisotropy between two substrates having at least one transparent electrode layer,
The photocurable polymer compound precursor is obtained by irradiating light while applying an electric field or magnetic field of a Frederick transition point or more such that the molecular axis direction of the liquid crystal material is parallel to the substrate, between the substrates. After being cured to form a light control layer, the liquid crystal material is extracted from the light control layer, and a liquid crystal material having a positive dielectric anisotropy is injected into the holes (claim 6). According to the fifth and sixth aspects of the invention, the liquid crystal molecules are aligned parallel to the substrate when no voltage is applied, and are perpendicular to the substrate when a voltage is applied. Therefore, the refractive index in the molecular axis direction of the liquid crystal material is When the refractive index is set to be equal to the refractive index of the photocurable polymer compound, it is possible to realize a liquid crystal optical element that exhibits high scattering characteristics when no voltage is applied.

【0007】本発明の液晶光学素子において、液晶材料
と光硬化性高分子化合物前駆体、および必要に応じて光
硬化開始剤の混合物を電極層が付いた基板間に挟持させ
る方法としては、通常の高分子分散液晶が形成される方
法であればいずれの方法でも構わない。例えば前記混合
物を基板間のギャップが決められたセルに注入する方法
や、一方の基板の上に前記混合物を載せ、その上にもう
一枚の基板を重ねる方法等がある。本発明に用いられる
基板は、ITO等の透明性の高い電極層を表面に有する
少なくとも一方が透明な基板であり、ガラス、プラスチ
ック、金属等が使用できる。2枚の基板は、電極が調光
層側になるように設置する。基板の間隔設定には、通常
の液晶デバイスに用いられるスペーサを使用することが
でき、その間隔は、3μm〜30μm程度が望ましい。
また電極層は基板に一様に形成されていてもよいが、対
向基板間で短冊状に構成されたそれぞれの電極が直交す
るように配置した単純マトリックス構成や、画素単位で
アクティブ素子を付加したアクティブマトリックス構成
としてもよい。
In the liquid crystal optical element of the present invention, a method of sandwiching a mixture of a liquid crystal material, a photocurable polymer compound precursor and, if necessary, a photocuring initiator between substrates having electrode layers is usually Any method may be used as long as the polymer-dispersed liquid crystal is formed. For example, there is a method of injecting the mixture into a cell in which a gap between the substrates is determined, a method of placing the mixture on one substrate and stacking another substrate thereon. The substrate used in the present invention has a highly transparent electrode layer such as ITO on the surface, and at least one of the substrates is transparent, and glass, plastic, metal or the like can be used. The two substrates are installed so that the electrodes are on the light control layer side. Spacers used in ordinary liquid crystal devices can be used to set the distance between the substrates, and the distance is preferably about 3 μm to 30 μm.
Although the electrode layer may be formed uniformly on the substrate, a simple matrix configuration in which the strip-shaped electrodes are arranged orthogonally to each other between the opposing substrates, or active elements are added in pixel units It may have an active matrix configuration.

【0008】本発明に使用される液晶材料としては、液
晶材料であれば特に限定されず、ネマチック液晶、スメ
クチック液晶、コレステリック液晶等いずれを用いるこ
ともできる。また2色性色素を混入したホスト−ゲスト
型によりカラー化することもできる。さらに周波数を変
化させることにより、誘電率異方性が正負両方の値をと
ることのできる二周波駆動液晶も用いることができる。
光硬化性高分子化合物前駆体は、通常、紫外線等の光を
照射することにより硬化物を形成する高分子前駆体であ
り、重合性モノマーまたは重合性オリゴマーあるいは重
合性モノマーと重合性オリゴマーの混合物等を用いるこ
とができる。重合性モノマーとしては、メチルアクリレ
ート、2−エチルヘキシルアクリレート、2−エチルヘ
キシルメタクリレート、シクロヘキシルアクリレート、
ブタンジオールモノアクリレート等のアクリル系モノマ
ーが挙げられ、単一物質でも2種類以上の物質の混合物
でも構わない。重合性オリゴマーとしては、ウレタンア
クリレートオリゴマー系、エポキシアクリレートオリゴ
マー系あるいはエステルオリゴマー系等が挙げられ、単
一物質でも2種類以上の混合物でも構わない。光硬化の
開始剤としては、通常の光硬化性化合物の開始剤として
用いられるものが使用できる。例えば紫外線硬化性化合
物の開始剤としては、アセトフェノン系、ベンゾイン
系、ベンゾフェノン系、チオキサンソン系等が用いられ
る。また開始剤は固体でも液体でも構わないが、素子の
均一性の点から光硬化性化合物に溶解または相溶するも
のが望ましい。
The liquid crystal material used in the present invention is not particularly limited as long as it is a liquid crystal material, and any of nematic liquid crystal, smectic liquid crystal, cholesteric liquid crystal and the like can be used. It is also possible to colorize by a host-guest type in which a dichroic dye is mixed. Further, by changing the frequency, a dual-frequency drive liquid crystal whose dielectric anisotropy can take both positive and negative values can be used.
The photocurable polymer compound precursor is usually a polymer precursor that forms a cured product by irradiation with light such as ultraviolet rays, and is a polymerizable monomer or polymerizable oligomer or a mixture of a polymerizable monomer and a polymerizable oligomer. Etc. can be used. As the polymerizable monomer, methyl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, cyclohexyl acrylate,
Examples thereof include acrylic monomers such as butanediol monoacrylate, and may be a single substance or a mixture of two or more types of substances. Examples of the polymerizable oligomer include urethane acrylate oligomer type, epoxy acrylate oligomer type, ester oligomer type and the like, and may be a single substance or a mixture of two or more types. As the photocuring initiator, those used as an initiator of a general photocurable compound can be used. For example, acetophenone-based, benzoin-based, benzophenone-based, thioxanthone-based, etc. are used as the initiator of the ultraviolet curable compound. The initiator may be solid or liquid, but it is desirable that it be soluble or compatible with the photocurable compound from the viewpoint of uniformity of the device.

【0009】調光層に存在する液晶材料の形状は、使用
した液晶材料と光硬化性化合物の濃度、種類等により異
なるが、液晶材料が光硬化性化合物中に分散していて
も、光硬化性化合物が液晶材料中に3次元ネットワーク
状に存在していても、あるいは光硬化性化合物が液晶材
料中に分散していても構わない。本発明の液晶光学素子
の製造方法において、液晶材料を基板間より抽出する方
法としては、通常の溶剤による抽出法が好ましい。この
際に用いられる溶剤としては、硬化した光硬化性化合物
が不溶であればいずれのものでも構わなく、液晶材料は
必ずしも可溶である必要はない。基板間の空孔に液晶材
料を注入する方法としては、通常のTN型液晶注入に利
用されている減圧下での注入が好ましいが、これに限定
されるものではない。本発明の液晶光学素子の用途とし
ては、窓や間仕切り等の建築材料や文字や図形を表示す
る表示装置がある。
The shape of the liquid crystal material present in the light control layer varies depending on the concentration and type of the liquid crystal material used and the photo-curable compound, but even if the liquid crystal material is dispersed in the photo-curable compound, the photo-curable compound is photo-cured. The polymerizable compound may be present in the liquid crystal material in the form of a three-dimensional network, or the photocurable compound may be dispersed in the liquid crystal material. In the method for producing a liquid crystal optical element of the present invention, as a method for extracting the liquid crystal material from between the substrates, an ordinary extraction method with a solvent is preferable. Any solvent may be used as the solvent insofar as the cured photocurable compound is insoluble, and the liquid crystal material is not necessarily soluble. As a method for injecting the liquid crystal material into the holes between the substrates, injection under reduced pressure which is used for ordinary TN-type liquid crystal injection is preferable, but not limited to this. Applications of the liquid crystal optical element of the present invention include building materials such as windows and partitions, and display devices for displaying characters and figures.

【0010】[0010]

【作用】高分子分散液晶素子で、光透過状態と光散乱状
態との比を最大にするには、光透過状態のとき光硬化性
化合物と液晶材料の屈折率を一致させ、光散乱状態のと
き光硬化性化合物と液晶材料との屈折率差を最大となる
ようにすればよい。すなわち、液晶材料の長軸(分子
軸)方向の屈折率と短軸方向の屈折率のどちらか一方と
光硬化性化合物の屈折率とを一致させ、液晶分子の方向
が基板と水平な方向に向く状態と垂直な方向に向く状態
を制御できる構成とすればよい。本発明では、光硬化性
化合物を硬化させる際に、誘電率異方性が負の液晶材料
の分子軸方向が基板と平行方向に向くような電界を基板
間に印加した状態で光を照射する。このため、液晶材料
は光硬化性化合物との界面で基板と平行方向に配向した
状態で固定される。光硬化性化合物の硬化後は液晶分子
はこの界面のアンカーリングにより、作成時の電界を切
ってもランダムな状態に戻ることができず固定化され
る。この界面の配向能は、硬化時に使用された液晶材料
を抽出し、別の液晶材料を注入しても維持している。こ
のため、ここに正の誘電率異方性の液晶を注入すると、
この液晶は電圧無印加時に基板に対して平行となり、電
圧印加時には基板に対して垂直となる。さらに本発明で
は、光硬化性化合物を硬化させる際に、誘電率異方性が
正の液晶材料の分子軸方向が基板と垂直方向に向くよう
な電界または液晶材料のフレデリック転移点以上の磁界
を基板間に印加した状態で光を照射する。このため、液
晶材料は光硬化性化合物との界面で基板と垂直方向に配
向した状態で固定される。光硬化性化合物の硬化後は液
晶分子はこの界面のアンカーリングにより、作成時の電
界を切ってもランダムな状態に戻ることができず固定化
される。この界面の配向能は、硬化時に使用された液晶
材料を抽出し、別の液晶材料を注入しても維持してい
る。このため、ここに負の誘電率異方性の液晶を注入す
ると、この液晶は電圧無印加時に基板に対して垂直とな
り、電圧印加時には基板に対して平行となるリバースモ
ードの液晶光学素子が実現できる。
In the polymer dispersed liquid crystal device, in order to maximize the ratio between the light transmitting state and the light scattering state, the refractive index of the photocurable compound and the liquid crystal material should be matched in the light transmitting state, and At this time, the difference in refractive index between the photocurable compound and the liquid crystal material may be maximized. That is, one of the refractive index in the major axis direction (molecular axis) and the refractive index in the minor axis direction of the liquid crystal material and the refractive index of the photocurable compound are made to coincide with each other so that the direction of the liquid crystal molecules is horizontal to the substrate. The configuration may be such that it can control the state in which it faces and the state in which it faces in a direction perpendicular to it. In the present invention, when the photocurable compound is cured, light is irradiated while an electric field is applied between the substrates such that the molecular axis direction of the liquid crystal material having negative dielectric anisotropy is parallel to the substrates. . Therefore, the liquid crystal material is fixed in the state of being aligned in the direction parallel to the substrate at the interface with the photocurable compound. After curing of the photocurable compound, the liquid crystal molecules cannot be returned to a random state even if the electric field at the time of production is cut off by the anchoring of this interface, and the liquid crystal molecules are fixed. The orientation ability of this interface is maintained even when the liquid crystal material used during curing is extracted and another liquid crystal material is injected. Therefore, if a liquid crystal with positive dielectric anisotropy is injected here,
This liquid crystal is parallel to the substrate when no voltage is applied, and is perpendicular to the substrate when a voltage is applied. Further, in the present invention, when the photocurable compound is cured, an electric field such that the molecular axis direction of the liquid crystal material having a positive dielectric anisotropy is oriented in the direction perpendicular to the substrate, or a magnetic field higher than the Frederick transition point of the liquid crystal material is applied. Light is applied while being applied between the substrates. Therefore, the liquid crystal material is fixed in the state of being aligned in the direction perpendicular to the substrate at the interface with the photocurable compound. After curing of the photocurable compound, the liquid crystal molecules cannot be returned to a random state even if the electric field at the time of production is cut off by the anchoring of this interface, and the liquid crystal molecules are fixed. The orientation ability of this interface is maintained even when the liquid crystal material used during curing is extracted and another liquid crystal material is injected. Therefore, when a liquid crystal with negative dielectric anisotropy is injected here, a liquid crystal optical element in the reverse mode is realized in which this liquid crystal is perpendicular to the substrate when no voltage is applied and is parallel to the substrate when voltage is applied. it can.

【0011】[0011]

【実施例】以下、本発明を実施例を用いて詳細に説明す
るが、本発明はその要旨を超えない限り、以下の実施例
に限定されるものではない。 実施例1 重合性モノマーの2−エチルヘキシルアクリレート1部
と、重合性オリゴマーUN9000PEP(根上工業
(株)製)1部と、誘電率異方性が正の液晶材料E−8
(メルク社製)3.7部と、0.02部の重合開始剤
2,2−ジエトキシアセトフェノンの混合溶液をギャッ
プ10μmの液晶セル中に注入した。この液晶セルを3
2℃に保ち、100Hz、50Vの矩形波の交流電圧を
印加しながら紫外線を照射し、重合させた。図1は本実
施例によって得られた液晶光学素子の断面図であり、図
中、1は基板、2は電極層、3は液晶材料、4は光硬化
性高分子化合物である。SEMで観察したところ、得ら
れた膜中の液晶滴3の大きさは1〜2μmであった。得
られた液晶光学素子の光の透過率は95%であった。こ
の素子の液晶材料をメタノールで抽出した。素子を減圧
下で乾燥した後、誘電異方性が負の液晶材料NR−10
23XX(チッソ石油化学(株)製)を減圧下で注入し
た。得られた液晶光学素子の光の透過率は、電圧無印加
時が93%で、100Hz、50Vの印加で素子の透過
率は1%であった。図2はこの時の液晶光学素子に印加
する矩形波交流電圧の波形と液晶光学素子の光透過率を
示したものである。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist. Example 1 1 part of a polymerizable monomer 2-ethylhexyl acrylate, 1 part of a polymerizable oligomer UN9000PEP (manufactured by Negami Kogyo Co., Ltd.), and a liquid crystal material E-8 having a positive dielectric anisotropy
A mixed solution of 3.7 parts (manufactured by Merck & Co., Inc.) and 0.02 part of a polymerization initiator 2,2-diethoxyacetophenone was injected into a liquid crystal cell having a gap of 10 μm. This liquid crystal cell 3
The temperature was kept at 2 ° C., and while applying a rectangular wave AC voltage of 100 Hz and 50 V, ultraviolet rays were irradiated to polymerize. FIG. 1 is a cross-sectional view of a liquid crystal optical element obtained in this example, in which 1 is a substrate, 2 is an electrode layer, 3 is a liquid crystal material, and 4 is a photocurable polymer compound. When observed by SEM, the size of the liquid crystal droplet 3 in the obtained film was 1 to 2 μm. The light transmittance of the obtained liquid crystal optical element was 95%. The liquid crystal material of this device was extracted with methanol. After drying the device under reduced pressure, the liquid crystal material NR-10 having a negative dielectric anisotropy
23XX (manufactured by Chisso Petrochemical Co., Ltd.) was injected under reduced pressure. The light transmittance of the obtained liquid crystal optical element was 93% when no voltage was applied, and the element transmittance was 1% when 100 Hz and 50 V were applied. FIG. 2 shows the waveform of the rectangular wave AC voltage applied to the liquid crystal optical element and the light transmittance of the liquid crystal optical element at this time.

【0012】実施例2 重合性モノマーの2−エチルヘキシルアクリレート1部
と、重合性オリゴマーUN9000PEP(根上工業
(株)製)1部と、誘電率異方性が負の液晶材料NR−
1023XX(チッソ石油化学(株)製)3.7部と、
0.02部の重合開始剤ベンゾフェノンの混合溶液をギ
ャップ10μmの液晶セル中に注入した。この液晶セル
を20℃に保ち、100Hz、50Vの矩形波の交流電
圧を印加しながら紫外線を照射し、重合させて図1に示
すような液晶光学素子を得た。SEMで観察したとこ
ろ、得られた膜中の液晶滴の大きさは2〜3μmであっ
た。得られた液晶光学素子の光の透過率は0%であっ
た。この素子の液晶材料をメタノールで抽出した。減圧
下で乾燥を行った後、誘電異方性が正の液晶材料E−8
(メルク社製)を減圧下で注入した。得られた液晶光学
素子の光の透過率は、電圧無印加時が0%で、100H
z、50Vの印加で素子の透過率は97%であった。以
上の実施例においては、矩形波による駆動を行っている
が、正弦波、三角波等の他の交流電界を用いても同様の
駆動ができた。
Example 2 1 part of a polymerizable monomer 2-ethylhexyl acrylate, 1 part of a polymerizable oligomer UN9000PEP (manufactured by Negami Kogyo Co., Ltd.), and a liquid crystal material NR- having a negative dielectric anisotropy
3.73 parts of 1023XX (manufactured by Chisso Petrochemical Co., Ltd.),
A mixed solution of 0.02 parts of a polymerization initiator benzophenone was injected into a liquid crystal cell having a gap of 10 μm. This liquid crystal cell was kept at 20 ° C., and while being applied with a rectangular wave AC voltage of 100 Hz and 50 V, it was irradiated with ultraviolet rays and polymerized to obtain a liquid crystal optical element as shown in FIG. When observed by SEM, the size of the liquid crystal droplets in the obtained film was 2-3 μm. The light transmittance of the obtained liquid crystal optical element was 0%. The liquid crystal material of this device was extracted with methanol. After drying under reduced pressure, liquid crystal material E-8 having positive dielectric anisotropy
(Manufactured by Merck) was injected under reduced pressure. The light transmittance of the obtained liquid crystal optical element is 100% when no voltage is applied and is 0%.
The transmittance of the device was 97% when z and 50 V were applied. In the above-mentioned examples, the driving is performed by the rectangular wave, but the similar driving could be performed by using other AC electric fields such as sine wave and triangular wave.

【0013】[0013]

【発明の効果】以上説明したように、本発明による液晶
光学素子を用いれば、光散乱強度を理論的な最大の値と
することが可能である。またリバースモードの素子を容
易に実現することができる。
As described above, by using the liquid crystal optical element according to the present invention, the light scattering intensity can be set to the theoretical maximum value. Further, a reverse mode element can be easily realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による液晶光学素子の一実施例の断面図
である。
FIG. 1 is a sectional view of an embodiment of a liquid crystal optical element according to the present invention.

【図2】本発明の実施例1における液晶光学素子に印加
する矩形波交流電圧の波形および液晶光学素子の光透過
率を示す図である。
FIG. 2 is a diagram showing a waveform of a rectangular wave AC voltage applied to a liquid crystal optical element and a light transmittance of the liquid crystal optical element in Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 電極層 3 液晶材料 4 光硬化性高分子化合物 1 substrate 2 electrode layer 3 liquid crystal material 4 photocurable polymer compound

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村井 秀哉 東京都港区芝五丁目7番1号 日本電気株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideya Murai Inventor Hideya Murai 5-7-1, Shiba, Minato-ku, Tokyo NEC Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電極層を有する少なくとも一方が透明な
2枚の基板間に光硬化性高分子化合物と液晶材料とを挟
持してなる液晶光学素子であって、前記液晶材料が光硬
化時とは異なる液晶材料であり、かつ前記光硬化性高分
子化合物と前記液晶材料との界面の相互作用により前記
液晶材料が所定の方向に配向していることを特徴とする
液晶光学素子。
1. A liquid crystal optical element comprising a photocurable polymer compound and a liquid crystal material sandwiched between two substrates, at least one of which has an electrode layer and which is transparent. Are different liquid crystal materials, and the liquid crystal material is aligned in a predetermined direction by the interaction of the interface between the photocurable polymer compound and the liquid crystal material.
【請求項2】 電極層を有する少なくとも一方が透明な
2枚の基板間に光硬化性高分子化合物前駆体と液晶材料
とからなる溶液を注入し、該液晶材料の分子軸方向が基
板に対して所定の配向状態を形成するようなフレデリッ
ク転移点以上の電界または磁界を基板間に印加した状態
で光を照射して前記光硬化性高分子化合物前駆体を硬化
させ、調光層を形成させた後、前記液晶材料を基板間か
ら抽出し、その空孔に別の液晶材料を注入することを特
徴とする液晶光学素子の製造方法。
2. A solution comprising a photocurable polymer compound precursor and a liquid crystal material is injected between at least one transparent substrate having an electrode layer, and the liquid crystal material has a molecular axis direction with respect to the substrate. The light-curable polymer compound precursor is cured by irradiating light while applying an electric field or magnetic field above the Frederick transition point so as to form a predetermined alignment state between the substrates to form a dimming layer. After that, the liquid crystal material is extracted from between the substrates, and another liquid crystal material is injected into the pores of the liquid crystal optical element manufacturing method.
【請求項3】 電極層を有する少なくとも一方が透明な
2枚の基板間に、光硬化性高分子化合物と液晶材料とを
挟持してなる液晶光学素子であって、前記液晶材料が光
硬化時とは異なる液晶材料であり、かつ前記液晶材料と
前記光硬化性高分子化合物との界面の相互作用により前
記液晶材料が基板に対して垂直な方向に配向しているこ
とを特徴とする液晶光学素子。
3. A liquid crystal optical element comprising a photocurable polymer compound and a liquid crystal material sandwiched between at least one transparent substrate having an electrode layer, wherein the liquid crystal material is at the time of photocuring. A liquid crystal material different from that, and the liquid crystal material is aligned in a direction perpendicular to the substrate due to the interaction of the interface between the liquid crystal material and the photocurable polymer compound. element.
【請求項4】 電極層を有する少なくとも一方が透明な
2枚の基板間に、光硬化性高分子化合物前駆体と誘電異
方性が正の液晶材料からなる溶液を注入し、該液晶材料
の分子軸方向が基板に対して垂直方向に向くようなフレ
デリック転移点以上の電界または磁界を基板間に印加し
た状態で光を照射して前記光硬化性高分子化合物前駆体
を硬化させ、調光層を形成させた後、前記液晶材料を調
光層から抽出し、その空孔に誘電異方性が負の液晶材料
を注入することを特徴とする液晶光学素子の製造方法。
4. A solution of a photocurable polymer compound precursor and a liquid crystal material having a positive dielectric anisotropy is injected between two substrates having at least one transparent electrode layer, and the liquid crystal material Dimming is performed by irradiating light with the electric field or magnetic field above the Frederick transition point such that the molecular axis direction is perpendicular to the substrate is applied between the substrates to cure the photocurable polymer compound precursor. After the layer is formed, the liquid crystal material is extracted from the light control layer, and a liquid crystal material having a negative dielectric anisotropy is injected into the pores of the liquid crystal material.
【請求項5】 電極層を有する少なくとも一方が透明な
2枚の基板間に、光硬化性高分子化合物と液晶材料とを
挟持してなる液晶光学素子であって、前記液晶材料が光
硬化時とは異なる液晶材料であり、かつ前記液晶材料と
前記光硬化性高分子化合物との界面の相互作用により前
記液晶材料が基板と平行な方向に配向していることを特
徴とする液晶光学素子。
5. A liquid crystal optical element comprising a photocurable polymer compound and a liquid crystal material sandwiched between two substrates, at least one of which has an electrode layer and is transparent, wherein the liquid crystal material is photocurable. And a photo-curable polymer compound. The liquid crystal optical element is characterized in that the liquid crystal material is aligned in a direction parallel to the substrate due to the interaction of the interface between the liquid crystal material and the photocurable polymer compound.
【請求項6】 電極層を有する少なくとも一方が透明な
2枚の基板間に、光硬化性高分子化合物前駆体と誘電異
方性が負の液晶材料とからなる溶液を注入し、該液晶材
料の分子軸方向が基板に対して平行方向に向くようなフ
レデリック転移点以上の電界または磁界を前記基板間に
印加した状態で光を照射して前記光硬化性高分子化合物
前駆体を硬化させ、調光層を形成させた後、前記液晶材
料を調光層から抽出し、その空孔に誘電異方性が正の液
晶材料を注入することを特徴とする液晶光学素子の製造
方法。
6. A liquid crystal material comprising a photocurable polymer compound precursor and a liquid crystal material having a negative dielectric anisotropy is injected between two substrates having at least one transparent electrode layer. The photocurable polymer compound precursor is cured by irradiating with light in a state in which an electric field or a magnetic field having a Frederick transition point or more such that the molecular axis direction of the is parallel to the substrate is applied between the substrates, A method for producing a liquid crystal optical element, comprising forming the light control layer, extracting the liquid crystal material from the light control layer, and injecting a liquid crystal material having a positive dielectric anisotropy into the holes.
JP19140392A 1992-06-26 1992-06-26 Liquid crystal optical element and manufacturing method thereof Expired - Lifetime JP2827720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19140392A JP2827720B2 (en) 1992-06-26 1992-06-26 Liquid crystal optical element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19140392A JP2827720B2 (en) 1992-06-26 1992-06-26 Liquid crystal optical element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0611694A true JPH0611694A (en) 1994-01-21
JP2827720B2 JP2827720B2 (en) 1998-11-25

Family

ID=16274029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19140392A Expired - Lifetime JP2827720B2 (en) 1992-06-26 1992-06-26 Liquid crystal optical element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2827720B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0876097A (en) * 1994-07-05 1996-03-22 Nec Corp Liquid crystal optical element and its production
DE19711287A1 (en) * 1996-03-18 1997-11-06 Tochigi Fuji Sangyo Kk Fixing structure for rotor body and rotor shaft
WO1999031545A1 (en) * 1997-12-17 1999-06-24 Matsushita Electric Industrial Co., Ltd. Polymer dispersion type liquid crystal display panel and its manufacturing method
CN103907052A (en) * 2011-08-31 2014-07-02 株式会社Lg化学 Liquid crystal cell
WO2018066555A1 (en) * 2016-10-03 2018-04-12 凸版印刷株式会社 Dimming sheet and imaging system
US10265793B2 (en) 2015-07-31 2019-04-23 Hyundai Motor Company Side panel home-positioning jig for roof laser-brazing system
JP2022091950A (en) * 2015-04-14 2022-06-21 フェイス インターナショナル コーポレーション System and method for producing object for selectably mounting active electromagnetic energy filtering layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013032283A2 (en) * 2011-08-31 2013-03-07 주식회사 엘지화학 Liquid crystal cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0876097A (en) * 1994-07-05 1996-03-22 Nec Corp Liquid crystal optical element and its production
DE19711287A1 (en) * 1996-03-18 1997-11-06 Tochigi Fuji Sangyo Kk Fixing structure for rotor body and rotor shaft
DE19711287C2 (en) * 1996-03-18 2002-10-31 Tochigi Fuji Sangyo Kk Fastening connection between a rotor body and a rotor shaft and turbomachine with this fastening connection
WO1999031545A1 (en) * 1997-12-17 1999-06-24 Matsushita Electric Industrial Co., Ltd. Polymer dispersion type liquid crystal display panel and its manufacturing method
US6429914B1 (en) 1997-12-17 2002-08-06 Matsushita Electric Industrial Co., Ltd. Polymer dispersion type liquid crystal display panel and its manufacturing method
US6630969B2 (en) 1997-12-17 2003-10-07 Matsushita Electric Industrial Co., Ltd. Polymer dispersion type liquid crystal display panel and manufacturing method thereof
CN103907052A (en) * 2011-08-31 2014-07-02 株式会社Lg化学 Liquid crystal cell
US9411189B2 (en) 2011-08-31 2016-08-09 Lg Chem, Ltd. Liquid crystal cell
CN103907052B (en) * 2011-08-31 2017-02-22 株式会社Lg化学 Liquid crystal cell
JP2022091950A (en) * 2015-04-14 2022-06-21 フェイス インターナショナル コーポレーション System and method for producing object for selectably mounting active electromagnetic energy filtering layer
US10265793B2 (en) 2015-07-31 2019-04-23 Hyundai Motor Company Side panel home-positioning jig for roof laser-brazing system
WO2018066555A1 (en) * 2016-10-03 2018-04-12 凸版印刷株式会社 Dimming sheet and imaging system
JPWO2018066555A1 (en) * 2016-10-03 2018-11-08 凸版印刷株式会社 Light control sheet and image photographing system
JP2019032554A (en) * 2016-10-03 2019-02-28 凸版印刷株式会社 Lighting control sheet and image taking system
US11131896B2 (en) 2016-10-03 2021-09-28 Toppan Printing Co., Ltd. Light control sheets and imaging systems

Also Published As

Publication number Publication date
JP2827720B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
US5368770A (en) Method of preparing thin liquid crystal films
US5437811A (en) Liquid crystalline light modulating device and material
KR0173803B1 (en) Lcd element and its manufacture
JP2765271B2 (en) Liquid crystal alignment film, method of manufacturing the same, and liquid crystal optical element
EP0313053A2 (en) Liquid crystal device
JPH1048605A (en) Light control element and its production
KR20160143526A (en) Liquid crystal optical device
JP2827720B2 (en) Liquid crystal optical element and manufacturing method thereof
JP3131954B2 (en) Liquid crystal device
JP2569676B2 (en) Liquid crystal optical element, method of manufacturing the same, dimmer, object display, and display device using the same
JP2937684B2 (en) Liquid crystal display device and method of manufacturing the same
JPH0611701A (en) Porous polymer film, its production, polymer composite film using that, and production of polymer composite film
US5477352A (en) Liquid crystal display device with liquid crystal dispersed or impregnated in a perfluoro-type polymer of perfluoroalkyl acrylate or methacrylate
JP2880354B2 (en) Liquid crystal display device and method of manufacturing the same
JPH0561023A (en) Liquid crystal electrooptical element and production thereof
JP2881073B2 (en) Electric field birefringence control type liquid crystal device and manufacturing method thereof
JP3401680B2 (en) Liquid crystal device
JP3059030B2 (en) Liquid crystal display device and method of manufacturing the same
JP2007271846A (en) Method for manufacturing liquid crystal optical modulator, liquid crystal modulator, and liquid crystal display device
JP2550629B2 (en) Liquid crystal optical element and manufacturing method thereof
JP3383921B2 (en) Liquid crystal device
JP2601164B2 (en) Polymer dispersed liquid crystal device
JPH11349949A (en) Polymer dispersion type liquid crystal element and its production
JPH06222343A (en) Liquid crystal display element and production of this element
JP2008191524A (en) Liquid crystal optical device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080918

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120918

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120918