JPH0756135Y2 - Resistance welder - Google Patents

Resistance welder

Info

Publication number
JPH0756135Y2
JPH0756135Y2 JP1989104054U JP10405489U JPH0756135Y2 JP H0756135 Y2 JPH0756135 Y2 JP H0756135Y2 JP 1989104054 U JP1989104054 U JP 1989104054U JP 10405489 U JP10405489 U JP 10405489U JP H0756135 Y2 JPH0756135 Y2 JP H0756135Y2
Authority
JP
Japan
Prior art keywords
primary winding
current
welding
circuit
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989104054U
Other languages
Japanese (ja)
Other versions
JPH0342384U (en
Inventor
隆則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP1989104054U priority Critical patent/JPH0756135Y2/en
Publication of JPH0342384U publication Critical patent/JPH0342384U/ja
Application granted granted Critical
Publication of JPH0756135Y2 publication Critical patent/JPH0756135Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は予熱、後熱用電力を供給する回路を備えた抵抗
溶接機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a resistance welding machine having a circuit for supplying electric power for preheating and postheating.

〔従来の技術〕[Conventional technology]

第6図(A)、(B)に示す金属板Aと金属パイプBと
の溶接は、コンデンサに充電した電気エネルギを短時間
で放電することにより流れるパルス溶接電流だけで十分
可能であるが、これら被溶接物の材質が炭素を0.2%以
上含んでいる場合には、インパルス状の溶接電流波形で
も急熱急冷となり、接合部が硬化し、強度が低下してし
まう。このため、このような被溶接物を溶接するときに
は、第5図(A)に示すようにインパルス溶接電流Iの
後で交流電流iを流して後熱処理を行い、接合部組織の
改善を図っている。
Welding of the metal plate A and the metal pipe B shown in FIGS. 6 (A) and (B) is sufficiently possible only by the pulse welding current flowing by discharging the electric energy charged in the capacitor in a short time. When the material to be welded contains carbon in an amount of 0.2% or more, even the impulse-shaped welding current waveform causes rapid heating and cooling, and the joint is hardened and the strength decreases. Therefore, when welding such an object to be welded, as shown in FIG. 5 (A), an alternating current i is passed after the impulse welding current I to perform a post heat treatment to improve the joint structure. There is.

また予熱処理を行う溶接例としては第7図(A)、
(B)に示すように、一方の金属板Cの穴C1に他方の金
属板Dの凸部D1を挿入してT字形に組み合わせ、上部電
極Eと下部電極(図示せず)間に配置し加圧した状態で
交流電流iを流して予熱する。これにより凸部B1を予め
圧潰し、その後にインパルス溶接電流Iでカシメ溶接を
完了する。なお、必要に応じてこれら後熱処理の双方を
行う場合もあり、Pは加圧波形である。
Further, as an example of welding in which preheat treatment is performed, FIG.
As shown in (B), the convex portion D 1 of the other metal plate D is inserted into the hole C 1 of the one metal plate C and combined in a T-shape to form a space between the upper electrode E and the lower electrode (not shown). Preliminary heating is performed by passing an alternating current i in a state of being arranged and pressurized. As a result, the convex portion B 1 is crushed in advance, and then the crimp welding is completed with the impulse welding current I. Note that both of these post heat treatments may be performed as necessary, and P is a pressure waveform.

上述のように抵抗溶接にあっては、被溶接物の接合部で
溶融と圧潰が加熱と加圧によって起こるため、溶接完了
後には図示初期寸法l、dに比べて短くなるはずであ
る。この短くなった寸法に相当するすえ込み量の大きさ
が製品の精度に大きな影響を与え,製品の合否、或いは
その価値を決定してしまう場合がある。
As described above, in resistance welding, melting and crushing occur at the joint of the objects to be welded by heating and pressing, so after the welding is completed, the initial dimensions l and d in the figure should be shorter. The size of the swaging amount corresponding to the shortened size may have a great influence on the accuracy of the product, and the product may be accepted or rejected or its value may be determined.

このような抵抗溶接は第8図に示すような回路によって
行われていた。同図において、1、1′は商用交流電力
を受電する交流入力端子、2は充放電用コンデンサ3を
設定電圧まで充電する通常の充電回路、4はコンデンサ
3の充電々荷を放電するための放電用スイッチとして用
いられるサイリスタ、5は第1の1次巻線6、第2の2
次巻線7、2次巻線8を有する溶接トランス、9は溶接
トランス5の第2の1次巻線7に交流電流を選択的に流
す双方向性スイッチである。このような従来回路の動作
はよく知られているので詳細な説明は省略するが、充電
回路2の動作によって設定電圧まで充電されたコンデン
サ3の電気エネルギがサイリスタ4のターンオンにより
溶接トランス5の第1の1次巻線6を介して放出され、
その2次巻線8に第4図(A)、(B)に示したインパ
ルス状溶接電流Iが流れる。そしてその前後において双
方向性スイッチ9をスイッチングさせることにより、同
図(A)、(B)に示すような予熱用交流電流i、後熱
用交流電流iが流れる。
Such resistance welding has been performed by a circuit as shown in FIG. In the figure, 1 and 1 ′ are AC input terminals for receiving commercial AC power, 2 is a normal charging circuit for charging the charging / discharging capacitor 3 to a set voltage, and 4 is a discharging circuit for discharging the charged charge of the capacitor 3. A thyristor 5 used as a discharge switch is a first primary winding 6 and a second thyristor 2.
A welding transformer having a secondary winding 7 and a secondary winding 8, and 9 is a bidirectional switch for selectively passing an alternating current to the second primary winding 7 of the welding transformer 5. Since the operation of such a conventional circuit is well known, a detailed description thereof will be omitted. However, the electric energy of the capacitor 3 charged to the set voltage by the operation of the charging circuit 2 turns on the thyristor 4 to turn on the welding transformer 5. Is discharged through the primary winding 6 of 1,
Impulse welding current I shown in FIGS. 4A and 4B flows through the secondary winding 8. By switching the bidirectional switch 9 before and after that, the preheating AC current i and the postheating AC current i as shown in FIGS.

〔考案が解決しょうとする問題点〕[Problems to be solved by the device]

このような抵抗溶接にあっては、予熱或いは後熱用の交
流電流の大きさの変動で被溶接物の入熱状況が変化する
ので,すえ込み量も変化し,溶接結果の均一性を著しく
悪化させることが分かった。そして予熱、後熱用の交流
電流の変動の原因は、第8図の交流入力端子1、1′が
直接商用交流電源に接続されているため、工場の電源環
境の影響を直接受けることにあることが分かった。ま
た、もう一つの原因として交流電流を同期をとらずに任
意の時刻で流していたので、溶接トランスの巻線をいず
れかの方向に流れる電流が他方向の電流よりも多くなる
ために溶接トランスがある方向に強く励磁、つまり偏励
磁される現象が生じることがあり、この偏励磁によっ
て、突入電流が流れることがあり、このことが更に一層
溶接物の最終仕上がり寸法の精度を低下させていた。
In such resistance welding, the heat input condition of the workpiece changes due to fluctuations in the magnitude of the alternating current for preheating or postheating, so the swaging amount also changes, and the uniformity of the welding results is significantly increased. It turned out to make it worse. The cause of the fluctuations in the preheating and post-heating AC currents is that the AC input terminals 1, 1'of FIG. 8 are directly connected to the commercial AC power supply, and therefore are directly affected by the power supply environment of the factory. I found out. Another reason is that the AC current was flowing at any time without being synchronized, so the current flowing through the windings of the welding transformer in one direction is larger than the current flowing in the other direction. There is a possibility that a phenomenon of strong excitation in a certain direction, that is, biased excitation may occur, and inrush current may flow due to this biased excitation, which further deteriorates the accuracy of the final finished size of the welded product. .

〔問題点を解決するための手段〕 以上のような問題点を解決するため、交流入力端子から
供給される交流電力を安定して、安定化された予熱用電
力、後熱用電力のいずれか一方、又は双方を溶接トラン
スに与える安定化装置を備えたことを特徴としている。
[Means for Solving Problems] In order to solve the above problems, the AC power supplied from the AC input terminal is stabilized to provide either stabilized preheating power or postheating power. It is characterized in that it is provided with a stabilizing device for supplying one or both of them to the welding transformer.

〔作用〕[Action]

本考案によれば、工場内の電力を安定化装置をとおして
溶接トランスの交流巻線に供給しているので,電力変動
による悪影響を受けず、また,不規則な突入電流による
入熱の変動も抑制できるので,極めて精度の高い仕上が
り寸法の溶接物を得ることが出来る。
According to the present invention, since the electric power in the factory is supplied to the AC winding of the welding transformer through the stabilizer, it is not adversely affected by the power fluctuation and the fluctuation of the heat input due to the irregular inrush current. Since it can be suppressed, it is possible to obtain a welded product with an extremely accurate finish size.

〔実施例〕〔Example〕

第1図により本考案の第一の実施例を説明すると、第8
図で示した記号と同一のものは対応する回路部品を示す
ものとする。同図において、10は安定化装置であり、こ
れは入力電圧検出器11、その検出器からの検出信号によ
って入力交流電圧の安定化を図る通常の電圧安定化回路
12、入力交流電圧検出器11からの検出信号のゼロ点検出
と正、負の極性判別とを行う評価回路13、回路13からの
信号に基づいて交流入力電圧と同相でかつ所定の極性の
信号を生じる駆動回路14、及び駆動回路14からの信号を
受けて所定の大きさの信号を双方向性スイッチ9のゲー
トに与える点弧回路15から構成される。
The first embodiment of the present invention will be described with reference to FIG.
The same symbols as those shown in the figures indicate corresponding circuit components. In the figure, 10 is a stabilizing device, which is an input voltage detector 11, a normal voltage stabilizing circuit for stabilizing an input AC voltage by a detection signal from the detector.
12, an evaluation circuit 13 for detecting the zero point of the detection signal from the input AC voltage detector 11 and discriminating between positive and negative polarities, a signal having the same polarity as the AC input voltage and a predetermined polarity based on the signal from the circuit 13. And a firing circuit 15 that receives a signal from the drive circuit 14 and applies a signal of a predetermined magnitude to the gate of the bidirectional switch 9.

次にこの回路の動作説明を行う。Next, the operation of this circuit will be described.

電圧安定化回路12は、入力交流電圧検出回路11からの検
出信号の変化に応じて動作し、その出力電圧が一定にな
るよう制御する。一方、評価回路13は入力交流電圧検出
回路11からの検出信号を受けて、その波形がゼロ点を通
過する毎にゼロ点検出信号を発生すると同時に、検出信
号の波形の極性を判別してその極性を示す極性表示信号
を生じる。駆動回路14はこれら2種類の信号に応じて、
ほぼゼロ点に相当する時刻に双方向性スイッチ9を構成
する逆並列サイリスタ9A、9Bに与えるべき駆動信号を点
弧回路15に出力する。この点について第4図(A)、
(B)をも用いて説明する。
The voltage stabilizing circuit 12 operates according to the change of the detection signal from the input AC voltage detecting circuit 11 and controls so that its output voltage becomes constant. On the other hand, the evaluation circuit 13 receives the detection signal from the input AC voltage detection circuit 11, generates a zero-point detection signal each time the waveform passes through the zero point, and at the same time determines the polarity of the waveform of the detection signal to determine that A polarity indicating signal indicating the polarity is generated. The drive circuit 14 responds to these two types of signals,
A drive signal to be given to the anti-parallel thyristors 9A and 9B forming the bidirectional switch 9 is output to the ignition circuit 15 at a time substantially corresponding to the zero point. Regarding this point, FIG. 4 (A),
An explanation will also be given using (B).

溶接トランス5の第1、第2の1次巻線6、7の巻き始
めを示す黒点が同方向にあるとすると、充放電用コンデ
ンサ3の電荷は第1の1次巻線6をその黒点側から流入
して流れるので、第2の1次巻線7を流れる電流は先ず
黒点の反対側から流入し、黒点から流出する極性になる
よう、駆動回路14は点弧回路15を介して先ずサイリスタ
9Bをほぼゼロ点でターンオンさせる。そして次の半サイ
クルでサイリスタ9Aをほぼゼロ点でターンオンさせ、以
後サイリスタ9B、9Aを交互にターンオンさせて最後の半
サイクルはサイリスタ9Bをターンオンさせる。
Assuming that the black dots indicating the winding start of the first and second primary windings 6 and 7 of the welding transformer 5 are in the same direction, the charge of the charging / discharging capacitor 3 causes the first primary winding 6 to reach the black dots. Since the current flows in from the side, the drive circuit 14 first passes through the ignition circuit 15 so that the current flowing through the second primary winding 7 first comes in from the side opposite to the black point and flows out from the black point. Thyristor
Turn on 9B at almost zero. Then, in the next half cycle, the thyristor 9A is turned on at a substantially zero point, thereafter the thyristors 9B and 9A are alternately turned on, and the thyristor 9B is turned on in the last half cycle.

このように双方向性スイッチ9を駆動することにより、
電圧安定化回路12により安定された交流電圧が各半サイ
クルでほぼ180°第2の1次巻線7に印加されることに
なり、しかも溶接トランス5を流れる交流電流iとイン
パルス溶接電流Iの極性をみると,交互に電流が流れる
ことになる。従って、交流入力電圧の変動に拘らず安定
化された交流電流が溶接トランスを流れ、また電流の極
性を考慮しているので、溶接トランスの巻線を正、負の
方向に流れる電流はほぼバランスがとれ、したがって、
不規則な突入電流が流れることもないので、非常に精度
の高い溶接仕上がり寸法の溶接物を得ることが出来る。
By driving the bidirectional switch 9 in this way,
The AC voltage stabilized by the voltage stabilizing circuit 12 is applied to the second primary winding 7 by approximately 180 ° in each half cycle, and the AC current i and the impulse welding current I flowing through the welding transformer 5 are Looking at the polarity, the currents flow alternately. Therefore, a stable AC current flows through the welding transformer regardless of fluctuations in the AC input voltage, and because the polarity of the current is taken into consideration, the current flowing through the windings of the welding transformer in the positive and negative directions is almost balanced. And therefore,
Since an irregular rush current does not flow, it is possible to obtain a welded product having a very accurate weld finish size.

次に第2図により本考案の第二の実施例について説明す
る。
Next, a second embodiment of the present invention will be described with reference to FIG.

前記第一の実施例では電圧安定化回路を別途設け、双方
向性スイッチ9を位相制御することなく単なる放電用ス
イッチとして使用したが、この実施例では双方向性スイ
ッチ素子9′を位相制御している。位相制御回路16は交
流入力電圧検出器11からの検出信号と基準電圧とを比較
し、これらが等しくなるような誤差信号を駆動回路14に
与え、駆動回路14は前記誤差信号に対応する位相をもつ
駆動信号を点弧回路15を介して双方向性スイッチ素子
9′に与える。従って、双方向性スイッチ素子9′は安
定した交流電圧が第2の1次巻線7間に印加されるよう
位相制御される。
In the first embodiment, a voltage stabilizing circuit is separately provided and the bidirectional switch 9 is used as a mere discharge switch without controlling the phase, but in this embodiment, the bidirectional switch element 9'is controlled in phase. ing. The phase control circuit 16 compares the detection signal from the AC input voltage detector 11 and the reference voltage, and gives an error signal to the drive circuit 14 so that they are equal, and the drive circuit 14 sets the phase corresponding to the error signal. The drive signal which it has is given to the bidirectional switch element 9 ′ via the ignition circuit 15. Therefore, the bidirectional switch element 9 ′ is phase-controlled so that a stable AC voltage is applied between the second primary windings 7.

次に第3図により本考案の第三の実施例について説明す
る。
Next, a third embodiment of the present invention will be described with reference to FIG.

安定化装置10は、全波整流回路17、LCフィルタを構成す
るインダクタ18とコンデンサ19、及び第二の1次巻線7
をも含むブリッジ構成、又はハーフブリッジ構成からな
るインバータ回路20とからなる。インバータ回路20は、
その直流入力電圧の値に応じてパルス幅制御され、予め
決められた周波数の安定化交流電圧を第二の1次巻線7
に与える。そしてこの実施例は勿論のこと、前記第二の
実施例においても、インパルス溶接電流Iと関係が第4
図(A)、(B)に示すような交流電流iが溶接トラン
スを流れる。
The stabilizing device 10 includes a full-wave rectifying circuit 17, an inductor 18 and a capacitor 19 which form an LC filter, and a second primary winding 7
And an inverter circuit 20 having a bridge configuration or a half bridge configuration. The inverter circuit 20 is
The pulse width is controlled according to the value of the DC input voltage, and the stabilized AC voltage having a predetermined frequency is supplied to the second primary winding 7
Give to. In addition to this embodiment, in the second embodiment as well, the relationship with the impulse welding current I is the fourth.
An alternating current i as shown in FIGS. (A) and (B) flows through the welding transformer.

〔考案の効果〕[Effect of device]

以上述べたように本考案によれば、コンデンサに充電さ
れた電荷を放電することにより得られるインパルス溶接
電流の前或いは後、又は前後に交流電流を流す抵抗溶接
機において、インパルス溶接電流に対する交流電流の
正、負極性をも考慮してその交流電流を溶接トランスに
流すための交流電圧だけを安定化しているので、入力電
圧の変動に拘らず比較的小さな安定化装置で極めて精度
の高い仕上がり寸法の溶接物を得ることが出来る。
As described above, according to the present invention, in a resistance welding machine in which an alternating current is passed before, after, or before and after the impulse welding current obtained by discharging the electric charge charged in the capacitor, the alternating current with respect to the impulse welding current is used. In consideration of the positive and negative polarities of the above, only the AC voltage for flowing the AC current into the welding transformer is stabilized, so the size of the finish is extremely accurate with a relatively small stabilizer regardless of fluctuations in the input voltage. It is possible to obtain weldments of.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第3図は本考案に係る抵抗溶接機の第1、第
2、第3の実施例を示す図、第4(A)、(B)は本考
案を説明するための溶接電流波形を示す図、第5図
(A)、(B)は従来のものによる溶接電流波形を示す
図、第6図(A)、(B)は金属板と金属パイプとの突
合わせ溶接を示す図、第7図(A)、(B)は金属板同
士のカシメ溶接を示す図、第8図は従来の抵抗溶接機を
示す図である。 1,1′……交流入力端子、2……充電回路 3……充放電用コンデンサ、4……放電用スイッチ 5……溶接トランス、6……第1の1次巻線 7……第2の1次巻線、8……2次巻線 9……双方向性スイッチ 9′……双方向性スイッチ素子、10……安定化装置 11……交流電圧検出器、12……電圧安定化回路 13……評価回路、14……駆動回路 15……点弧回路、16……位相制御回路 20……インバータ回路
1 to 3 are views showing first, second and third embodiments of the resistance welding machine according to the present invention, and FIGS. 4 (A) and 4 (B) are welding currents for explaining the present invention. Waveforms, FIGS. 5 (A) and 5 (B) show welding current waveforms by a conventional one, and FIGS. 6 (A) and 6 (B) show butt welding of a metal plate and a metal pipe. Drawing 7, Drawing 7 (A), and (B) are figures showing crimp welding of metal plates, and Drawing 8 is a figure showing the conventional resistance welding machine. 1, 1 '... AC input terminal, 2 ... Charging circuit 3 ... Charging / discharging capacitor, 4 ... Discharging switch 5 ... Welding transformer, 6 ... First primary winding 7 ... Second Primary winding, 8 ... Secondary winding 9 ... Bidirectional switch 9 '... Bidirectional switch element, 10 ... Stabilizer 11 ... AC voltage detector, 12 ... Voltage stabilization Circuit 13 …… Evaluation circuit, 14 …… Drive circuit 15 …… Ignition circuit, 16 …… Phase control circuit 20 …… Inverter circuit

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】入力端子に接続された充電回路、該充電回
路により充電される充放電用コンデンサ、および放電用
スイッチを介して前記充放電用コンデンサからエネルギ
を受ける第1の1次巻線と前記入力端子に接続されて予
熱用電力、後熱用電力の一方又は双方を与えるための第
2の1次巻線と被溶接物に溶接電流を与える2次巻線と
を有する溶接トランスを備えた抵抗溶接機において、 前記第2の1次巻線に安定化装置を接続して、安定化さ
れた予熱用電力、後熱用電力の一方又は双方を被溶接物
に与えることを特徴とする抵抗溶接機。
1. A charging circuit connected to an input terminal, a charging / discharging capacitor charged by the charging circuit, and a first primary winding for receiving energy from the charging / discharging capacitor via a discharging switch. A welding transformer having a second primary winding connected to the input terminal for supplying one or both of preheating power and postheating power, and a secondary winding for supplying a welding current to a workpiece. In the resistance welding machine, a stabilizing device is connected to the second primary winding to supply stabilized one or both of preheating power and postheating power to the object to be welded. Resistance welding machine.
【請求項2】前記安定化装置は、前記充放電用コンデン
サの充電々荷の放電によって前記溶接トランスの第1の
1次巻線に流れる電流で誘起される電圧とは逆極性の半
サイクルから始まって逆極性の半サイクルで終わる交流
電圧を前記第2の1次巻線に誘起する電流を流すことを
特徴とする請求項1に記載した抵抗溶接機。
2. The stabilizer comprises a half cycle having a polarity opposite to that of a voltage induced by a current flowing through a first primary winding of the welding transformer due to discharge of a charged load of the charging / discharging capacitor. The resistance welding machine according to claim 1, wherein an alternating current voltage that starts and ends in a half cycle of reverse polarity is caused to flow a current that induces in the second primary winding.
JP1989104054U 1989-09-05 1989-09-05 Resistance welder Expired - Lifetime JPH0756135Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989104054U JPH0756135Y2 (en) 1989-09-05 1989-09-05 Resistance welder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989104054U JPH0756135Y2 (en) 1989-09-05 1989-09-05 Resistance welder

Publications (2)

Publication Number Publication Date
JPH0342384U JPH0342384U (en) 1991-04-22
JPH0756135Y2 true JPH0756135Y2 (en) 1995-12-25

Family

ID=31652864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989104054U Expired - Lifetime JPH0756135Y2 (en) 1989-09-05 1989-09-05 Resistance welder

Country Status (1)

Country Link
JP (1) JPH0756135Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6508533B2 (en) * 2016-02-22 2019-05-08 株式会社向洋技研 Resistance welding machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442900Y2 (en) * 1987-07-01 1992-10-12

Also Published As

Publication number Publication date
JPH0342384U (en) 1991-04-22

Similar Documents

Publication Publication Date Title
JP2602778B2 (en) High frequency power supply
US6011235A (en) Method and apparatus for controlling resistance welding
JPS63136608A (en) Variable transformation ratio type transformer for arc and plasma
CA1170728A (en) Welding power supply
US6046424A (en) Resistance welding control apparatus
JPH0756135Y2 (en) Resistance welder
US7288741B2 (en) Arc welder
JPS6316880A (en) Power unit for seam welding
JPS6224877A (en) Capacitor type spot welding machine
US4292497A (en) Pulsed arc welding and surfacing apparatus
JPH0386383A (en) Capacitor type spot welding machine
JPH1085947A (en) Method and device for controlling resistance welding
JP5538656B2 (en) Capacitor type welding machine and charging method thereof
JP2537516B2 (en) Control method and apparatus for arc welding power source
JPS61296965A (en) Power unit for arc welding
JPH0312452Y2 (en)
JPH1024377A (en) Welding power unit for parallel gap welding
JPH0753314B2 (en) Power control device for inverter type resistance welding machine
JP3291183B2 (en) Resistance welding control device
JP2905540B2 (en) Power supply for pulse arc welding
KR930001225B1 (en) Power unit for ac arc welding machine
JP3041287U (en) Control circuit for electrical equipment with adjustable power supply
JP3619700B2 (en) Transistor-type AC welding power supply
SU1745454A1 (en) Power supply for arc welding
JPH0363462B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term