JPH0756010A - Fresnel lens for infrared light - Google Patents

Fresnel lens for infrared light

Info

Publication number
JPH0756010A
JPH0756010A JP10370094A JP10370094A JPH0756010A JP H0756010 A JPH0756010 A JP H0756010A JP 10370094 A JP10370094 A JP 10370094A JP 10370094 A JP10370094 A JP 10370094A JP H0756010 A JPH0756010 A JP H0756010A
Authority
JP
Japan
Prior art keywords
fresnel lens
refractive index
lens
light
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10370094A
Other languages
Japanese (ja)
Other versions
JP2706621B2 (en
Inventor
Teruhiro Shiono
照弘 塩野
Osamu Yamazaki
攻 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6103700A priority Critical patent/JP2706621B2/en
Publication of JPH0756010A publication Critical patent/JPH0756010A/en
Application granted granted Critical
Publication of JP2706621B2 publication Critical patent/JP2706621B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To provide the Fresnel lens for IR light which is shallowed in the depth of grooves, is easily produced and has a good light condensing characteristic by constituting rugged parts of a material having the refractive index of a specific value or above. CONSTITUTION:The rugged parts 2 which depends on wavelengths of incident light and meets the phase modulation quantity of the lens are composed of the material having >=3 refractive index and contg. a Ge crystal 1 or Ge. The rugged parts of the Fresnel lens are composed of the material, for example, Ge, having the high refractive index, by which the Fresnel lens having grooves of shallowed depth and exact lens shape is realized and eventually the Fresnel lens for IR light of a diffraction type having the good light condensing characteristic is easily realized according to such constitution. The constituting material may be any materials, insofar as these materials have >=3 refractive index. The similar effects are obtainable as well even with the Fresnel lens of the diffraction type constituted of the material contg. the Ge and having >=3 refractive index.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外光用の集光特性が
よく、作製容易な赤外用フレネルレンズに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared Fresnel lens which has good condensing characteristics for infrared light and is easy to manufacture.

【0002】[0002]

【従来の技術】従来の屈折型フレネルレンズに加え、近
年、小型軽量で再現性がよく、収差が小さい回折型フレ
ネルレンズが注目されている。この回折型フレネルレン
ズは、例えば電子ビーム描画等の微細加工によって製造
を行うため、フレネルマイクロレンズまたはマイクロフ
レネルレンズとも呼ばれている。
2. Description of the Related Art Recently, in addition to a conventional refraction type Fresnel lens, a diffraction type Fresnel lens having small size, light weight, good reproducibility and small aberration has been attracting attention. This diffractive Fresnel lens is also called a Fresnel microlens or micro Fresnel lens because it is manufactured by fine processing such as electron beam drawing.

【0003】従来の回折型フレネルレンズは、屈折型フ
レネルレンズ同様ガラスやアクリル樹脂等屈折率nが
1.5前後のもので作られていたため、レンズの位相変
調量に対応した溝の深さは、最大集光効率を得ようとし
た場合、入射光の波長の1/(n−1)倍つまり2倍の
値にする必要がある。例えば、可視光のHe−Neレー
ザの0.6328μmを入射光とする場合、溝の深さは
1.3μmであるが、これが赤外の波長が10.6μm
用のものになるとフレネルレンズの溝の深さは21μm
とする必要がある。
Since the conventional diffractive Fresnel lens is made of glass or acrylic resin having a refractive index n of about 1.5, like the refractive Fresnel lens, the depth of the groove corresponding to the phase modulation amount of the lens is In order to obtain the maximum light collection efficiency, it is necessary to make the value 1 / (n-1) times, that is, twice the wavelength of the incident light. For example, when the visible light of He-Ne laser of 0.6328 μm is used as the incident light, the groove depth is 1.3 μm, and the infrared wavelength is 10.6 μm.
The depth of the Fresnel lens groove is 21 μm
And need to.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来例
のように、屈折率が1.5前後の物質で近赤外用の回折
型フレネルレンズを作ると、溝の深さが深いため正確な
レンズ形状を実現するのは難しく、つまりは集光特性の
よい赤外用フレネルマイクロレンズが得られにくいとい
う問題点を有していた。
However, if a near-infrared diffractive Fresnel lens is made of a substance having a refractive index of around 1.5 as in the conventional example, the groove depth is deep and the lens shape is accurate. However, there is a problem in that it is difficult to obtain an infrared Fresnel microlens having a good light-condensing characteristic.

【0005】本発明は、上記問題点を解決するもので集
光特性のよい赤外用フレネルレンズを提供することを目
的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an infrared Fresnel lens which solves the above problems and has a good light converging characteristic.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するため、入射光の波長に依存し、レンズの位相変調
量に応じた凹凸部は、屈折率が3以上で、かつ、Geも
しくはGeを含む材料で構成したものである。
In order to achieve the above object, the present invention depends on the wavelength of incident light, and the concave and convex portion according to the phase modulation amount of the lens has a refractive index of 3 or more and Ge. Alternatively, it is made of a material containing Ge.

【0007】[0007]

【作用】本発明は上記した構成により、構成物質の屈折
率が高いためフレネルレンズの溝の深さを浅くでき、作
製容易, 高効率な赤外用フレネルレンズを実現するもの
である。
The present invention realizes an infrared Fresnel lens which is easy to manufacture and highly efficient because the groove of the Fresnel lens can be made shallow because of the high refractive index of the constituent material.

【0008】[0008]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明する。図1(a),(b)はそれぞれ本発明の一実
施例における回折型の赤外用フレネルレンズ(以下フレ
ネルレンズと称す)を示す断面図, 平面図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 (a) and 1 (b) are a sectional view and a plan view, respectively, showing a diffractive infrared Fresnel lens for infrared rays (hereinafter referred to as Fresnel lens) in one embodiment of the present invention.

【0009】図1において、1はGe結晶であり、表面
に断面が鋸歯状のレンズの位相変調量に応じた凹凸部2
が施してある。鋸歯状の凹凸部2の溝の深さtは、レン
ズの集光効率が最大になるために、レンズを構成してい
る物質の屈折率n、及び入射光の波長λを用いて、t=
λ/(n−1)と設定する必要がある。赤外で透明なG
eの屈折率は、n=4.0であり、本実施例では、入射
光としてλ=10.6μmのCO2レーザ光を用いたの
で溝の深さをt=3.5μmとした。従来例のようにガ
ラスやアクリル, 電子ビームレジスト等の屈折率が1.
5前後のもので作製したフレネルレンズの場合、溝の深
さtはλ=10.6μmに対してt=21μmとする必
要があったから、本実施例のフレネルレンズにより、溝
の深さtが従来例の1/6程度で、薄いフレネルレンズ
が実現できたと言える。その結果、凹凸部の垂直部分で
生じる不要な多重反射光が大幅に少なくなり、この多重
反射光に起因した回折効率の低下を防止して、集光特性
に優れた回折形フレネルレンズを容易に実現できる。
In FIG. 1, reference numeral 1 is a Ge crystal, and a concavo-convex portion 2 corresponding to the phase modulation amount of a lens having a sawtooth cross section on the surface.
Has been applied. The depth t of the groove of the saw-toothed concavo-convex portion 2 is t = using the refractive index n of the substance forming the lens and the wavelength λ of the incident light in order to maximize the focusing efficiency of the lens.
It is necessary to set λ / (n-1). Infrared transparent G
The refractive index of e is n = 4.0, and in this embodiment, since CO 2 laser light with λ = 10.6 μm was used as incident light, the groove depth was set to t = 3.5 μm. Like the conventional example, the refractive index of glass, acrylic, electron beam resist, etc. is 1.
In the case of the Fresnel lens made of about 5, the groove depth t needs to be t = 21 μm with respect to λ = 10.6 μm. Therefore, with the Fresnel lens of this embodiment, the groove depth t is It can be said that a thin Fresnel lens could be realized by about 1/6 of the conventional example. As a result, the unnecessary multiple reflection light generated in the vertical portion of the uneven portion is significantly reduced, and it is possible to prevent the diffraction efficiency from being lowered due to the multiple reflection light and to easily form a diffractive Fresnel lens having excellent light-collecting characteristics. realizable.

【0010】また、入射光の反射を減少させるために、
少なくともレンズの入射側または反射側のどちらか一方
の面に無反射コーティングを行うと集光効率がさらに良
くなる。
Further, in order to reduce reflection of incident light,
If at least either the incident side or the reflecting side of the lens is coated with a non-reflective coating, the light collection efficiency will be further improved.

【0011】次に、図2を用いて作製工程を説明する。
まず、図2(a)のGe結晶1上に図2(b)のように電子ビ
ームレジスト3をコーティングし、電子ビームリソグラ
フィにより、図2(c)のようにレンズのパターンを作製
した。次に、イオンビームエッチングを行い、図2(d)
のように電子ビームレジスト3の形をGe結晶1に転写
して凹凸部2を形成した。この時電子ビームレジスト3
のコーティング厚さを制御し溝の深さtが最適になるよ
うにした。
Next, the manufacturing process will be described with reference to FIG.
First, an electron beam resist 3 was coated on the Ge crystal 1 of FIG. 2 (a) as shown in FIG. 2 (b), and a lens pattern was prepared by electron beam lithography as shown in FIG. 2 (c). Next, ion beam etching is performed, as shown in FIG.
As described above, the shape of the electron beam resist 3 was transferred to the Ge crystal 1 to form the uneven portion 2. At this time, electron beam resist 3
The coating thickness was controlled to optimize the groove depth t.

【0012】なお、レンズとして作用するのは、Ge結
晶1表面の凹凸のある部分であるので、この部分がGe
でありさえすれば良く、凹凸のない部分は他の物質でも
よい。
It is to be noted that it is the uneven portion of the surface of the Ge crystal 1 that acts as a lens, and this portion is Ge.
However, other material may be used for the portion having no unevenness.

【0013】以上のように本実施例によれば、溝の深さ
が従来例に比べて約1/6まで薄くなったことにより、
だれのない正確な凹凸形状が実現でき、溝の深さが薄く
なったことと、正確な凹凸形状が実現できたことによ
り、その結果集光特性のよい回折形フレネルレンズが実
現でき、またイオンビームエッチングでパターンの転写
をする時間も短くなり作製が容易である。
As described above, according to this embodiment, the depth of the groove is reduced to about 1/6 of that of the conventional example.
Accurate concavo-convex shape without sagging, thin groove depth, and accurate concavo-convex shape resulted in diffractive Fresnel lens with good condensing characteristics. The time for transferring the pattern by beam etching is shortened, and the fabrication is easy.

【0014】以上の説明はGeを用いた回折形のフレネ
ルレンズについて行ったが、屈折率が3以上の物質であ
ればよく、Geを含み、屈折率が3以上の材料から構成
された回折形のフレネルレンズについても同様の効果が
得られる。
Although the above description has been made on the diffraction type Fresnel lens using Ge, any substance having a refractive index of 3 or more may be used, and the diffraction type is made of a material containing Ge and having a refractive index of 3 or more. The same effect can be obtained with the Fresnel lens.

【0015】尚、Geの透過波長領域は、1.8μm〜
23μmであり、しかもGeはこの領域で屈折率が3以
上である。従って、入射光が結晶の透過波長領域ならど
の波長でも、同様の効果が得られる。
The transmission wavelength range of Ge is 1.8 μm
23 μm, and Ge has a refractive index of 3 or more in this region. Therefore, the same effect can be obtained regardless of the wavelength of the incident light in the transmission wavelength range of the crystal.

【0016】[0016]

【発明の効果】以上のように本発明によれば、高屈折率
な物質、例えばGeでフレネルレンズの凹凸部を構成す
ることにより、溝の深さが浅くて、かつ正確なレンズ形
状を実現でき、その結果集光特性のよい回折型の赤外用
フレネルレンズを容易に実現できる。
As described above, according to the present invention, by forming the uneven portion of the Fresnel lens with a material having a high refractive index, for example, Ge, the groove depth is shallow and an accurate lens shape is realized. As a result, a diffractive infrared Fresnel lens with good condensing characteristics can be easily realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の一実施例における赤外用フレネ
ルレンズの断面図 (b)は本発明の一実施例における赤外用フレネルレンズ
の平面図
1A is a cross-sectional view of an infrared Fresnel lens according to an embodiment of the present invention, and FIG. 1B is a plan view of an infrared Fresnel lens according to an embodiment of the present invention.

【図2】(a)〜(d)は本発明の一実施例の赤外用フレネル
レンズの作製工程図
2 (a) to 2 (d) are manufacturing process diagrams of an infrared Fresnel lens according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 Ge結晶 2 凹凸部 1 Ge crystal 2 Uneven portion

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】入射光の波長に依存し、レンズの位相変調
量に応じた凹凸部がレンズ表面に形成された回折型のフ
レネルレンズであって、前記凹凸部は、屈折率が3以上
で、かつ、GeもしくはGeを含む材料から構成された
ことを特徴とする赤外用フレネルレンズ。
1. A diffractive Fresnel lens in which an uneven portion depending on the wavelength of incident light and corresponding to the phase modulation amount of the lens is formed on the lens surface, and the uneven portion has a refractive index of 3 or more. And a Fresnel lens for infrared light, which is made of Ge or a material containing Ge.
【請求項2】凹凸部は、前記凹凸部を構成する材料の屈
折率nと入射光の波長λとに対して、λ/(n−1)の
溝の深さを有する鋸歯形状であることを特徴とする請求
項1記載の赤外用フレネルレンズ。
2. The concavo-convex portion has a saw-tooth shape having a groove depth of λ / (n−1) with respect to a refractive index n of a material forming the concavo-convex portion and a wavelength λ of incident light. The infrared Fresnel lens according to claim 1.
【請求項3】少なくとも表面又は裏面に無反射コーティ
ングを施したことを特徴とする請求項1記載の赤外用フ
レネルレンズ。
3. The Fresnel lens for infrared rays according to claim 1, wherein at least the front surface or the back surface is provided with an antireflection coating.
JP6103700A 1994-05-18 1994-05-18 Infrared diffraction lens Expired - Lifetime JP2706621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6103700A JP2706621B2 (en) 1994-05-18 1994-05-18 Infrared diffraction lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6103700A JP2706621B2 (en) 1994-05-18 1994-05-18 Infrared diffraction lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59245078A Division JPH0679081B2 (en) 1984-11-20 1984-11-20 Infrared Fresnel lens

Publications (2)

Publication Number Publication Date
JPH0756010A true JPH0756010A (en) 1995-03-03
JP2706621B2 JP2706621B2 (en) 1998-01-28

Family

ID=14361042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6103700A Expired - Lifetime JP2706621B2 (en) 1994-05-18 1994-05-18 Infrared diffraction lens

Country Status (1)

Country Link
JP (1) JP2706621B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141993A (en) * 1999-11-11 2001-05-25 Mitsubishi Electric Corp Infrared optical system
WO2022185716A1 (en) * 2021-03-01 2022-09-09 パナソニックIpマネジメント株式会社 Fresnel lens and sensor system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124247A (en) * 1974-08-22 1976-02-27 Yokogawa Electric Works Ltd KOTAIIKIRENZU
JPS51110347A (en) * 1975-02-28 1976-09-29 Hughes Aircraft Co
JPS5336250A (en) * 1976-09-16 1978-04-04 Toshiba Corp Fresnel lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124247A (en) * 1974-08-22 1976-02-27 Yokogawa Electric Works Ltd KOTAIIKIRENZU
JPS51110347A (en) * 1975-02-28 1976-09-29 Hughes Aircraft Co
JPS5336250A (en) * 1976-09-16 1978-04-04 Toshiba Corp Fresnel lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141993A (en) * 1999-11-11 2001-05-25 Mitsubishi Electric Corp Infrared optical system
WO2022185716A1 (en) * 2021-03-01 2022-09-09 パナソニックIpマネジメント株式会社 Fresnel lens and sensor system

Also Published As

Publication number Publication date
JP2706621B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
JP2794084B2 (en) Optical device and manufacturing method thereof
WO2019024572A1 (en) Anti-reflection structure, display device and fabrication method for anti-reflection structure
KR100379246B1 (en) Continuous Neutral Density Filter Capable of Controlling the Intensity Distribution of Light Beam According to the Thickness of Filter
US20230088107A1 (en) Optical device with phase correction
JPWO2004031815A1 (en) Anti-reflection diffraction grating
JPH01154101A (en) Spherical plano-convex lens
CN212276015U (en) Optical waveguide lens
JP2004287238A (en) Antireflection member and electronic device using same
JPH0749407A (en) Fresnel lens for infrared ray
JP2003344630A (en) Optical member
JPH0756010A (en) Fresnel lens for infrared light
JPH0679081B2 (en) Infrared Fresnel lens
JP3189922B2 (en) Diffractive optical element
JPH0749408A (en) Fresnel lens for infrared ray
JP3214964B2 (en) Diffractive optical element
JPH0792526B2 (en) Grating lens
JPS61241712A (en) Input-output device for guided light
JP3003348B2 (en) Optical lens and manufacturing method thereof
CN112946792B (en) Micro lens for realizing bifocal focusing
JP2773401B2 (en) Optical lens
JP2555691B2 (en) Phase type reticle
JPS60202402A (en) Fresnel lens
JP3052528B2 (en) Optical lens and manufacturing method thereof
JPH0643305A (en) Optical coupler film
JPH04204401A (en) Diffraction optical element