JPH0755859B2 - Carbonaceous inorganic material - Google Patents

Carbonaceous inorganic material

Info

Publication number
JPH0755859B2
JPH0755859B2 JP1036095A JP3609589A JPH0755859B2 JP H0755859 B2 JPH0755859 B2 JP H0755859B2 JP 1036095 A JP1036095 A JP 1036095A JP 3609589 A JP3609589 A JP 3609589A JP H0755859 B2 JPH0755859 B2 JP H0755859B2
Authority
JP
Japan
Prior art keywords
polymer
inorganic material
carbon
temperature
polycyclic aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1036095A
Other languages
Japanese (ja)
Other versions
JPH02217358A (en
Inventor
武民 山村
純一 釘本
敏弘 石川
泰広 塩路
昌樹 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP1036095A priority Critical patent/JPH0755859B2/en
Publication of JPH02217358A publication Critical patent/JPH02217358A/en
Publication of JPH0755859B2 publication Critical patent/JPH0755859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は機械的強度、耐熱性及び耐摩耗性に優れた炭素
質無機材料に関するものである。
TECHNICAL FIELD The present invention relates to a carbonaceous inorganic material having excellent mechanical strength, heat resistance, and abrasion resistance.

(従来の技術及びその問題点) 従来より炭素材料は、非酸化性雰囲気下での高温特性、
低い熱膨張係数、耐薬品性、耐候性、耐放射線性、潤滑
性に優れ、かつ、電気伝導性、熱伝導性の制御も容易で
あるため、高温構造材料、摩擦材料等として使用されて
いる。
(Prior art and its problems) Conventionally, carbon materials have been characterized by high temperature characteristics in a non-oxidizing atmosphere,
It has a low coefficient of thermal expansion, chemical resistance, weather resistance, radiation resistance, lubricity, and easy control of electrical and thermal conductivity, so it is used as a high-temperature structural material, friction material, etc. .

しかし、炭素材料は耐酸化性が低いため酸化性雰囲気中
で高温で使用することは出来ない。また、潤滑性に優れ
るものの、表面硬度が低いため耐摩耗性はかならずしも
充分なものではなかった。
However, since carbon materials have low oxidation resistance, they cannot be used at high temperatures in an oxidizing atmosphere. Further, although it has excellent lubricity, its surface hardness is low, so that its wear resistance is not always sufficient.

これらの欠点を改良するため、気相反応法等により、炭
素材料の表面にセラミック等の皮膜層を形成させる方法
が考案されている。しかし、この方法は、皮膜層が薄
く、かつ、剥離し易いため、充分に上記欠点を克服でき
るものではなく、また、特殊な装置を必要とするためコ
ストが高くなる欠点を有していた。
In order to improve these drawbacks, a method of forming a coating layer of ceramic or the like on the surface of the carbon material by a gas phase reaction method or the like has been devised. However, this method has a drawback that the above-mentioned drawbacks cannot be sufficiently overcome because the coating layer is thin and easily peeled off, and the cost is high because a special device is required.

さらに、特開昭60−195076号公報、特開昭60−251175号
公報には、炭素質成形体に溶融珪素を含浸、反応させ表
面及び内部に炭化珪素を生成させることにより前記欠点
を改善する方法が開示されている。しかし、この方法で
得られた炭素材料は、その成形体内に金属珪素が残存す
るため、高温でのクリープ変形等高温特性が著しく低下
し、また、機械的特性もかならずしも優れたものではな
かった。
Further, in JP-A-60-195076 and JP-A-60-251175, the above-mentioned drawbacks are improved by impregnating a carbonaceous molded body with molten silicon and causing a reaction to generate silicon carbide on the surface and inside. A method is disclosed. However, since the carbon material obtained by this method has metallic silicon remaining in the molded body, the high temperature characteristics such as creep deformation at a high temperature are significantly deteriorated, and the mechanical characteristics are not necessarily excellent.

(問題を解決するための手段) 本発明の目的は、上記問題点を解決した新規な炭素質無
機材料の提供にある。
(Means for Solving the Problem) An object of the present invention is to provide a novel carbonaceous inorganic material that solves the above problems.

本発明の他の目的は、高温酸化性雰囲気下で劣化の少な
い、耐酸化性炭素質無機材料の提供にある。
Another object of the present invention is to provide an oxidation resistant carbonaceous inorganic material which is less deteriorated in a high temperature oxidizing atmosphere.

本発明の他の目的は、耐摩耗性に優れた炭素質無機材料
の提供にある。
Another object of the present invention is to provide a carbonaceous inorganic material having excellent wear resistance.

本発明の他の目的は、低温下で製造可能な炭素質無機材
料の提供にある。
Another object of the present invention is to provide a carbonaceous inorganic material that can be manufactured at a low temperature.

本発明の炭素質無機材料は、珪素含有多環状芳香族重合
体から得られる無機材料であって、その構成成分は、 i)該重合体を構成するメソフェーズ状態にある多環状
芳香族化合物から導かれる結晶質炭素、又は結晶質炭素
と非晶質炭素、 ii)該重合体を構成する光学的等方性の多環状芳香族化
合物から導かれる、無配向状態の結晶質炭素及び/又は
非晶質炭素、及び iii)Si、C及びOから実質的になる非晶質相、及び/
又は粒径が500Å以下の実質的にβ−SiCからなる結晶質
超微粒子と非晶質のSiO(0<x≦2)とからなる集
合体であり、 構成元素の割合がSi;30〜70重量%、C;20〜60重量%及
びO;0.5〜10重量%であるSi−C−O物質 よりなる。
The carbonaceous inorganic material of the present invention is an inorganic material obtained from a silicon-containing polycyclic aromatic polymer, and its constituent components are: i) a polycyclic aromatic compound in a mesophase state which constitutes the polymer. Crystalline carbon, or crystalline carbon and amorphous carbon, ii) crystalline carbon in an unoriented state and / or amorphous carbon derived from an optically isotropic polycyclic aromatic compound constituting the polymer Carbon, and iii) an amorphous phase consisting essentially of Si, C and O, and / or
Alternatively, it is an aggregate composed of crystalline ultrafine particles substantially composed of β-SiC having a particle size of 500 Å or less and amorphous SiO x (0 <x ≦ 2), and the proportion of constituent elements is Si; 70% by weight, C; 20-60% by weight and O; 0.5-10% by weight Si-CO material.

以下の説明における「部」は全て重量部であり、「%」
は「重量%」である。
All "parts" in the following description are parts by weight, and "%"
Is "% by weight".

本発明の炭素質無機材料は上記の構成成分i)、ii)及
びiii)からなっており、Si;0.5〜50%、C;40〜97%及
びO;0.1〜10%から実質的に構成されている。
The carbonaceous inorganic material of the present invention comprises the above constituent components i), ii) and iii), and is substantially composed of Si; 0.5 to 50%, C; 40 to 97% and O; 0.1 to 10%. Has been done.

この炭素質無機材料の構成成分である結晶質炭素は500
Å以下の結晶子サイズを有し、1.5Åの分解能を有する
高分解能電子顕微鏡において、繊維軸方向に配向した3.
2Åの(002)面に相当する微細なラティスイメージ像が
観察されうる超微粒子のグラファイト結晶である。
The crystalline carbon that is a constituent component of this carbonaceous inorganic material is 500
In a high resolution electron microscope with a crystallite size of Å or less and a resolution of 1.5Å, it was oriented in the fiber axis direction.3.
It is an ultrafine graphite crystal in which a fine lattice image corresponding to the 2Å (002) plane can be observed.

この炭素質無機材料における構成成分i)及びii)の総
和100部に対する構成成分iii)の割合は0.5〜1900部で
あり、且つ構成成分i)、ii)の比率は1:0.02〜4であ
る。
The ratio of constituent iii) to the total 100 parts of constituents i) and ii) in this carbonaceous inorganic material is 0.5 to 1900 parts, and the ratio of constituents i) and ii) is 1: 0.02 to 4. .

構成成分i)及びii)の総和100部に対する構成成分ii
i)の割合が0.5未満の場合は、単なる炭素材料とほとん
ど変わらず、耐酸化性が耐摩耗性の向上は望めず、上記
割合が1900部を越えた場合は、ほとんど炭化珪素のみよ
りなる成形体と変わらず、高温特性、潤滑性に優れた炭
素質材料とならない。
Component ii for 100 parts of the sum of components i) and ii)
When the ratio of i) is less than 0.5, it is almost the same as that of a carbon material, and it cannot be expected that the oxidation resistance is improved in wear resistance. When the ratio exceeds 1900 parts, the molding is made almost entirely of silicon carbide. It does not become a carbonaceous material that has the same high temperature characteristics and excellent lubricity as the body.

本発明の炭素質無機材料においては、層間隔が小さな微
結晶が効果的に生成しており、その微結晶を包み込むよ
うに珪素原子が非常に均一に分布している。
In the carbonaceous inorganic material of the present invention, fine crystals having a small layer interval are effectively generated, and silicon atoms are distributed very uniformly so as to surround the fine crystals.

本発明の炭素質無機材料は、 i)結合単位(Si−CH2)、又は結合単位(Si−CH2)と
結合単位(Si−Si)から主としてなり、珪素原子に水素
原子、低級アルキル基、フェニル基及びシリル基からな
る群から選ばれる側鎖基を有し、結合単位(Si−CH2
の全数対結合単位(Si−Si)の全数の比が1:0〜20の範
囲にある有機珪素重合体の珪素原子の少なくとも一部
が、石油系又は石炭系のピッチあるいはその熱処理物の
芳香族環と珪素−炭素連結基を介して結合したランダム
共重合体及びii)石油系又は石炭系ピッチを熱処理して
得られるメソフェーズ状態又はメソフェーズと光学的等
方相との両相からなる多環状芳香族化合物(以下、両者
を総称して「メソフェーズ多環状芳香族重合体」と言う
ことがある。)を、 200〜500℃の範囲の温度で加熱反応及び/又は加熱溶融
して、珪素含有多環状芳香族重合体を得る第1工程、 上記珪素含有多環状芳香族重合体、又は上記珪素含有多
環状芳香族重合体とその仮焼物微粉末との混合粉末を金
型プレス、等方静水圧プレス、ホットプレス等、通常の
方法を用い成形する第2工程、 上記成形体を必要により不融化処理を行った後、真空中
あるいは不活性ガス中で800〜3000℃の温度で焼成し、
無機化する第3工程、 上記工程により得られた炭素質無機材料の空孔に必要に
より珪素含有多環状芳香族重合体の融液、又は溶液を含
浸させ、焼成し、無機化する処理を繰り返し行うことに
より高密度化する第4工程よりなる製造方法により提供
される。
The carbonaceous inorganic material of the present invention is mainly composed of: i) a bond unit (Si—CH 2 ), or a bond unit (Si—CH 2 ) and a bond unit (Si—Si), and a silicon atom is a hydrogen atom or a lower alkyl group. Has a side chain group selected from the group consisting of a phenyl group and a silyl group, and has a bond unit (Si-CH 2 )
Of the organic silicon polymer having a ratio of the total number of 1 to the total number of bonding units (Si-Si) in the range of 1: 0 to 20 is at least part of the silicon atom of the petroleum-based or coal-based pitch or its heat-treated aromatic product. Random copolymers bound to a group ring via a silicon-carbon linking group, and ii) polycycles composed of a mesophase state or both mesophase and optically isotropic phase obtained by heat-treating a petroleum-based or coal-based pitch Aromatic compounds (hereinafter, both may be collectively referred to as “mesophase polycyclic aromatic polymer”) are heated and / or melted at a temperature in the range of 200 to 500 ° C. to contain silicon. The first step of obtaining a polycyclic aromatic polymer, the silicon-containing polycyclic aromatic polymer, or a mixed powder of the silicon-containing polycyclic aromatic polymer and a fine powder of the calcined product thereof is subjected to a mold press, isotropic static Use ordinary methods such as hydraulic press and hot press Second step of molding, after subjecting the above-mentioned molded body to infusibilization treatment if necessary, it is baked at a temperature of 800 to 3000 ° C. in a vacuum or an inert gas,
Third step of mineralizing, the pores of the carbonaceous inorganic material obtained by the above steps are impregnated with a melt or solution of a silicon-containing polycyclic aromatic polymer as necessary, followed by firing, and the treatment of mineralization is repeated. It is provided by the manufacturing method comprising the fourth step of increasing the density by carrying out.

なお、高温ホットプレス等により上記第2〜第4工程を
一つの工程として製造することも可能である。
It is also possible to manufacture the above second to fourth steps as one step by high temperature hot pressing or the like.

上記各工程について具体的に説明する。Each of the above steps will be specifically described.

第1工程: 出発原料の一つである有機珪素重合体は、公知の方法で
合成することができ、例えば、ジメチルジクロロシラン
と金属ナトリウムの反応により得られるポリメチルシラ
ンを不活性ガス中で400℃以上に加熱することにより得
られる。
First step: The organosilicon polymer, which is one of the starting materials, can be synthesized by a known method. For example, polymethylsilane obtained by the reaction of dimethyldichlorosilane and sodium metal is added in an inert gas at 400 It is obtained by heating to ℃ or more.

上記有機珪素重合体は、結合単位(Si−CH2)、又は結
合単位(Si−Si)と結合単位(Si−CH2)より主として
なり、結合単位(Si−CH2)の全数対結合単位(Si−S
i)の全数の比率は1:0〜20の範囲内にある。
The organosilicon polymer, binding unit (Si-CH 2), or binding units (Si-Si) and mainly consists binding units (Si-CH 2), the total number pairing unit of coupling units (Si-CH 2) (Si-S
The ratio of the total number of i) is in the range of 1: 0 to 20.

有機珪素重合体の重量平均分子量(M)は、一般的に
は300〜1000で、Mが400〜800のものが、優れた炭素
質無機材料を得るための中間原料であるランダム共重合
体i)を調製するために特に好ましい。
The weight average molecular weight (M w ) of the organosilicon polymer is generally 300 to 1000, and the M w of 400 to 800 is a random copolymer which is an intermediate raw material for obtaining an excellent carbonaceous inorganic material. Especially preferred for preparing coalesced i).

もう一つの出発原料である多環状芳香族化合物は石油類
及び/又は石炭類から得られるピッチで、特に石油類の
流動接触分解により得られる重質油、その重質油を蒸留
して得た留出成分又は残渣油及びそれらを熱処理して得
られるピッチである。
Another starting material, a polycyclic aromatic compound, is a pitch obtained from petroleum and / or coal, particularly a heavy oil obtained by fluid catalytic cracking of petroleum, and obtained by distilling the heavy oil. It is a distillate component or residual oil and a pitch obtained by heat-treating them.

上記ピッチ中には、ベンゼン、トルエン、キシレン、テ
トラヒドロフランなどの有機溶媒に不溶の成分が5〜98
重量%含まれていることが好ましく、5重量%未満のピ
ッチを原料として用いた場合、成形体の無機化時の残存
率が低くなり、空孔が残存しやすく、又結晶化しにくい
ため優れた炭素質無機材料が得られず、また、98重量%
より多いピッチを原料として用いた場合、不溶、不融の
コーキング物が生じやすく成形上不利が生じる。
The pitch contains 5 to 98% of insoluble components in organic solvents such as benzene, toluene, xylene, and tetrahydrofuran.
It is preferable that the content is 5% by weight, and when a pitch of less than 5% by weight is used as a raw material, the residual rate at the time of mineralization of the molded product is low, and voids are likely to remain, and it is difficult to crystallize. No carbonaceous inorganic material can be obtained and also 98% by weight
When a larger amount of pitch is used as a raw material, insoluble and infusible caulks are likely to be formed, which is disadvantageous in molding.

このピッチの重量平均分子量(M)は、300〜3000
で、融点は70〜200℃である。
The weight average molecular weight (M w ) of this pitch is 300 to 3000.
And the melting point is 70 to 200 ° C.

重量平均分子量は以下のようにして求めた値である。即
ち、ピッチがベンゼン、トルエン、キシレン、テトラヒ
ドロフラン、クロロホルム及びジクロロベンゼン等のゲ
ルパーミュエーションクロマトグラフ(GPC)測定用有
機溶媒不溶分を含有しない場合はそのままGPC測定し、
ピッチが上記有機溶媒不溶分を含有する場合は、温和な
条件で水添処理し、上記有機溶媒不溶分を上記有機溶媒
可溶な成分に変えて後GPC測定する。(上記有機溶媒不
溶分を含有する重合体の重量平均分子量は、上記と同様
の処理を施し求めた値である)。
The weight average molecular weight is a value determined as follows. That is, if the pitch does not contain the organic solvent insoluble matter for gel permeation chromatograph (GPC) measurement such as benzene, toluene, xylene, tetrahydrofuran, chloroform and dichlorobenzene, the GPC measurement is performed as it is,
When the pitch contains the above-mentioned organic solvent-insoluble matter, hydrogenation treatment is performed under mild conditions to change the above-mentioned organic solvent-insoluble matter into the above-mentioned organic solvent-soluble component, and then perform GPC measurement. (The weight average molecular weight of the polymer containing the organic solvent insoluble matter is a value obtained by performing the same treatment as above).

ランダム共重合体i)は、前記有機珪素重合体に、上記
ピッチを添加し、不活性ガス中で好ましくは250〜500℃
の範囲の温度で加熱反応させることにより調製される。
The random copolymer i) is obtained by adding the above-mentioned pitch to the organosilicon polymer and preferably in an inert gas at 250 to 500 ° C.
It is prepared by reacting by heating at a temperature in the range.

ピッチの使用割合は、有機珪素重合体100部当たり10〜1
900部であることが好ましい。
The usage ratio of pitch is 10 to 1 per 100 parts of the organosilicon polymer.
It is preferably 900 parts.

ピッチの使用割合が過度に小さい場合は、得られる炭素
質無機材料中の炭化珪素成分が多くなり、炭素の持つ潤
滑性、非酸化性雰囲気中での高温特性が損なわれ、ま
た、その割合が過度に多い場合は、炭化珪素成分が少な
くなり、得られる炭素質無機材料の耐酸化性、耐摩耗性
が低下する。
If the use ratio of the pitch is excessively small, the silicon carbide component in the obtained carbonaceous inorganic material will be large, and the lubricity of carbon and the high temperature characteristics in a non-oxidizing atmosphere will be impaired. When it is excessively large, the amount of silicon carbide component is reduced, and the oxidation resistance and wear resistance of the resulting carbonaceous inorganic material deteriorate.

上記反応の反応温度が過度に低いと、珪素原子と芳香族
炭素の結合が生成しにくくなり、反応温度が過度に高い
と、生成したランダム共重合体の分解及び高分子量化が
激しく起こり好ましくない。
If the reaction temperature of the above reaction is excessively low, the bond between the silicon atom and the aromatic carbon becomes difficult to form, and if the reaction temperature is excessively high, the generated random copolymer is severely decomposed and increased in molecular weight, which is not preferable. .

メソフェーズ多環状芳香族化合物ii)は、例えば、石油
系又は石炭系ピッチを不活性ガス中で300〜500℃に加熱
し、生成する軟質留分を除去しながら縮重合することに
よって調製することができる。
The mesophase polycyclic aromatic compound ii) can be prepared, for example, by heating petroleum-based or coal-based pitch to 300 to 500 ° C. in an inert gas and polycondensing while removing the produced soft fraction. it can.

上記縮重合反応温度が過度に低いと縮合環の成長が充分
でなく、またその温度が過度に高いとコーキングにより
不溶、不融の生成物が生ずる。
If the polycondensation reaction temperature is too low, the condensed ring will not grow sufficiently, and if the temperature is too high, an insoluble and infusible product will be produced by coking.

メソフェーズ多環状芳香族化合物ii)は、融点が200〜4
00℃の範囲にあり、また、重量平均分子量が200〜10000
である。
The mesophase polycyclic aromatic compound ii) has a melting point of 200-4.
It is in the range of 00 ° C and has a weight average molecular weight of 200 to 10,000
Is.

メソフェーズ多環状芳香族化合物ii)の中でも、20〜10
0%の光学的異方性度を有し、2〜60%のキノリン不溶
分並びに30〜100%のベンゼン、トルエン、キシレン又
はテトラヒドロフランに対する不溶分を含むものが、炭
素質無機材料の機械的特性を向上させるために特に好ま
しい。
Among the mesophase polycyclic aromatic compounds ii), 20 to 10
Mechanical properties of carbonaceous inorganic materials are those having 0% optical anisotropy and containing 2 to 60% quinoline insoluble matter and 30 to 100% insoluble matter to benzene, toluene, xylene or tetrahydrofuran. Is particularly preferable for improving

第1工程では、ランダム共重合体i)とメソフェーズ多
環状芳香族化合物ii)を200〜500℃の範囲の温度で加熱
溶融及び/又は加熱反応し、珪素含有多環状芳香族重合
体を調製する。
In the first step, the random copolymer i) and the mesophase polycyclic aromatic compound ii) are heated and melted and / or reacted at a temperature in the range of 200 to 500 ° C. to prepare a silicon-containing polycyclic aromatic polymer. .

メソフェーズ多環状芳香族化合物ii)の使用割合はラン
ダム共重合体i)100部当たり5〜1900部であることが
好ましく、5部未満では、生成物におけるメソフェーズ
含有量が不足するため、高温特性に優れた炭素質無機材
料が得られず、また、1900部より多い場合は、珪素成分
の不足のため、耐酸化性、耐摩耗性に優れた炭素質無機
材料が得られない。
The use ratio of the mesophase polycyclic aromatic compound ii) is preferably 5 to 1900 parts per 100 parts of the random copolymer i), and if it is less than 5 parts, the mesophase content in the product will be insufficient, resulting in high temperature characteristics. If an excellent carbonaceous inorganic material cannot be obtained, and if it is more than 1900 parts, a carbonaceous inorganic material excellent in oxidation resistance and abrasion resistance cannot be obtained due to lack of a silicon component.

上記珪素含有多環状芳香族重合体の重量平均分子量は20
0〜11000で、融点が200〜400℃である。
The weight average molecular weight of the silicon-containing polycyclic aromatic polymer is 20
It has a melting point of 200 to 400 ° C. at 0 to 11000.

第2工程: 第1工程で得られる珪素含有多環状芳香族重合体、又は
第1工程で得られる珪素含有多環状芳香族重合体とその
仮焼物微粉末との混合粉末を微粉砕し、通常の炭素材の
成形方法を用い成形することができる。なお、仮焼は80
0〜1300℃の範囲の温度で行うことができる。
Second step: The silicon-containing polycyclic aromatic polymer obtained in the first step, or the mixed powder of the silicon-containing polycyclic aromatic polymer obtained in the first step and its calcined fine powder is pulverized, The carbon material can be molded using the above-mentioned carbon material molding method. The calcination is 80
It can be carried out at a temperature in the range of 0 to 1300 ° C.

また、成形方法は、成形体の形状、大きさ、用途、生産
特性を考慮し、通常の炭素材の成形方法のうちから任意
に選択することが可能であり、例えば、同じ形のものを
生産性よく製造するには、乾式金型プレス法が、やや複
雑な形状の成形体を得るには等方静水圧加圧成形法(ラ
バープレス成形法)が、前記重合体を溶融し成形する方
法としてはホットプレス成形法、射出成形法、押出成形
法等が挙げられる。
The molding method can be arbitrarily selected from the usual carbon material molding methods in consideration of the shape, size, application, and production characteristics of the molded body. In order to manufacture the polymer with good performance, a dry mold pressing method is used. To obtain a molded article having a slightly complicated shape, an isotropic hydrostatic pressure molding method (rubber press molding method) is used to melt and mold the polymer. Examples thereof include a hot press molding method, an injection molding method and an extrusion molding method.

また、前記重合体とその仮焼成の混合物を成形する場
合、前記重合体とその仮焼物の使用割合は成形体の形
状、用途、コスト等を勘案して適宜決定することとがで
きる。
Further, when the mixture of the polymer and the calcined product thereof is molded, the use ratio of the polymer and the calcined product thereof can be appropriately determined in consideration of the shape, application, cost and the like of the molded product.

第3工程: 上記成形体に必要により不融化処理を施す。Third step: The above-mentioned molded body is subjected to infusibilization treatment if necessary.

代表的な不融化方法は上記成形体を酸化性雰囲気中で加
熱する方法である。不融化の温度は好ましくは50〜400
℃の範囲の温度である。不融化温度が過度に低いとポリ
マーのはしかけが起こらず、また、この温度が過度に高
いとポリマーが燃焼する。
A typical infusibilizing method is a method of heating the molded body in an oxidizing atmosphere. The temperature of infusibilization is preferably 50 to 400
The temperature is in the range of ° C. If the infusibilization temperature is too low, no polymer sticking occurs, and if this temperature is too high, the polymer burns.

不融化の目的は、前記成形体を構成するポリマーを三次
元構造の不融・不溶のはしかけ状態にし、次工程の無機
化の際に溶融せず、成形体形状を保持させることにあ
る。不融化の際の酸化性雰囲気を構成するガスとして
は、空気、オゾン、酸素、塩素ガス、臭素ガス、アンモ
ニアガス、及びこれらの混合ガスが挙げられる。
The purpose of the infusibilization is to make the polymer constituting the molded body into a state of infusible and infusible with a three-dimensional structure so that the molded body is not melted at the time of mineralization in the next step and the molded body shape is maintained. Examples of the gas forming the oxidizing atmosphere at the time of infusibilization include air, ozone, oxygen, chlorine gas, bromine gas, ammonia gas, and mixed gas thereof.

上記とは別の不融化方法として、前記成形体を酸化性雰
囲気あるいは非酸化性雰囲気で、必要に応じて低温加熱
しながら、γ線照射、あるいは電子線照射して不融化す
る方法も採用することができる。
As another infusibilizing method other than the above, a method of infusibilizing by γ-ray irradiation or electron beam irradiation while heating the molded body in an oxidizing atmosphere or a non-oxidizing atmosphere at low temperature as necessary is also adopted. be able to.

このγ線あるいは電子線を照射する目的は、前記成形体
を構成するポリマーを、さらに重合させることによっ
て、マトリックスが融解し、成形体形状を失うことを防
ぐことにある。
The purpose of irradiating with the γ ray or electron beam is to prevent the matrix from melting and losing the shape of the molded body by further polymerizing the polymer constituting the molded body.

γ線あるいは電子線の照射線量は106〜1010ラッドが適
当である。
The appropriate irradiation dose of gamma rays or electron beams is 10 6 to 10 10 rads.

照射は真空、不活性ガス雰囲気下、あるいは空気、オゾ
ン、酸素、塩素ガス、臭素ガス、アンモニアガス及びこ
れらの混合ガスのような酸化性ガス雰囲気で行うことが
できる。
Irradiation can be performed in a vacuum, an inert gas atmosphere, or an oxidizing gas atmosphere such as air, ozone, oxygen, chlorine gas, bromine gas, ammonia gas, or a mixed gas thereof.

照射による不融化は室温で行うこともでき、必要であれ
ば50〜200℃の温度範囲で加熱しながら行うことによっ
て不融化をより短時間で達成させることもできる。
The infusibilization by irradiation can be performed at room temperature, and if necessary, the infusibilization can be achieved by heating while heating in the temperature range of 50 to 200 ° C.

不融化された成形体は、真空あるいは不活性ガス中で、
800〜3000℃の範囲の温度で焼成し、無機化される。
The infusibilized molded body can be vacuumed or in an inert gas.
It is mineralized by firing at a temperature in the range of 800-3000 ° C.

加熱過程において、約700℃から無機化が激しくなり、
約800℃でほぼ無機化が完了するものと推定される。従
って、焼成は、800℃以上の温度で行うことが好まし
い。また、3000℃より高い温度を得るには高価な装置を
必要とするため3000℃より高温での焼成は、コスト面か
らみて実際的でない。
In the heating process, mineralization becomes severe from about 700 ℃,
It is estimated that mineralization is almost completed at about 800 ° C. Therefore, the firing is preferably performed at a temperature of 800 ° C. or higher. Moreover, since an expensive apparatus is required to obtain a temperature higher than 3000 ° C., firing at a temperature higher than 3000 ° C. is impractical in terms of cost.

なお、本工程における無機化の昇温速度を極めて遅くす
ることや、成形体保形用の治具、パウダーヘッド等の保
形手段を用いること等により不融化工程を省略すること
もできるし、また第2工程の成形において、高温ホット
プレス法を用いることにより第3工程自体を省略するこ
ともできる。
The infusibilizing step can be omitted by extremely slowing the temperature rise rate of the mineralization in this step, using a shape-retaining jig, a shape-retaining means such as a powder head, or the like. Further, in the molding of the second step, the third step itself can be omitted by using the high temperature hot pressing method.

第4工程: 第3工程で得られた炭素質無機材料は必要により、前記
珪素含有多環状芳香族重合体の融液、溶液又はスラリー
を含浸後必要により不融化、焼成し、無機化することに
より炭素質無機材料を高密度化、高強度化することがで
きる。
Fourth step: If necessary, the carbonaceous inorganic material obtained in the third step is impregnated with the melt, solution or slurry of the above-mentioned silicon-containing polycyclic aromatic polymer, and if necessary, rendered infusible and fired to be mineralized. This makes it possible to increase the density and strength of the carbonaceous inorganic material.

含浸は、珪素含有多環状芳香族重合体の融液、溶液又は
スラリーのいずれを用いてもさしつかえないが、微細な
開気孔への浸透を図るため、この炭素質無機材料に前記
重合体の溶液又はスラリーを含浸後減圧下で微細気孔へ
の浸透を促進後溶媒を留去しつつ昇温し、10〜500kg/cm
2に加圧することにより、前記重合体の融液を気孔に充
填させる。
The impregnation may be performed by using a melt, a solution or a slurry of a silicon-containing polycyclic aromatic polymer, but in order to permeate fine open pores, a solution of the polymer in the carbonaceous inorganic material is used. Alternatively, after impregnating the slurry, the temperature is increased while promoting the permeation into the fine pores under reduced pressure while distilling the solvent, and 10 to 500 kg / cm 3.
By pressurizing to 2 , the pores are filled with the melt of the polymer.

上記の珪素含有多環状芳香族重合体を含浸した炭素質材
料は、第3工程と同様にして、不融化し、焼成し、無機
化することができる。この操作を2〜10回繰り返すこと
により高密度、高強度な炭素質無機材料を得ることがで
きる。
The carbonaceous material impregnated with the above silicon-containing polycyclic aromatic polymer can be made infusible, calcined, and made inorganic in the same manner as in the third step. By repeating this operation 2 to 10 times, a high-density, high-strength carbonaceous inorganic material can be obtained.

尚、前記構成成分iii)におけるSi、C、Oの存在状態
は、第3工程及び第4工程における無機化温度により制
御できる。
The presence state of Si, C, and O in the constituent component iii) can be controlled by the mineralization temperature in the third step and the fourth step.

実質的にSi、C、Oからなる非晶質を得たい場合、無機
化温度を800〜1000℃とすることが好適である。実質的
にβ−SiC及び非晶質のSiO(ただし、0<x≦2)を
得たい場合、1700℃以上の温度が適している。
When it is desired to obtain an amorphous material consisting essentially of Si, C and O, the mineralization temperature is preferably 800 to 1000 ° C. When it is desired to obtain substantially β-SiC and amorphous SiO x (where 0 <x ≦ 2), a temperature of 1700 ° C. or higher is suitable.

また、各集合体の混合系を望む場合、上記中間温度より
適宜選択することができる。
Further, when a mixed system of each aggregate is desired, it can be appropriately selected from the above intermediate temperature.

また、本発明の炭素質複合材料中の酸素量は、例えば第
3工程、第4工程における不融化条件により制御するこ
とができる。
Further, the amount of oxygen in the carbonaceous composite material of the present invention can be controlled by the infusibilizing conditions in the third step and the fourth step, for example.

(発明の効果) 本発明の炭素質無機材料は、炭素中に非常に均一に分
散、一体化した炭化珪素成分を含む。この成分の存在
が、低温における炭素の微結晶化の促進、炭素の酸化に
よる消耗の抑制、硬度の向上をもたらしている。
(Effects of the Invention) The carbonaceous inorganic material of the present invention contains a silicon carbide component which is very uniformly dispersed and integrated in carbon. The presence of this component promotes the microcrystallization of carbon at low temperatures, suppresses the consumption due to the oxidation of carbon, and improves the hardness.

従って、この炭素質無機材料は、機械的物性、耐酸化
性、耐摩耗性に優れ、各種のブレーキ類、耐熱構造材料
として優れたものである。
Therefore, this carbonaceous inorganic material is excellent in mechanical properties, oxidation resistance, and wear resistance, and is excellent as various brakes and heat resistant structural materials.

(実施例) 以下実施例によって本発明を説明する。(Example) The present invention will be described below with reference to Examples.

参考例1(ポリマーIの製法) 5の三口フラスコに無水キシレン2.5及びナトリウ
ム400gを入れ、窒素ガス気流下でキシレンの沸点まで加
熱し、ジメチルジクロロシラン1を1時間で滴下し
た。滴下終了後、10時間加熱還流し沈澱物を生成させ
た。沈澱を濾過し、メタノールついで水で洗浄して、白
色粉末のポリジメチルシラン420gを得た。
Reference Example 1 (Manufacturing Method of Polymer I) 2.5 xylene and 400 g of anhydrous sodium were put into a three-necked flask of No. 5, heated to the boiling point of xylene under a nitrogen gas stream, and dimethyldichlorosilane 1 was added dropwise over 1 hour. After completion of the dropping, the mixture was heated under reflux for 10 hours to form a precipitate. The precipitate was filtered, washed with methanol and then with water to obtain 420 g of white powdery polydimethylsilane.

このポリジメチルシラン400gを、ガス導入管、撹拌機、
冷却器及び留出管を備えた3の三口フラスコに仕込
み、撹拌しながら50ml/分の窒素気流下に420℃で加熱処
理して、留出受器に350gの無色透明な少し粘性のある液
体を得た。
400 g of this polydimethylsilane, a gas introduction tube, a stirrer,
A three-necked flask equipped with a condenser and a distilling tube was charged into a three-necked flask, and heat-treated at 420 ° C under a nitrogen stream of 50 ml / min with stirring, and 350 g of a colorless transparent slightly viscous liquid was put in a distilling receiver. Got

この液体の数平均分子量は蒸気圧浸透法で測定したとこ
ろ470であった。
The number average molecular weight of this liquid was 470 as measured by the vapor pressure osmosis method.

この物質の赤外線吸収スペクトルを測定したところ、65
0〜900cm-1と1250cm-1のSi−CH3の吸収、2100cm-1にSi
−Hの吸収、1020cm-1付近と1355cm-1にSi−CH2−Siの
吸収、2900cm-1と2950cm-1にC−Hの吸収が認められ、
またこの物質の遠外線吸収スペクトルを測定したとこ
ろ、380cm-1にSi−Siの吸収が認められることから、得
られた液状物質は、主として(Si−CH2)結合単位及び
(Si−Si)結合単位からなり、珪素の側鎖に水素原子及
びメチル基を有する有機珪素重合体であることが判明し
た。
The infrared absorption spectrum of this substance was measured and found to be 65
Absorption of Si-CH 3 of 0~900Cm -1 and 1250 cm -1, Si in 2100 cm -1
Absorption of -H, Si-CH 2 -Si absorption of the of 1020 cm -1 and near 1355 cm -1, absorption of CH was observed at 2900 cm -1 and 2950 cm -1,
Further, when the far-infrared absorption spectrum of this substance was measured, absorption of Si-Si was observed at 380 cm -1 , and thus the obtained liquid substance was mainly composed of (Si-CH 2 ) bond units and (Si-Si). It was found to be an organosilicon polymer having a bonding unit and having a hydrogen atom and a methyl group in the side chain of silicon.

核磁気共鳴分析及び赤外線吸収分析の測定結果から、こ
の有機珪素重合体は(Si−CH2)結合単位の全数対(Si
−Si)結合単位の全数の比率がほぼ1:3である重合体で
あることが確認された。
From the results of nuclear magnetic resonance analysis and infrared absorption analysis, this organosilicon polymer shows that the total number of (Si—CH 2 ) bond units is
It was confirmed that the polymer had a ratio of the total number of -Si) bond units of approximately 1: 3.

上記有機珪素重合体300gをエタノールで処理して低分子
量物を除去して、数平均分子量が1200の重合体40gを得
た。
300 g of the above organosilicon polymer was treated with ethanol to remove low molecular weight substances, and 40 g of a polymer having a number average molecular weight of 1200 was obtained.

この物質の赤外線吸収スペクトルを測定したところ、上
記と同様の吸収ピークが認められ、この物質は主として
(Si−CH2)結合単位及び(Si−Si)結合単位からな
り、珪素の側鎖に水素原子及びメチル基を有する有機珪
素重合体であることが判明した。
Measurement of the infrared absorption spectrum of this material, the absorption peak similar to that described above was observed, the material consists predominantly (Si-CH 2) coupling units and (Si-Si) bond unit, hydrogen on the side chain of the silicon It was found to be an organosilicon polymer having atoms and methyl groups.

核磁気共鳴分析及び赤外線吸収分析の測定結果から、こ
の有機珪素重合体は(Si−CH2)結合単位の全数対(Si
−Si)結合単位の全数の比率がほぼ7:1である重合体で
あることが確認された。
From the results of nuclear magnetic resonance analysis and infrared absorption analysis, this organosilicon polymer shows that the total number of (Si—CH 2 ) bond units is
It was confirmed that the polymer had a ratio of the total number of -Si) bond units of about 7: 1.

一方、石油留分のうち、軽油以上の高沸点物をシリカ・
アルミナ系分解触媒の存在下、500℃の温度で流動接触
分解・精留を行い、その塔底より残渣を得た。以下、こ
の残渣をFCCスラリーオイルと呼ぶ。
On the other hand, among petroleum fractions, high boiling point substances above light oil are
Fluid catalytic cracking / rectification was carried out at a temperature of 500 ° C. in the presence of an alumina cracking catalyst to obtain a residue from the bottom of the column. Hereinafter, this residue is referred to as FCC slurry oil.

このFCCスラリーオイルは、元素分析の結果、炭素原子
対水素原子の原子比(C/H)が0.75で、核磁気共鳴分析
による芳香炭素率が0.55であった。
As a result of elemental analysis, the FCC slurry oil had an atomic ratio of carbon atoms to hydrogen atoms (C / H) of 0.75 and an aromatic carbon ratio of 0.55 by nuclear magnetic resonance analysis.

上記FCCスラリーオイル100gを窒素ガス気流下420℃に加
熱し、同温度における留出分を留去後、残渣を150℃に
て熱時濾過を行い、同温度における不融部を除去し、軽
質分除去ピッチ57gを得た。
100 g of the above FCC slurry oil was heated to 420 ° C. under a nitrogen gas stream, the distillate at the same temperature was distilled off, and the residue was filtered while hot at 150 ° C. to remove infusible parts at the same temperature and A minute removal pitch of 57 g was obtained.

この軽質分除去ピッチは60%のキシレン不溶分を含んで
いた。
The light content removal pitch contained 60% xylene insoluble matter.

この軽質分除去ヒッチ57gに先に合成した有機珪素重合
体25gびキシレン20mlを加え、撹拌しながら昇温し、キ
シレンを留去後、400℃で6時間反応させ43gランダム共
重合体を得た。
25 g of the previously synthesized organosilicon polymer and 20 ml of xylene were added to 57 g of the light content removal hitch, the temperature was raised with stirring, the xylene was distilled off, and the mixture was reacted at 400 ° C. for 6 hours to obtain 43 g of a random copolymer. .

この反応生成物は赤外線吸収スペクトル測定の結果、有
機珪素重合体中に存在するSi−H結合(IR:2100cm-1
の減少、及び新たなSi−C(ベンゼン環の炭素)結合
(IR:1135cm-1)の生成が認められることより有機珪素
重合体の珪素原子の一部が多環状芳香族環と直接結合し
た部分を有するランダム共重合体であることがわかっ
た。また、この共重合体は、キシレン不溶部を含まず重
量平均分子量は1400、融点は265℃であった。
As a result of infrared absorption spectrum measurement, this reaction product was found to have Si-H bonds (IR: 2100 cm -1 ) present in the organosilicon polymer.
And the formation of a new Si-C (carbon of benzene ring) bond (IR: 1135cm -1 ) was observed, so that some of the silicon atoms of the organosilicon polymer were directly bonded to the polycyclic aromatic ring. It was found to be a random copolymer having a portion. In addition, this copolymer did not contain a xylene-insoluble portion, had a weight average molecular weight of 1400 and a melting point of 265 ° C.

これを、300℃で加熱溶融静置し、比重差により軽質部
分を除去した残部40gを得た。これをポリマー(a)と
呼ぶ。
This was heated, melted, and allowed to stand at 300 ° C., and 40 g of the remaining portion obtained by removing the light portion due to the difference in specific gravity was obtained. This is called a polymer (a).

これと並行して、FCCスラリーオイル400gを、窒素ガス
気流下450℃に加熱し、同温度における留出分を留去
後、残渣を200℃にて熱時濾過を行い、同温度における
不融部を除去し、軽質分除去ピッチ180gを得た。得られ
た軽質分除去ピッチ180gを窒素気流下、反応により生成
する軽質分を除去しながら400℃で8時間縮重合を行
い、熱処理ピッチ80.3gを得た。
In parallel with this, 400 g of FCC slurry oil was heated to 450 ° C. under a nitrogen gas stream, the distillate at the same temperature was distilled off, and the residue was filtered while hot at 200 ° C. The portion was removed to obtain 180 g of a light material removal pitch. 180 g of the obtained light content removing pitch was subjected to polycondensation at 400 ° C. for 8 hours in a nitrogen stream while removing the light content produced by the reaction to obtain a heat treatment pitch of 80.3 g.

この熱処理ピッチは融点310℃、キシレン不溶分97%、
キノリン不溶分20%を含有しており、研磨面の偏光顕微
鏡観察よる光学的異方性が95%のメソフェーズピッチで
あった。
This heat treatment pitch has a melting point of 310 ° C, xylene insoluble content of 97%,
It contained 20% quinoline-insoluble matter, and the mesophase pitch was 95% with the optical anisotropy of the polished surface observed by a polarizing microscope.

これを再び、350℃に加熱溶融静置し、比重差により軽
質分を分離除去し、残部80gを得た。
This was again heated and melted at 350 ° C. and allowed to stand, and the light fraction was separated and removed due to the difference in specific gravity, to obtain 80 g of the rest.

これと、ポリマー(a)40gを混合し、窒素雰囲気下、3
50℃で一時間溶融加熱し、均一な状態にある珪素含有多
環状芳香族重合体を得た。この重合体は、融点が290℃
で、70%のキシレン不溶分を含んでいた。
This is mixed with 40 g of polymer (a) and the mixture is mixed in a nitrogen atmosphere for 3
The mixture was melted and heated at 50 ° C. for 1 hour to obtain a silicon-containing polycyclic aromatic polymer in a uniform state. This polymer has a melting point of 290 ° C.
It contained 70% xylene-insoluble matter.

参考例2(ポリマーIIの製法) 参考例1で得た有機珪素重合体50gに軽質分除去ピッチ5
0gを加え、420℃で4時間反応させ48gのランダム共重合
体を得た。
Reference Example 2 (Manufacturing Method of Polymer II) 50 g of the organosilicon polymer obtained in Reference Example 1 was used for removing light components 5
0 g was added, and the mixture was reacted at 420 ° C. for 4 hours to obtain 48 g of a random copolymer.

これと並行して、軽質分除去ピッチを430℃で4時間反
応させメソフェーズピッチを得た。
In parallel with this, the light content removal pitch was reacted at 430 ° C. for 4 hours to obtain a mesophase pitch.

等重量の上記ランダム共重合体とメソフェーズピッチを
参考例1と同様にして混合、溶融し均一な状態にある珪
素含有多環状芳香族重合体を得た。
The same weight of the random copolymer and mesophase pitch were mixed and melted in the same manner as in Reference Example 1 to obtain a silicon-containing polycyclic aromatic polymer in a uniform state.

実施例1 参考例1で得たポリマーIの粉末を窒素気流中で800℃
に昇温し、仮焼体を調製し、これを微粉砕して仮焼体粉
末を得た。この仮焼体粉末に等重量のポリマーIの粉末
を加え、湿式混合して得た造粒粉を、350℃、100kg/cm2
でホットプレスし、直径7cmの円板状成形体を得た。こ
の成形体を炭素粉末のパウダーヘッド中に埋め保形し、
窒素気流中で5℃/hの速度で800℃まで昇温後、さらに1
300℃まで昇温し、無機化した。得られた炭素質無機材
料の嵩密度は1.50g/cm3であった。
Example 1 The polymer I powder obtained in Reference Example 1 was heated at 800 ° C. in a nitrogen stream.
The temperature was raised to 1, a calcined body was prepared, and this was finely pulverized to obtain a calcined body powder. Granulated powder obtained by adding an equal weight of the powder of Polymer I to the calcined powder and wet-mixing the mixture at 350 ° C. and 100 kg / cm 2
Hot pressing was performed to obtain a disk-shaped molded body having a diameter of 7 cm. This molded body was embedded in a carbon powder powder head and held in shape,
After raising the temperature to 800 ° C at a rate of 5 ° C / h in a nitrogen stream,
The temperature was raised to 300 ° C to make it inorganic. The bulk density of the obtained carbonaceous inorganic material was 1.50 g / cm 3 .

この炭素質無機材料をポリマーIの50%キシレンスラリ
ーに浸し、減圧下キシレンを留去しながら350℃に昇
温、その後100kg/cm2に加圧含浸した後、空気中で5℃/
hの速度で300℃まで昇温し、不融化した後1300℃で無機
化した。この含浸、無機化の操作をさらに3回繰り返し
嵩密度1.95g/cm3の材料を得た。この材料の曲げ強度は2
kg/mm2であった。さらにこの炭素質無機材料をアルゴン
中、2500℃で焼成したところ、嵩密度1.99g/cm3、曲げ
強度は24kg/mm2に向上した。また、窒素中、1500℃での
曲げ強度も25kg/mm2であった。
This carbonaceous inorganic material was dipped in a 50% xylene slurry of Polymer I, heated to 350 ° C while distilling off xylene under reduced pressure, and then pressure-impregnated to 100 kg / cm 2 , followed by 5 ° C / in air.
The temperature was raised to 300 ° C. at a rate of h to infusibilize it, and then it was mineralized at 1300 ° C. This operation of impregnation and mineralization was repeated three more times to obtain a material having a bulk density of 1.95 g / cm 3 . The bending strength of this material is 2
It was kg / mm 2 . Furthermore, when this carbonaceous inorganic material was baked at 2500 ° C. in argon, the bulk density was improved to 1.99 g / cm 3 and the bending strength was improved to 24 kg / mm 2 . Also, the bending strength at 1500 ° C. in nitrogen was 25 kg / mm 2 .

実施例2 ポリマーIを用い、実施例1と同様にして得た仮焼体粉
末70%に参考例2で得たポリマーIIの粉末30%を加え、
実施例1と同様にして成形、無機化して嵩密度1.67g/cm
3の炭素質無機材料を得た。
Example 2 Using Polymer I, 30% of the powder of Polymer II obtained in Reference Example 2 was added to 70% of the calcined powder obtained in the same manner as in Example 1,
Molded and mineralized in the same manner as in Example 1 to have a bulk density of 1.67 g / cm.
3 carbonaceous inorganic materials were obtained.

実施例1と同様に、この材料にポリマーIIの50%キシレ
ンスラリーを含浸し、無機化し、さらにこの含浸、無機
化を3回繰り返し嵩密度2.01g/cm3の炭素質無機材料を
得た。この材料の曲げ強度は23kg/mm2であり、このもの
を空気中、600℃に24時間保持した後でも重量減少、強
度低下は認められなかった。
In the same manner as in Example 1, this material was impregnated with a 50% xylene slurry of Polymer II to be mineralized, and this impregnation and mineralization were repeated 3 times to obtain a carbonaceous inorganic material having a bulk density of 2.01 g / cm 3 . The bending strength of this material was 23 kg / mm 2 , and even after this material was kept in air at 600 ° C. for 24 hours, weight reduction and strength reduction were not observed.

比較例1 無荷重時の嵩密度が0.15g/cm3の人造黒鉛粉粒体80%に
参考例1の中間生成物であるメソフェーズピッチ20%を
加え、実施例1と同様にして成形、無機化を行い嵩密度
が1.66g/cm3の炭素材を得た。
Comparative Example 1 20% of mesophase pitch, which is an intermediate product of Reference Example 1, was added to 80% of artificial graphite powder having a bulk density of 0.15 g / cm 3 under no load, and molded in the same manner as in Example 1 to form an inorganic material. To obtain a carbon material having a bulk density of 1.66 g / cm 3 .

この炭素材にメソフェーズピッチの含浸、無機化を実施
例1と同様にして4回繰り返し嵩密度が1.92g/cm2の炭
素材を得た。
This carbon material was impregnated with mesophase pitch and mineralized in the same manner as in Example 1 four times to obtain a carbon material having a bulk density of 1.92 g / cm 2 .

この炭素材の曲げ強度は5.0kg/mm2であり、このものを
空気中、600℃に24時間保持したところ、20%の重量減
少が認められ、多孔質化した。
The bending strength of this carbon material was 5.0 kg / mm 2 , and when this carbon material was kept in air at 600 ° C. for 24 hours, a 20% weight loss was observed and it became porous.

比較例2 比較例1で得た嵩密度が1.66g/cm3の炭素材に金属珪素
粉をまぶし、1500℃で溶融含浸し、反応焼結により炭素
−炭化珪素複合材を得た。得られた材料の曲げ強度は8.
2kg/mm2と向上したが、窒素中、1500℃での曲げ強度を
測定したところ、未反応珪素の溶融により変形が生じ、
曲げ強度は3.0kg/mm2に低下した。
Comparative Example 2 The carbon material having a bulk density of 1.66 g / cm 3 obtained in Comparative Example 1 was sprinkled with metallic silicon powder, melt-impregnated at 1500 ° C., and reaction-sintered to obtain a carbon-silicon carbide composite material. The bending strength of the obtained material is 8.
Although it was improved to 2 kg / mm 2 , when bending strength was measured at 1500 ° C in nitrogen, deformation occurred due to melting of unreacted silicon.
The bending strength dropped to 3.0 kg / mm 2 .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渋谷 昌樹 山口県宇部市大字小串1978番地の5 宇部 興産株式会社宇部研究所内 審査官 小島 隆 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaki Shibuya 5 1978, Kozugushi, Ube City, Yamaguchi Prefecture 5 Ube Kosan Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】珪素含有多環状芳香族重合体から得られる
無機材料であって、その構成成分が、 i)該重合体を構成するメソフェーズ状態にある多環状
芳香族化合物から導かれる結晶質炭素、又は結晶質炭素
と非晶質炭素、 ii)該重合体を構成する光学的等方性の多環状芳香族化
合物から導かれる、無配向状態の結晶質炭素及び/又は
非晶質炭素、及び iii)Si、C及びOから実質的になる非晶質相、及び/
又は粒径が500Å以下の実質的にβ−SiCからなる結晶質
超微粒子と非晶質のSiO(0<x≦2)とからなる集
合体であり、 構成元素の割合がSi;30〜70重量%、C;20〜60重量%及
びO;0.5〜10重量%であるSi−C−O物質 よりなることを特徴とする炭素質無機材料。
1. An inorganic material obtained from a silicon-containing polycyclic aromatic polymer, the constituent components of which are: i) crystalline carbon derived from a polycyclic aromatic compound in a mesophase state which constitutes the polymer. Or crystalline carbon and amorphous carbon, ii) non-oriented crystalline carbon and / or amorphous carbon derived from the optically isotropic polycyclic aromatic compound constituting the polymer, and iii) an amorphous phase consisting essentially of Si, C and O, and / or
Alternatively, it is an aggregate composed of crystalline ultrafine particles substantially composed of β-SiC having a particle size of 500 Å or less and amorphous SiO x (0 <x ≦ 2), and the proportion of constituent elements is Si; A carbonaceous inorganic material comprising a Si—C—O material in an amount of 70% by weight, C: 20 to 60% by weight, and O: 0.5 to 10% by weight.
JP1036095A 1989-02-17 1989-02-17 Carbonaceous inorganic material Expired - Lifetime JPH0755859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1036095A JPH0755859B2 (en) 1989-02-17 1989-02-17 Carbonaceous inorganic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1036095A JPH0755859B2 (en) 1989-02-17 1989-02-17 Carbonaceous inorganic material

Publications (2)

Publication Number Publication Date
JPH02217358A JPH02217358A (en) 1990-08-30
JPH0755859B2 true JPH0755859B2 (en) 1995-06-14

Family

ID=12460204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1036095A Expired - Lifetime JPH0755859B2 (en) 1989-02-17 1989-02-17 Carbonaceous inorganic material

Country Status (1)

Country Link
JP (1) JPH0755859B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107851776A (en) * 2015-08-04 2018-03-27 三井化学株式会社 Lithium ion secondary battery cathode and lithium rechargeable battery and the manufacture method of lithium ion secondary battery cathode comprising it

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890883B2 (en) * 2006-02-28 2012-03-07 国立大学法人埼玉大学 Molded body and grindstone containing SiOx powder, and grinding method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107851776A (en) * 2015-08-04 2018-03-27 三井化学株式会社 Lithium ion secondary battery cathode and lithium rechargeable battery and the manufacture method of lithium ion secondary battery cathode comprising it

Also Published As

Publication number Publication date
JPH02217358A (en) 1990-08-30

Similar Documents

Publication Publication Date Title
US5206327A (en) Preceramic polymers incorporating boron and their application in the sintering of carbide ceramics
TW315362B (en)
JPH0840772A (en) Titanium carbide sinter and its perparation
JPH0755859B2 (en) Carbonaceous inorganic material
JP2547108B2 (en) Fiber-reinforced carbonaceous composite material
JPH0755860B2 (en) Carbonaceous inorganic material
JP2547109B2 (en) Fiber-reinforced carbon composite material
JPH08109067A (en) Sintered body of titanium diboride and its preparation
JP2792180B2 (en) brake
JPH0764653B2 (en) Fiber reinforced carbon material
JPH08109066A (en) Sintered body of zirconium carbide and its preparation
JPH0757715B2 (en) Fiber-reinforced carbonaceous composite material
JP2547110B2 (en) Hybrid fiber reinforced carbonaceous composite material
JP2547113B2 (en) Hybrid fiber reinforced carbonaceous composite material
JP2547112B2 (en) Hybrid fiber reinforced carbonaceous composite material
JPH07103493B2 (en) High-strength, high-modulus inorganic fiber and method for producing the same
JPH0726166B2 (en) Inorganic fiber reinforced metal composite material
JPH0757713B2 (en) Fiber-reinforced carbonaceous composite material
JPH0757714B2 (en) Fiber-reinforced carbonaceous composite material
JP2559637B2 (en) Heat resistant fiber reinforced inorganic composite material
JPH0764654B2 (en) Fiber reinforced carbon material
JP2547111B2 (en) Heat resistant fiber reinforced inorganic composite material
JPH0757712B2 (en) Fiber-reinforced carbonaceous composite material
JPH0781232B2 (en) Fiber body for composite material and method for producing the same
JPH0781209B2 (en) High-strength, high-modulus inorganic fiber and method for producing the same