JPH02217358A - Carbonaceous inorganic material - Google Patents

Carbonaceous inorganic material

Info

Publication number
JPH02217358A
JPH02217358A JP1036095A JP3609589A JPH02217358A JP H02217358 A JPH02217358 A JP H02217358A JP 1036095 A JP1036095 A JP 1036095A JP 3609589 A JP3609589 A JP 3609589A JP H02217358 A JPH02217358 A JP H02217358A
Authority
JP
Japan
Prior art keywords
carbon
polycyclic aromatic
polymer
amorphous
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1036095A
Other languages
Japanese (ja)
Other versions
JPH0755859B2 (en
Inventor
Taketami Yamamura
武民 山村
Junichi Kugimoto
純一 釘本
Toshihiro Ishikawa
敏弘 石川
Yasuhiro Shioji
塩路 泰広
Masaki Shibuya
昌樹 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP1036095A priority Critical patent/JPH0755859B2/en
Publication of JPH02217358A publication Critical patent/JPH02217358A/en
Publication of JPH0755859B2 publication Critical patent/JPH0755859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To reduce deterioration of title material under high-temperature oxidizing atmosphere and improve abrasion resistance by blending a specific crystalline carbon (and amorphous carbon) with a crystalline carbon kept in non- oriented state and/or amorphous carbon and Si-C-O substance. CONSTITUTION:The powder of (C) a silicon-containing polycyclic aromatic polymer obtained by heating (A) a random copolymer obtained by combining an organosilicone polymer consisting of Si-CH2 unit or Si-CH2 unit and Si-Si unit and having side chain with a petroleum based or coal based pitch and (B) mesophase polycyclic aromatic polymer is molded and burned at 800-3000 deg.C in vacuum or inert gas and as necessary melt or solution of the component C is repeatedly impregnated and burned to provide the title material consisting of a crystalline carbon (and amorphous carbon) led from a polycyclic aromatic compound kept in meriphase state and constituting the component C and crystalline carbon kept in a nonoriented state and led from optically isotropic polycyclic aromatic compound constituting the component C and/or amorphous carbon and Si-C-O substance consisting of an amorphous material composed of Si, C and O and/or crystalline ultrafine granules composed of beta-SiC and amorphous SiOx (0<X<=2).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は機械的強度、耐熱性及び耐摩耗性に優れた炭素
質無機材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a carbonaceous inorganic material having excellent mechanical strength, heat resistance, and wear resistance.

(従来の技術及びその問題点) 従来より炭素材料は、非酸化性雰囲気下での高温特性、
低い熱膨張係数、耐薬品性、耐候性、耐放射線性、潤滑
性に優れ、かつ、電気伝導性、熱伝導性の制御も容易で
あるため、高温構造材料、摩擦材料等として使用されて
いる。
(Conventional technology and its problems) Carbon materials have traditionally had high-temperature properties in a non-oxidizing atmosphere,
It has a low coefficient of thermal expansion, excellent chemical resistance, weather resistance, radiation resistance, and lubricity, as well as easy control of electrical conductivity and thermal conductivity, so it is used as a high-temperature structural material, friction material, etc. .

しかし、炭素材料は耐酸化性が低いため酸化性雰囲気中
で高温で使用することは出来ない。また、潤滑性に優れ
るものの、表面硬度が低いため耐摩耗性はかならずしも
充分なものではなかった。
However, carbon materials have low oxidation resistance and cannot be used at high temperatures in an oxidizing atmosphere. Furthermore, although it has excellent lubricity, its wear resistance is not always sufficient because of its low surface hardness.

これらの欠点を改良するため、気相反応法等により、炭
素材料の表面にセラミック等の皮膜層を形成させる方法
が考案されている。しかし、この方法は、皮膜層が薄く
、かつ、剥離し易いため、充分に上記欠点を克服できる
ものではなく、また、特殊な装置を必要とするためコス
トが高くなる欠点を有していた。
In order to improve these drawbacks, methods have been devised in which a film layer of ceramic or the like is formed on the surface of a carbon material by a gas phase reaction method or the like. However, this method cannot sufficiently overcome the above drawbacks because the film layer is thin and easily peeled off, and also has the drawback that special equipment is required, resulting in high costs.

さらに、特開昭60−195076号公報、特開昭60
−251175号公報には、炭素質成形体に溶融珪素を
含浸、反応させ表面及び内部に炭化珪素を生成させるこ
とにより前記欠点を改善する方法が開示されている。し
かし、この方法で得られた炭素材料は、その成形体内に
金属珪素が残存するため、高温でのクリープ変形等高温
特性が著しく低下し、また、機械的特性もかならずしも
優れたものではなかった。
Furthermore, JP-A-60-195076, JP-A-60
Japanese Patent No. 251175 discloses a method for improving the above drawbacks by impregnating and reacting molten silicon into a carbonaceous molded body to generate silicon carbide on the surface and inside. However, since the carbon material obtained by this method has metallic silicon remaining in the molded body, high-temperature properties such as creep deformation at high temperatures are significantly deteriorated, and the mechanical properties are not always excellent.

(問題を解決するための手段) 本発明の目的は、上記問題点を解決した新規な炭素質無
機材料の提供にある。
(Means for Solving the Problems) An object of the present invention is to provide a novel carbonaceous inorganic material that solves the above problems.

本発明の他の目的は、高温酸化性雰囲気下で劣化の少な
い、耐酸化性炭素質無機材料の提供にある。
Another object of the present invention is to provide an oxidation-resistant carbonaceous inorganic material that exhibits little deterioration under high-temperature oxidizing atmospheres.

本発明の他の目的は、耐摩耗性に優れた炭素質無機材料
の提供にある。
Another object of the present invention is to provide a carbonaceous inorganic material with excellent wear resistance.

本発明の他の目的は、低温下で製造可能な炭素質無機材
料の提供にある。
Another object of the present invention is to provide a carbonaceous inorganic material that can be produced at low temperatures.

本発明の炭素質無機材料は、珪素含有多環状芳香族重合
体から得られる無機材料であって、その構成成分は、 i)該重合体を構成するメソフェーズ状態にある多環状
芳香族化合物から導かれる結晶質炭素、又は結晶質炭素
と非晶質炭素、 if)該重合体を構成する光学的等方性の多環状芳香族
化合物から導かれる、無配向状態の結晶質炭素及び/又
は非晶質炭素、及び 1ii)Si、C及びOから実質的になる非晶質相、及
び/又は粒径が500Å以下の実質的にβ−3ICから
なる結晶質超微粒子と非晶質のSiOx(0<x≦2)
とからなる集合体であり、 構成元素の割合がSi;30〜70重量%、C;20〜
60重量%及び0 、0.5〜10重景%であるSi−
C−0物質 よりなる。
The carbonaceous inorganic material of the present invention is an inorganic material obtained from a silicon-containing polycyclic aromatic polymer, and its constituent components are: i) derived from a polycyclic aromatic compound in a mesophase state constituting the polymer; crystalline carbon, or crystalline carbon and amorphous carbon; if) non-oriented crystalline carbon and/or amorphous carbon derived from an optically isotropic polycyclic aromatic compound constituting the polymer; and 1ii) an amorphous phase consisting essentially of Si, C and O, and/or crystalline ultrafine particles and amorphous SiOx (0 <x≦2)
It is an aggregate consisting of, and the proportions of the constituent elements are Si: 30-70% by weight, C: 20-70% by weight.
60% by weight and 0.5-10% Si-
It consists of C-0 substance.

以下の説明における「部」は全て重量部であり、r%」
は「重量%」である。
All "parts" in the following description are parts by weight, r%.
is "% by weight".

本発明の炭素質無機材料は上記の構成成分i)、it)
及び1ii)からなっており、Si;0.5〜50%、
C;40〜97%及びO; 0.1〜lO%から実質的
に構成されている。
The carbonaceous inorganic material of the present invention has the above constituent components i), it)
and 1ii), Si; 0.5 to 50%,
It consists essentially of C: 40-97% and O: 0.1-10%.

この炭素質無機材料の構成成分である結晶質炭素は50
0Å以下の結晶子サイズを有し、1.5人の分解能を有
する高分解能電子顕微鏡において、繊維軸方向に配向し
た3、2人の(002)面に相当する微細なラティスイ
メージ像が観察されうる超微粒子のグラファイト結晶で
ある。
The crystalline carbon that is a constituent of this carbonaceous inorganic material is 50%
A fine lattice image corresponding to three or two (002) planes oriented in the fiber axis direction was observed using a high-resolution electron microscope with a crystallite size of 0 Å or less and a resolution of 1.5 people. It is a graphite crystal with ultra-fine particles.

この炭素質無機材料における構成成分i)及びit)の
総和100部に対する構成成分1ii)の割合は0.5
〜1900部であり、且つ構成成分i)、ii)の比率
はl:0.02〜4である。
The ratio of component 1ii) to 100 parts of the total of components i) and it) in this carbonaceous inorganic material is 0.5
-1900 parts, and the ratio of constituent components i) and ii) is l:0.02-4.

構成成分i)及びit)の総和100部に対する構成成
分1ff)の割合が0.5未満の場合は、単なる炭素材
料とほとんど変わらず、耐酸化性や耐摩耗性の向上は望
めず、上記割合が1900部を越えた場合は、はとんど
炭化珪素のみよりなる成形体と変わらず、高温特性、潤
滑性に優れた炭素質材料とならない。
If the ratio of component 1ff) to 100 parts of the total of component i) and it) is less than 0.5, it is almost the same as a simple carbon material, and no improvement in oxidation resistance or wear resistance can be expected. If it exceeds 1,900 parts, the molded product is almost the same as a molded product made only of silicon carbide, and a carbonaceous material with excellent high-temperature properties and lubricity cannot be obtained.

本発明の炭素質無機材料においては、層間隔が小さな微
結晶が効果的に生成しており、その微結晶を包み込むよ
うに珪素原子が非常に均一に分布している。
In the carbonaceous inorganic material of the present invention, microcrystals with a small interlayer interval are effectively generated, and silicon atoms are distributed very uniformly so as to surround the microcrystals.

本発明の炭素質無機材料は、 i)結合単位(Si  CHり、又は結合単位(Si−
CH2)と結合単位(Si−3i)から主としてなり、
珪素原子に水素原子、低級アルキル基、フェニル基及び
シリル基からなる群から選ばれる側鎖基を有し、結合単
位(Si  CHz)の全数対結合単位(Si−3i)
の全数の比がに〇〜20の範囲にある有機珪素重合体の
珪素原子の少なくとも一部が、石油系又は石炭系のピッ
チあるいはその熱処理物の芳香族環と珪素−炭素連結基
を介して結合したランダム共重合体及びii)石油系又
は石炭系ピッチを熱処理して得られるメソフェーズ状態
又はメソフェーズと光学的等吉相との両相からなる多環
状芳香族化合物(以下、両者を総称して「メソフェーズ
多環状芳香族重合体」と言うことがある。)を、 200〜500°Cの範囲の温度で加熱反応及び/又は
加熱溶融して、珪素含有多環状芳香族重合体を得る第1
工程、 上記珪素含有多環状芳香族重合体、又は上記珪素含有多
環状芳香族重合体とその仮焼物微粉末との混合粉末を金
型プレス、等方静水圧プレス、ホットプレス等、通常の
方法を用い成形する第2工程、 上記成形体を必要により不融化処理を行った後、真空中
あるいは不活性ガス中で800〜3000℃の温度で焼
成し、無機化する第3工程、上記工程により得られた炭
素質無機材料の空孔に必要により珪素含有多環状芳香族
重合体の融液、又は溶液を含浸させ、焼成し、無機化す
る処理を繰り返し行うことにより高密度化する第4工程
よりなる製造方法により従供される。
The carbonaceous inorganic material of the present invention comprises: i) a bonding unit (Si CH) or a bonding unit (Si-
It mainly consists of CH2) and bonding units (Si-3i),
The silicon atom has a side chain group selected from the group consisting of a hydrogen atom, a lower alkyl group, a phenyl group, and a silyl group, and the total number of bonding units (Si CHz) versus bonding units (Si-3i)
At least a part of the silicon atoms of the organosilicon polymer in which the ratio of the total number of a polycyclic aromatic compound consisting of a mesophase state obtained by heat-treating a combined random copolymer and ii) petroleum-based or coal-based pitch, or a mesophase and an optically isochastic phase (hereinafter, both are collectively referred to as " A first method of obtaining a silicon-containing polycyclic aromatic polymer by heating-reacting and/or heating-melting the ``mesophase polycyclic aromatic polymer'' at a temperature in the range of 200 to 500°C.
Step: The silicon-containing polycyclic aromatic polymer, or the mixed powder of the silicon-containing polycyclic aromatic polymer and its calcined fine powder, is subjected to a conventional method such as mold pressing, isostatic isostatic pressing, hot pressing, etc. A second step of molding the molded body using the above-mentioned molded body, a third step of inorganicizing the molded body by performing infusibility treatment if necessary, and then firing it in a vacuum or an inert gas at a temperature of 800 to 3000 ° C. A fourth step of increasing the density by repeatedly impregnating the pores of the obtained carbonaceous inorganic material with a melt or solution of a silicon-containing polycyclic aromatic polymer, firing, and mineralizing the material as necessary. It is provided by a manufacturing method consisting of the following.

なお、高温ホットプレス等により上記第2〜第4工程を
一つの工程として製造することも可能である。
Note that it is also possible to manufacture the above-mentioned second to fourth steps as one step by high-temperature hot pressing or the like.

上記各工程について具体的に説明する。Each of the above steps will be specifically explained.

第1工程: 出発原料の一つである有機珪素重合体は、公知の方法で
合成することができ、例えば、ジメチルジクロロシラン
と金属ナトリウムの反応により得られるポリメチルシラ
ンを不活性ガス中で400°C以上に加熱することによ
り得られる。
First step: The organosilicon polymer, which is one of the starting materials, can be synthesized by a known method. For example, polymethylsilane obtained by the reaction of dimethyldichlorosilane and metallic sodium is heated in an inert gas for 400 min. Obtained by heating above °C.

上記有機珪素重合体は、結合単位(Si  CHz)、
又は結合単位(Si−3i)と結合単位(Si−CH,
)より主としてなり、結合単位(Si−CH,)の全数
対結合単位(Si−3i)の全数の比率は1:0〜20
の範囲内にある。
The organosilicon polymer has a bonding unit (Si CHz),
or bonding unit (Si-3i) and bonding unit (Si-CH,
), and the ratio of the total number of bond units (Si-CH, ) to the total number of bond units (Si-3i) is 1:0 to 20.
is within the range of

有機珪素重合体の重量平均分子量(Mw)は、−船釣に
は300〜1000で、Mlが400〜800のものが
、優れた炭素質無機材料を得るための中間原料であるラ
ンダム共重合体i)を調製するために特に好ましい。
The weight average molecular weight (Mw) of the organosilicon polymer is 300 to 1000 for boat fishing, and those with Ml of 400 to 800 are random copolymers that are intermediate raw materials for obtaining excellent carbonaceous inorganic materials. Particularly preferred for preparing i).

もう一つの出発原料である多環状芳香族化合物は石油類
及び/又は石炭類から得られるピッチで、特に石油類の
流動接触分解により得られる重質油、その重質油を蒸留
して得た留出成分又は残渣油及びそれらを熱処理して得
られるピッチである。
Another starting material, a polycyclic aromatic compound, is pitch obtained from petroleum and/or coal, especially heavy oil obtained by fluid catalytic cracking of petroleum, and pitch obtained by distilling the heavy oil. Distillate components or residual oils and pitch obtained by heat-treating them.

上記ピッチ中には、ベンゼン、トルエン、キシレン、テ
トラヒドロフランなどの有機溶媒に不溶の成分が5〜9
8重量%含まれていることが好ましく、5重量%未満の
ピッチを原料として用いた場合、成形体の無機化時の残
存率が低くなり、空孔が残存しやすく、又結晶化しにく
いため優れた炭素質無機材料が得られず、また、98重
量%より多いピッチを原料として用いた場合、不溶、不
融のコーキング物が生じやすく成形上不利が生じる。
The above pitch contains 5 to 9 components insoluble in organic solvents such as benzene, toluene, xylene, and tetrahydrofuran.
It is preferable that the content is 8% by weight, and if less than 5% by weight pitch is used as a raw material, the residual rate of the molded product during mineralization will be low, pores will easily remain, and it will be difficult to crystallize, so it is excellent. Furthermore, if more than 98% by weight of pitch is used as a raw material, insoluble and infusible caulking materials are likely to be produced, which is disadvantageous in molding.

このピッチの重量平均分子!(MW)は、300〜30
00で、融点は70〜200°Cである。
Weight average molecule of this pitch! (MW) is 300-30
00 and the melting point is 70-200°C.

重量平均分子量は以下のようにして求めた値である。即
ち、ピッチがベンゼン、トルエン、キシレン、テトラヒ
ドロフラン、クロロホルム及びジクロロベンゼン等のゲ
ルパーミュエーションクロマトグラフ(GPC)測定用
有機溶媒不溶分を含有しない場合はそのままGPC測定
し、ピッチが上記有機溶媒不溶分を含有する場合は、温
和な条件で水添処理し、上記有機溶媒不溶分を上記有機
溶媒可溶な成分に変えて後GPC測定する。(上記有機
溶媒不溶分を含有する重合体の重量平均分子量は、上記
と同様の処理を施し求めた値である)。
The weight average molecular weight is a value determined as follows. That is, if the pitch does not contain organic solvent insoluble components for gel permeation chromatography (GPC) measurement, such as benzene, toluene, xylene, tetrahydrofuran, chloroform, and dichlorobenzene, the pitch is directly measured by GPC, and the pitch is determined from the above organic solvent insoluble components. If it contains, it is hydrogenated under mild conditions to change the organic solvent-insoluble components to the organic solvent-soluble components, followed by GPC measurement. (The weight average molecular weight of the polymer containing organic solvent insoluble matter is the value obtained by performing the same treatment as above).

ランダム共重合体i)は、前記有機珪素重合体に、上記
ピッチを添加し、不活性ガス中で好ましくは250〜5
00°Cの範囲の温度で加熱反応させることにより調製
される。
Random copolymer i) is prepared by adding the above pitch to the organosilicon polymer, preferably at a concentration of 250 to 50% in an inert gas.
It is prepared by a heating reaction at a temperature in the range of 00°C.

ピッチの使用割合は、有機珪素重合体100部当たり1
0−1900部であることが好ましい。
The proportion of pitch used is 1 per 100 parts of organosilicon polymer.
Preferably it is 0-1900 parts.

ピッチの使用割合が過度に小さい場合は、得られる炭素
質無機材料中の炭化珪素成分が多くなり、炭素の持つ潤
滑性、非酸化性雰囲気中での高温特性が損なわれ、また
、その割合が過度に多い場合は、炭化珪素成分が少なく
なり、得られる炭素質無機材料の耐酸化性、耐摩耗性が
低下する。
If the ratio of pitch used is too small, the silicon carbide component in the resulting carbonaceous inorganic material will increase, which will impair the lubricity and high-temperature properties of carbon in a non-oxidizing atmosphere, and the ratio will decrease. If it is excessively large, the silicon carbide component will decrease, and the oxidation resistance and wear resistance of the obtained carbonaceous inorganic material will decrease.

上記反応の反応温度が過度に低いと、珪素原子と芳香族
炭素の結合が生成しにくくなり、反応温度が過度に高い
と、生成したランダム共重合体の分解及び高分子量化が
激しく起こり好ましくない。
If the reaction temperature of the above reaction is too low, it will be difficult to form bonds between silicon atoms and aromatic carbon, and if the reaction temperature is too high, the generated random copolymer will be undesirably decomposed and its molecular weight will become high. .

メソフェーズ多環状芳香族化合物if)は、例えば、石
油系又は石炭系ピッチを不活性ガス中で300〜500
°Cに加熱し、生成する軟質留分を除去しながら縮重合
することによって調製することができる。
The mesophase polycyclic aromatic compound if) is, for example, petroleum-based or coal-based pitch heated to 300 to 500% in an inert gas.
It can be prepared by heating to °C and conducting polycondensation while removing the soft fraction produced.

上記縮重合反応温度が過度に低いと縮合環の成長が充分
でなく、またその温度が過度に高いとコーキングにより
不溶、不融の生成物が生ずる。
If the temperature of the condensation polymerization reaction is too low, the growth of the condensed ring will not be sufficient, and if the temperature is too high, an insoluble or infusible product will be produced due to coking.

メソフェーズ多環状芳香族化合物it)は、融点が20
0〜400℃の範囲にあり、また、重量平均分子量が2
00〜10000である。
The mesophase polycyclic aromatic compound it) has a melting point of 20
The temperature range is from 0 to 400℃, and the weight average molecular weight is 2.
00 to 10000.

メソフェーズ多環状芳香族化合物ii)の中でも、20
〜100%の光学的異方性度を有し、2〜60%のキノ
リンネ溶分並びに30〜100%のベンゼン、トルエン
、キシレン又はテトラヒドロフランに対する不溶分を含
むものが、炭素質無機材料の機械的特性を向上させるた
めに特に好ましい。
Among the mesophase polycyclic aromatic compounds ii), 20
Carbonaceous inorganic materials that have an optical anisotropy of ~100% and contain 2-60% quinoline-soluble matter and 30-100% insoluble matter in benzene, toluene, xylene, or tetrahydrofuran are Particularly preferred for improving properties.

第1工程では、ランダム共重合体i)とメソフェーズ多
環状芳香族化合物ii)を200〜500°Cの範囲の
温度で加熱溶融及び/又は加熱反応し、珪素含有多環状
芳香族重合体を調製する。
In the first step, the random copolymer i) and the mesophase polycyclic aromatic compound ii) are melted and/or heated and reacted at a temperature in the range of 200 to 500°C to prepare a silicon-containing polycyclic aromatic polymer. do.

メソフェーズ多環状芳香族化合物ii)の使用割合はラ
ンダム共重合体i) 100部当たり5〜1900部で
あることが好ましく、5部未満では、生成物におけるメ
ソフェーズ含有量が不足するため、高温特性に優れた炭
素質無機材料が得られず、また、1900部より多い場
合は、珪素成分の不足のため、耐酸化性、耐摩耗性に優
れた炭素質無機材料が得られない。
The mesophase polycyclic aromatic compound ii) is preferably used in an amount of 5 to 1900 parts per 100 parts of the random copolymer i). If it is less than 5 parts, the mesophase content in the product will be insufficient, resulting in poor high-temperature properties. An excellent carbonaceous inorganic material cannot be obtained, and if the amount is more than 1900 parts, a carbonaceous inorganic material having excellent oxidation resistance and wear resistance cannot be obtained due to the lack of silicon component.

上記珪素含有多環状芳香族重合体の重量平均分子量は2
00〜11000で、融点が200〜400°Cである
The weight average molecular weight of the silicon-containing polycyclic aromatic polymer is 2
00-11000, and the melting point is 200-400°C.

第2工程: 第1工程で得られる珪素含有多環状芳香族重合体、又は
第1工程で得られる珪素含有多環状芳香族重合体とその
仮焼物微粉末との混合粉末を微粉砕し、通常の炭素材の
成形方法を用い成形することができる。なお、仮焼は8
00〜1300°Cの範囲の温度で行うことができる。
2nd step: The silicon-containing polycyclic aromatic polymer obtained in the 1st step or the mixed powder of the silicon-containing polycyclic aromatic polymer obtained in the 1st step and its calcined fine powder is finely pulverized. It can be molded using the following carbon material molding method. In addition, the calcination is 8
It can be carried out at temperatures ranging from 00 to 1300°C.

また、成形方法は、成形体の形状、大きさ、用途、生産
性等を考慮し、通常の炭素材の成形方法のうちから任意
に選択することが可能であり、例えば、同じ形のものを
生産性よく製造するには、乾式金型プレス法が、やや複
雑な形状の成形体を得るには等方静水圧加圧成形法(ラ
バープレス成形法)が、前記重合体を溶融し成形する方
法としてはホットプレス成形法、射出成形法、押出成形
法等が挙げられる。
In addition, the molding method can be arbitrarily selected from among the usual molding methods for carbon materials, taking into account the shape, size, purpose, productivity, etc. of the molded object. In order to manufacture with high productivity, the dry mold press method is used, and in order to obtain a molded product with a slightly complicated shape, the isostatic isostatic pressing method (rubber press molding method) melts and molds the polymer. Examples of the method include hot press molding, injection molding, and extrusion molding.

また、前記重合体とその仮焼物の混合物を成形する場合
、前記重合体とその仮焼物の使用割合は成形体の形状、
用途、コスト等を勘案して適宜決定することができる。
In addition, when molding a mixture of the polymer and its calcined product, the proportion of the polymer and its calcined product used depends on the shape of the molded product,
It can be determined as appropriate by taking into account usage, cost, etc.

第3工程: 上記成形体に必要により不融化処理を施す。Third step: The molded body is subjected to infusibility treatment if necessary.

代表的な不融化方法は上記成形体を酸化性雰囲気中で加
熱する方法である。不融化の温度は好ましくは50〜4
00°Cの範囲の温度である。不融化温度が過度に低い
とポリマーのはしかけが起こらず、また、この温度が過
度に高いとポリマーが燃焼する。
A typical method for infusibility is to heat the molded article in an oxidizing atmosphere. The infusibility temperature is preferably 50 to 4
The temperature is in the range of 00°C. If the infusibility temperature is too low, no polymerization will occur, and if this temperature is too high, the polymer will burn.

不融化の目的は、前記成形体を構成するポリマーを三次
元構造の不融・不溶のはしかけ状態にし、次工程の無機
化の際に熔融せず、成形体形状を保持させることにある
。不融化の際の酸化性雰囲気を構成するガスとしては、
空気、オゾン、酸素、塩素ガス、臭素ガス、アンモニア
ガス、及びこれらの混合ガスが挙げられる。
The purpose of infusibility is to make the polymer constituting the molded object into a three-dimensional structure that is infusible and insoluble, so that it does not melt during the next step of mineralization and maintains the shape of the molded object. The gases that make up the oxidizing atmosphere during infusibility are:
Examples include air, ozone, oxygen, chlorine gas, bromine gas, ammonia gas, and mixed gases thereof.

上記とは別の不融化方法として、前記成形体を酸化性雰
囲気あるいは非酸化性雰囲気で、必要に応じて低温加熱
しながら、T線照射、あるいは電子線照射して不融化す
る方法も採用することができる。
As an infusible method other than the above, a method is also adopted in which the molded body is irradiated with T-rays or electron beams in an oxidizing atmosphere or a non-oxidizing atmosphere, while being heated at a low temperature as necessary. be able to.

このγ線あるいは電子線を照射する目的は、前記成形体
を構成するポリマーを、さらに重合させることによって
、マトリックスが融解し、成形体形状を失うことを防ぐ
ことにある。
The purpose of this irradiation with gamma rays or electron beams is to further polymerize the polymer constituting the molded body, thereby preventing the matrix from melting and losing the shape of the molded body.

γ線あるいは電子線の照射線量は106〜IQIOラン
ドが適当である。
The appropriate dose of γ-rays or electron beams is 106 to IQIO lands.

照射は真空、不活性ガス雰囲気下、あるいは空気、オゾ
ン、酸素、塩素ガス、臭素ガス、アンモニアガス及びこ
れらの混合ガスのような酸化性ガス雰囲気で行うことが
できる。
Irradiation can be carried out in a vacuum, an inert gas atmosphere, or an oxidizing gas atmosphere such as air, ozone, oxygen, chlorine gas, bromine gas, ammonia gas, and mixtures thereof.

照射による不融化は室温で行うこともでき、必要であれ
ば50〜200℃の温度範囲で加熱しながら行うことに
よって不融化をより短時間で達成させることもできる。
Infusibility by irradiation can be carried out at room temperature, and if necessary, infusibility can be achieved in a shorter time by heating in the temperature range of 50 to 200°C.

不融化された成形体は、真空あるいは不活性ガス中で、
800〜3000°Cの範囲の温度で焼成し、無機化さ
れる。
The infusible molded body is heated in vacuum or inert gas,
It is mineralized by firing at a temperature in the range of 800-3000°C.

加熱過程において、約700℃から無機化が激しくなり
、約800°Cでほぼ無機化が完了するものと推定され
る。従って、焼成は、800°C以上の温度で行うこと
が好ましい。また、3000°Cより高い温度を得るに
は高価な装置を必要とするため3000°Cより高温で
の焼成は、コスト面からみて実際的でない。
It is estimated that during the heating process, mineralization becomes intense from about 700°C and is almost completed at about 800°C. Therefore, the firing is preferably performed at a temperature of 800°C or higher. Furthermore, since obtaining a temperature higher than 3000°C requires expensive equipment, firing at a higher temperature than 3000°C is not practical from a cost standpoint.

なお、本工程における無機化の昇温速度を極めて遅くす
ることや、成形体保形用の治具、パウダーヘッド等の保
形手段を用いること等により不融化工程を省略すること
もできるし、また第2工程の成形において、高温ホット
プレス法を用いることにより第3工程自体を省略するこ
ともできる。
Note that the infusibility step can be omitted by extremely slowing down the temperature increase rate for mineralization in this step, or by using a shape retaining means such as a jig or powder head for retaining the shape of the molded object. Furthermore, in the second step of molding, the third step itself can be omitted by using a high-temperature hot press method.

第4工程: 第3工程で得られた炭素質無機材料は必要により、前記
珪素含有多環状芳香族重合体の融液、溶液又はスラリー
を含浸後必要により不融化、焼成し、無機化することに
より炭素質無機材料を高密度化、高強度化することがで
きる。
Fourth step: The carbonaceous inorganic material obtained in the third step is impregnated with the melt, solution, or slurry of the silicon-containing polycyclic aromatic polymer, and then infusible, fired, and mineralized as necessary. This makes it possible to increase the density and strength of carbonaceous inorganic materials.

含浸は、珪素含有多環状芳香族重合体の融液、溶液又は
スラリーのいずれを用いてもさしつかえないが、微細な
開気孔への浸透を図るため、この炭素質無機材料に前記
重合体の溶液又はスラリーを含浸後減圧下で微細気孔へ
の浸透を促進後溶媒を留去しつつ昇温し、10〜500
 kg/cJに加圧することにより、前記重合体の融液
を気孔に充填させる。
Impregnation may be performed using any of a melt, solution, or slurry of the silicon-containing polycyclic aromatic polymer; Alternatively, after impregnating the slurry and promoting penetration into micropores under reduced pressure, the temperature is raised while distilling off the solvent, and the temperature is increased to 10 to 500%.
By applying pressure to kg/cJ, the pores are filled with the polymer melt.

上記の珪素含有多環状芳香族重合体を含浸した炭素質無
機材料は、第3工程と同様にして、不融化し、焼成し、
無機化することができる。この操作を2〜10回繰り返
すことにより高密度、高強度な炭素質無機材料を得るこ
とができる。
The carbonaceous inorganic material impregnated with the silicon-containing polycyclic aromatic polymer is made infusible and fired in the same manner as in the third step,
Can be mineralized. By repeating this operation 2 to 10 times, a high-density, high-strength carbonaceous inorganic material can be obtained.

尚、前記構成成分ii)におけるSi、C,Oの存在状
態は、第3工程及び第4工程における無機化温度により
制御できる。
The presence of Si, C, and O in the component ii) can be controlled by the mineralization temperature in the third and fourth steps.

実質的にSi、C10からなる非晶質を得たい場合、無
機化温度を800〜1000 ’Cとすることが好適で
あり、実質的にβ−SiC及び非晶質のSin、(ただ
し、O<x≦2)を得たい場合、1700°C以上の温
度が適している。
When it is desired to obtain an amorphous substance consisting essentially of Si and C10, it is preferable to set the mineralization temperature to 800 to 1000'C, and to obtain an amorphous substance consisting essentially of β-SiC and amorphous Sin (however, O <x≦2), a temperature of 1700°C or higher is suitable.

また、各集合体の混合系を望む場合、上記中間温度より
適宜選択することができる。
Further, when a mixed system of each aggregate is desired, the temperature can be appropriately selected from the above intermediate temperatures.

また、本発明の炭素質複合材料中の酸素量は、例えば第
3工程、第4工程における不融化条件により制御するこ
とができる。
Further, the amount of oxygen in the carbonaceous composite material of the present invention can be controlled, for example, by the infusibility conditions in the third step and the fourth step.

(発明の効果) 本発明の炭素質無機材料は、炭素中に非常に均一に分散
、一体化した炭化珪素成分を含む。この成分の存在が、
低温における炭素の微結晶化の促進、炭素の酸化による
消耗の抑制、硬度の向上をもたらしている。
(Effects of the Invention) The carbonaceous inorganic material of the present invention contains a silicon carbide component that is very uniformly dispersed and integrated in carbon. The presence of this component
It promotes carbon microcrystalization at low temperatures, suppresses consumption due to carbon oxidation, and improves hardness.

従って、この炭素質無機材料は、機械的物性、耐酸化性
、耐摩耗性に優れ、各種のブレーキ類、耐熱構造材料と
して優れたものである。
Therefore, this carbonaceous inorganic material has excellent mechanical properties, oxidation resistance, and wear resistance, and is excellent as a material for various brakes and heat-resistant structures.

(実施例) 以下実施例によって本発明を説明する。(Example) The present invention will be explained below with reference to Examples.

参考例1(ポリマーIの製法) 51の三ロフラスコに無水キシレン2.5I!、及びナ
トリウム400gを入れ、窒素ガス気流下でキシレンの
沸点まで加熱し、ジメチルジクロロシランllを1時間
で滴下した。滴下終了後、10時間加熱還流し沈澱物を
生成させた。沈澱を濾過し、メタノールついで水で洗浄
して、白色粉末のポリジメチルシラン420gを得た。
Reference Example 1 (Production method of Polymer I) 2.5 I of anhydrous xylene in a 51-meter flask! , and 400 g of sodium were added, heated under a nitrogen gas stream to the boiling point of xylene, and 1 liter of dimethyldichlorosilane was added dropwise over 1 hour. After the dropwise addition was completed, the mixture was heated under reflux for 10 hours to form a precipitate. The precipitate was filtered and washed with methanol and then water to obtain 420 g of white powder polydimethylsilane.

このポリジメチルシラン400gを、ガス導入管、攪拌
機、冷却器及び留出管を備えた31の三ロフラスコに仕
込み、攪拌しながら50−7分の窒素気流下に420°
Cで加熱処理して、留出受器に350gの無色透明な少
し粘性のある液体を得た。
400 g of this polydimethylsilane was charged into a 31-hole flask equipped with a gas inlet tube, a stirrer, a condenser, and a distillation tube, and heated at 420 degrees under a nitrogen stream for 50-7 minutes while stirring.
C. to obtain 350 g of a colorless and transparent slightly viscous liquid in a distillation receiver.

この液体の数平均分子量は蒸気圧浸透法で測定したとこ
ろ470であった。
The number average molecular weight of this liquid was 470 as measured by vapor pressure osmosis.

この物質の赤外線吸収スペクトルを測定したところ、6
50〜900cm−’と1250C11−’にSiCH
sの吸収、2100C11−’にSi−Hの吸収、10
1020C1’付近と1355cm−’にSi−CHl
−3iの吸収、2900cm−1と2950cm−’に
C−Hの吸収が認められ、またこの物質の遠赤外線吸収
スペクトルを測定したところ、380C11−’にS 
i−S iの吸収が認められることから、得られた液状
物質は、主として(Si  CHl)結合単位及び(s
l−3i)結合単位からなり、珪素の側鎖に水素原子及
びメチル基を有する有機珪素重合体であることが判明し
た。
When the infrared absorption spectrum of this substance was measured, it was found that 6
SiCH at 50~900cm-' and 1250C11-'
absorption of s, absorption of Si-H at 2100C11-', 10
Si-CHl near 1020C1' and 1355cm-'
-3i absorption, C-H absorption at 2900 cm-1 and 2950 cm-', and when the far-infrared absorption spectrum of this substance was measured, S at 380C11-'
Since absorption of i-Si is observed, the obtained liquid substance mainly consists of (Si CHl) bond units and (s
1-3i) It was found to be an organosilicon polymer consisting of bonding units and having a hydrogen atom and a methyl group in the silicon side chain.

核磁気共鳴分析及び赤外線吸収分析の測定結果から、こ
の有機珪素重合体は(Si  CH3)結合単位の全数
対(Si−3i)結合単位の全数の比率がほぼ1:3で
ある重合体であることが確認された。
From the measurement results of nuclear magnetic resonance analysis and infrared absorption analysis, this organosilicon polymer is a polymer in which the ratio of the total number of (Si CH3) bond units to the total number of (Si-3i) bond units is approximately 1:3. This was confirmed.

上記有機珪素重合体300gをエタノールで処理して低
分子量物を除去して、数平均分子量が1200の重合体
40gを得た。
300 g of the above organosilicon polymer was treated with ethanol to remove low molecular weight substances to obtain 40 g of a polymer having a number average molecular weight of 1200.

この物質の赤外線吸収スペクトルを測定したところ、上
記と同様の吸収ピークが認められ、この物質は主として
(S 1−CH,)結合単位及び(Si−3t)結合単
位からなり、珪素の側鎖に水素原子及びメチル基を有す
る有機珪素重合体であることが判明した。
When we measured the infrared absorption spectrum of this substance, absorption peaks similar to those above were observed, and this substance mainly consists of (S 1-CH,) bond units and (Si-3t) bond units, and It turned out to be an organosilicon polymer containing hydrogen atoms and methyl groups.

核磁気共鳴分析及び赤外線吸収分析の測定結果から、こ
の有機珪素重合体は(Si  CHよ)結合単位の全数
対(33−3i)結合単位の全数の比率がほぼ7:1で
ある重合体であることが確認された。
From the measurement results of nuclear magnetic resonance analysis and infrared absorption analysis, this organosilicon polymer is a polymer in which the ratio of the total number of (Si CH) bonding units to the total number of (33-3i) bonding units is approximately 7:1. It was confirmed that there is.

一方、石油留分のうち、軽油以上の高沸点物をシリカ・
アルミナ系分解触媒の存在下、500 ’Cの温度で流
動接触分解・精密を行い、その塔底より残渣を得た。以
下、この残渣をFCCスラリーオイルと呼ぶ。
On the other hand, among petroleum fractions, substances with a boiling point higher than that of light oil are removed using silica.
Fluid catalytic cracking and refinement were carried out at a temperature of 500'C in the presence of an alumina-based cracking catalyst, and a residue was obtained from the bottom of the column. Hereinafter, this residue will be referred to as FCC slurry oil.

このFCCスラリーオイルは、元素分析の結果、炭素原
子対水素原子の原子比(C/H)が0.75で、核磁気
共鳴分析による芳香炭素率が0.55であった。
As a result of elemental analysis, this FCC slurry oil had an atomic ratio of carbon atoms to hydrogen atoms (C/H) of 0.75, and an aromatic carbon ratio of 0.55 as determined by nuclear magnetic resonance analysis.

上記FCCスラリーオイル100gを窒素ガス気流下4
20°Cに加熱し、同温度における留出分を留去後、残
渣を150″Cにて熱時濾過を行い、同温度における不
融部を除去し、軽質骨除去ピッチ57gを得た。
100g of the above FCC slurry oil was added under a stream of nitrogen gas.
After heating to 20° C. and distilling off the distillate at the same temperature, the residue was filtered while hot at 150″C to remove the infusible portion at the same temperature to obtain 57 g of light bone-removed pitch.

この軽質骨除去ピッチは60%のキシレン不溶分を含ん
でいた。
This light bone removal pitch contained 60% xylene insolubles.

この軽質骨除去ピッチ57gに先に合成した有機珪素重
合体25g及びキシレン20dを加え、攪拌しながら昇
温し、キシレンを留去後、400℃で6時間反応させ4
3gのランダム共重合体を得た。
25 g of the organosilicon polymer synthesized earlier and 20 d of xylene were added to 57 g of this light bone-removed pitch, the temperature was raised while stirring, and after distilling off the xylene, the reaction was carried out at 400°C for 6 hours.
3 g of random copolymer was obtained.

この反応性成物は赤外線吸収スペクトル測定の結果、有
機珪素重合体中に存在するSi−H結合(IR:210
0C11−’)の減少、及び新たなSi−C(ベンゼン
環の炭素)結合(IR:1135c「1)の生成が認め
られることより有機珪素重合体の珪素原子の一部が多環
状芳香族環と直接結合した部分を有するランダム共重合
体であることがわかった。また、この共重合体は、キシ
レン不溶部を含まず重量平均分子量は1400、融点は
265℃であった。
As a result of infrared absorption spectroscopy, this reactive component was found to have Si-H bonds (IR: 210
0C11-') and the formation of new Si-C (benzene ring carbon) bonds (IR: 1135c "1)" indicate that some of the silicon atoms in the organosilicon polymer are polycyclic aromatic rings. The copolymer was found to be a random copolymer having a portion directly bonded to the copolymer.This copolymer did not contain any xylene-insoluble portions, had a weight average molecular weight of 1400, and a melting point of 265°C.

これを、300″Cで加熱溶融静置し、比重差により軽
質部分を除去した残部40gを得た。これをポリマー(
a)と呼ぶ。
This was heated and melted at 300"C and left to stand, and the light portion was removed due to the difference in specific gravity to obtain 40 g of the remainder.
It is called a).

これと並行して、FCCスラリーオイル400gを、窒
素ガス気流下450°Cに加熱し、同温度における留出
分を留去後、残渣を200°Cにて熱時濾過を行い、同
温度における不融部を除去し、軽質骨除去ピッチ180
gを得た。得られた軽質骨除去ピッチ180gを窒素気
流下、反応により生成する軽質分を除去しながら400
°Cで8時間縮重合を行い、熱処理ピッチ80.3 g
を得た。
In parallel, 400 g of FCC slurry oil was heated to 450°C under a nitrogen gas flow, and after distilling off the distillate at the same temperature, the residue was filtered hot at 200°C. Remove infusible part and remove light bone pitch 180
I got g. 180 g of the obtained light bone-removed pitch was heated under a nitrogen stream for 400 g while removing the light components produced by the reaction.
Polycondensation was carried out at °C for 8 hours, yielding 80.3 g of heat-treated pitch.
I got it.

この熱処理ピッチは融点310℃、キシレン不溶分97
%、キノリンネ溶分20%を含有しており、研磨面の偏
光顕微鏡観察による光学的異方性が95%のメソフェー
ズピッチであった。
This heat-treated pitch has a melting point of 310°C and a xylene insoluble content of 97%.
% and 20% of quinoline solubles, and the optical anisotropy of the polished surface was 95% when observed with a polarizing microscope.

これを再び、350℃に加熱溶融静置し、比重差により
軽質分を分離除去し、残部80gを得た。
This was heated and melted at 350° C. and left to stand again, and light components were separated and removed based on the difference in specific gravity to obtain 80 g of the remainder.

これと、ポリマー(a)40gを混合し、窒素雰囲気下
、350°Cで一時間溶融加熱し、均一な状態にある珪
素含有多環状芳香族重合体を得た。
This and 40 g of polymer (a) were mixed and melted and heated at 350° C. for one hour in a nitrogen atmosphere to obtain a silicon-containing polycyclic aromatic polymer in a uniform state.

この重合体は、融点が290°Cで、70%のキシレン
不溶分を含んでいた。
This polymer had a melting point of 290°C and contained 70% xylene insolubles.

参考例2(ポリマー■の製法) 参考例1で得た有機珪素重合体50gに軽質骨除去ピッ
チ50gを加え、420°Cで4時間反応させ48gの
ランダム共重合体を得た。
Reference Example 2 (Production of Polymer ①) 50 g of light bone-removed pitch was added to 50 g of the organosilicon polymer obtained in Reference Example 1, and the mixture was reacted at 420° C. for 4 hours to obtain 48 g of a random copolymer.

これと並行して、軽質骨除去ピッチを430 ’Cで4
時間反応させメソフェーズピッチを得た。
In parallel, the light bone removal pitch was increased to 4 at 430'C.
Mesophase pitch was obtained by time reaction.

等重量の上記ランダム共重合体とメソフェーズピッチを
参考例1と同様にして混合、溶融し均一な状態にある珪
素含有多環状芳香族重合体を得た。
Equal weights of the random copolymer and mesophase pitch were mixed and melted in the same manner as in Reference Example 1 to obtain a silicon-containing polycyclic aromatic polymer in a uniform state.

実施例1 参考例1で得たポリマーIの粉末を窒素気流中で800
″Cに昇温し、仮焼体を調製し、これを微粉砕して仮焼
体粉末を得た。この仮焼体粉末に等重量のポリマーIの
粉末を加え、湿式混合して得た造粒粉を、350°C1
100kg/cdでホットプレスし、直径7 cmの円
板状成形体を得た。この成形体を炭素粉末のパウダーヘ
ッド中に埋め保形し、窒素気流中で5℃/hの速度で8
00°Cまで昇温後、さらに1300°Cまで昇温し、
無機化した。
Example 1 The powder of Polymer I obtained in Reference Example 1 was heated to 800% in a nitrogen stream.
The temperature was raised to "C" to prepare a calcined body, which was finely pulverized to obtain a calcined body powder.An equal weight of Polymer I powder was added to this calcined body powder and wet-mixed. Granulated powder at 350°C1
Hot pressing was performed at 100 kg/cd to obtain a disc-shaped molded product with a diameter of 7 cm. This molded body was buried in a powder head of carbon powder to maintain its shape, and was heated at a rate of 5°C/h in a nitrogen stream for 8 hours.
After raising the temperature to 00°C, further raising the temperature to 1300°C,
Mineralized.

得られた炭素質無機材料の嵩密度は1.50 g /c
fflであった。
The bulk density of the obtained carbonaceous inorganic material was 1.50 g/c
It was ffl.

この炭素質無機材料をポリマー■の50%キシレンスラ
リーに浸し、減圧下キシレンを留去しながら350℃に
昇温、その後100 kg/c+flに加圧含浸した後
、空気中で5°C/hの速度で300℃まで昇温し、不
融化した後1300°Cで無機化した。この含浸、無機
化の操作をさらに3回繰り返し嵩密度1.95g/c+
1の材料を得た。この材料の曲げ強度は21kg/m”
であった、さらにこの炭素質無機材料をアルゴン中、2
500℃で焼成したところ、嵩密度1.99 g /c
d、曲げ強度は24kg/IIIIIzニ向上した。ま
た、窒素中、1500°Cでの曲げ強度も25kg/m
+s”であった。
This carbonaceous inorganic material was immersed in a 50% xylene slurry of polymer (1), heated to 350°C while distilling off the xylene under reduced pressure, then impregnated under pressure to 100 kg/c+fl, and then heated at 5°C/h in air. The temperature was raised to 300°C at a rate of 300°C to make it infusible, and then mineralized at 1300°C. This impregnation and mineralization operation was repeated three more times, with a bulk density of 1.95 g/c+
1 material was obtained. The bending strength of this material is 21kg/m”
This carbonaceous inorganic material was further heated in argon for 2
When fired at 500℃, the bulk density was 1.99 g/c
d. The bending strength was improved by 24kg/IIIz. In addition, the bending strength at 1500°C in nitrogen is 25 kg/m.
+s”.

実施例2 ポリマーIを用い、実施例1と同様にして得た仮焼体粉
末70%に参考例2で得たポリマーHの粉末30%を加
え、実施例1と同様にして成形、無機化して嵩密度1.
67 g /cdの炭素質無機材料を得た。
Example 2 Using Polymer I, 30% of the powder of Polymer H obtained in Reference Example 2 was added to 70% of the calcined powder obtained in the same manner as in Example 1, and the mixture was molded and mineralized in the same manner as in Example 1. Bulk density 1.
67 g/cd of carbonaceous inorganic material was obtained.

実施例1と同様に、この材料にポリマー■の50%キシ
レンスラリーを含浸し、無機化し、さらにこの含浸、無
機化を3回繰り返し嵩密度2.01g/c4の炭素質無
機材料を得た。この材料の曲げ強度は23kg/mm”
であり、このものを空気中、600°Cに24時間保持
した後でも重量減少、強度低下は認められなかった。
In the same manner as in Example 1, this material was impregnated with a 50% xylene slurry of polymer (1) and mineralized, and this impregnation and mineralization were repeated three times to obtain a carbonaceous inorganic material having a bulk density of 2.01 g/c4. The bending strength of this material is 23kg/mm”
Even after this product was kept at 600°C in air for 24 hours, no weight loss or strength reduction was observed.

比較例1 無荷重時の嵩密度が0.15 g /c4の人造黒鉛粉
粒体80%に参考例1の中間生成物であるメソフェーズ
ピッチ20%を加え、実施例1と同様にして成形、無機
化を行い嵩密度カ月、66g/cdの炭素材を得た。
Comparative Example 1 20% of mesophase pitch, which is the intermediate product of Reference Example 1, was added to 80% of artificial graphite powder having a bulk density of 0.15 g/c4 at the time of no load, and molded in the same manner as in Example 1. Mineralization was performed to obtain a carbon material with a bulk density of 66 g/cd.

この炭素材にメソフェーズピッチの含浸、無機化を実施
例1と同様にして4回繰り返し嵩密度が1.92g/c
dの炭素材を得た。
This carbon material was impregnated with mesophase pitch and mineralized four times in the same manner as in Example 1 until the bulk density was 1.92 g/c.
A carbon material of d was obtained.

この炭素材の曲げ強度は5.0kg/ma+”であり、
このものを空気中、600℃に24時間保持したところ
、20%の重量減少が認められ、多孔質化した。
The bending strength of this carbon material is 5.0 kg/ma+",
When this material was kept at 600° C. in air for 24 hours, a 20% weight loss was observed and it became porous.

比較例2 比較例1で得た嵩密度が1.66 g /c+dの炭素
材に金属珪素粉をまぶし、1500 ’Cで溶融含浸し
、反応焼結により炭素−炭化珪素複合材を得た。得られ
た材料の曲げ強度は8.2kg/mm”と向上したが、
窒素中、1500°Cでの曲げ強度を測定したところ、
未反応珪素の溶融により変形が生じ、曲げ強度は3.0
 kg/m”に低下した。
Comparative Example 2 The carbon material obtained in Comparative Example 1 with a bulk density of 1.66 g/c+d was sprinkled with metal silicon powder, melted and impregnated at 1500'C, and subjected to reaction sintering to obtain a carbon-silicon carbide composite material. The bending strength of the obtained material was improved to 8.2 kg/mm, but
When the bending strength was measured at 1500°C in nitrogen,
Deformation occurs due to melting of unreacted silicon, and the bending strength is 3.0
kg/m”.

Claims (1)

【特許請求の範囲】  珪素含有多環状芳香族重合体から得られる無機材料で
あって、その構成成分が、 i)該重合体を構成するメソフェーズ状態にある多環状
芳香族化合物から導かれる結晶質炭素、又は結晶質炭素
と非晶質炭素、 ii)該重合体を構成する光学的等方性の多環状芳香族
化合物から導かれる、無配向状態の結晶質炭素及び/又
は非晶質炭素、及び iii)Si、C及びOから実質的になる非晶質相、及
び/又は粒径が500Å以下の実質的にβ−SiCから
なる結晶質超微粒子と非晶質のSiO_x(0<x≦2
)とからなる集合体であり、 構成元素の割合がSi;30〜70重量%、C;20〜
60重量%及びO;0.5〜10重量%であるSi−C
−O物質 よりなることを特徴とする炭素質無機材料。
[Scope of Claims] An inorganic material obtained from a silicon-containing polycyclic aromatic polymer, the constituent components of which are: i) a crystalline material derived from a polycyclic aromatic compound in a mesophase state constituting the polymer; carbon, or crystalline carbon and amorphous carbon; ii) non-oriented crystalline carbon and/or amorphous carbon derived from an optically isotropic polycyclic aromatic compound constituting the polymer; and iii) an amorphous phase consisting essentially of Si, C and O, and/or crystalline ultrafine particles consisting essentially of β-SiC with a particle size of 500 Å or less and amorphous SiO_x (0<x≦ 2
), and the proportions of the constituent elements are Si: 30-70% by weight, C: 20-70% by weight.
Si-C which is 60% by weight and O; 0.5-10% by weight
A carbonaceous inorganic material characterized by comprising an -O substance.
JP1036095A 1989-02-17 1989-02-17 Carbonaceous inorganic material Expired - Lifetime JPH0755859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1036095A JPH0755859B2 (en) 1989-02-17 1989-02-17 Carbonaceous inorganic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1036095A JPH0755859B2 (en) 1989-02-17 1989-02-17 Carbonaceous inorganic material

Publications (2)

Publication Number Publication Date
JPH02217358A true JPH02217358A (en) 1990-08-30
JPH0755859B2 JPH0755859B2 (en) 1995-06-14

Family

ID=12460204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1036095A Expired - Lifetime JPH0755859B2 (en) 1989-02-17 1989-02-17 Carbonaceous inorganic material

Country Status (1)

Country Link
JP (1) JPH0755859B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229848A (en) * 2006-02-28 2007-09-13 Saitama Univ MOLDED BODY AND GRINDING WHEEL CONTAINING SiOx POWDER, AND GRINDING METHOD USING THE SAME

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180241076A1 (en) * 2015-08-04 2018-08-23 Mitsui Chemicals, Inc. Negative electrode for lithium ion secondary battery, lithium ion secondary battery comprising same, and method for producing negative electrode for lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229848A (en) * 2006-02-28 2007-09-13 Saitama Univ MOLDED BODY AND GRINDING WHEEL CONTAINING SiOx POWDER, AND GRINDING METHOD USING THE SAME

Also Published As

Publication number Publication date
JPH0755859B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
JPH02217358A (en) Carbonaceous inorganic material
JP2547108B2 (en) Fiber-reinforced carbonaceous composite material
JP2547109B2 (en) Fiber-reinforced carbon composite material
JPH0755860B2 (en) Carbonaceous inorganic material
JP2792180B2 (en) brake
JP2547110B2 (en) Hybrid fiber reinforced carbonaceous composite material
JPH03112868A (en) Fiber-reinforced carbonaceous composite material
JPH0764653B2 (en) Fiber reinforced carbon material
JPH0726166B2 (en) Inorganic fiber reinforced metal composite material
JP2547113B2 (en) Hybrid fiber reinforced carbonaceous composite material
JPH07103493B2 (en) High-strength, high-modulus inorganic fiber and method for producing the same
JP2547112B2 (en) Hybrid fiber reinforced carbonaceous composite material
JPH03109264A (en) Fiber reinforced carbonaceous composite material
JP2559637B2 (en) Heat resistant fiber reinforced inorganic composite material
JPH038768A (en) Fiber-reinforced carbonaceous composite material
JPH02289463A (en) Fiber-reinforced carbon material
JP2547111B2 (en) Heat resistant fiber reinforced inorganic composite material
JPH0757713B2 (en) Fiber-reinforced carbonaceous composite material
JPH0757710B2 (en) Carbon-based inorganic fiber reinforced ceramics composite material
JPH07247358A (en) Metal-containing polycyclic aromatic polymer and its production
JPH0781209B2 (en) High-strength, high-modulus inorganic fiber and method for producing the same
JPH0725891B2 (en) Metal-containing polycyclic aromatic polymer and method for producing the same
JPH0696641B2 (en) Metal-containing polycyclic aromatic polymer and method for producing the same
JPH0759627B2 (en) Method for producing silicon-containing polycyclic aromatic polymer
JPH02311529A (en) Metal-containing aromatic polycyclic polymer and its preparation