JPH0755827A - Current meter - Google Patents

Current meter

Info

Publication number
JPH0755827A
JPH0755827A JP20380293A JP20380293A JPH0755827A JP H0755827 A JPH0755827 A JP H0755827A JP 20380293 A JP20380293 A JP 20380293A JP 20380293 A JP20380293 A JP 20380293A JP H0755827 A JPH0755827 A JP H0755827A
Authority
JP
Japan
Prior art keywords
laser
light
fluid
measurement
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20380293A
Other languages
Japanese (ja)
Inventor
Osamu Kawakami
修 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20380293A priority Critical patent/JPH0755827A/en
Publication of JPH0755827A publication Critical patent/JPH0755827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To provide a small current meter excellent in mobility and portability by which the current can be measured accurately and easily. CONSTITUTION:A laser beam emitted from a laser light source 11 is split into two and one of them is further split into two to produce three laser beams 15a, 15b, 15c which are condensed substantially linearly, at a predetermined interval, within a measuring region 4 by means of an optical system comprising spectrometers 13a, 13b, a reflector 14, a lens 16, etc. The current meter also comprises a photoelectric conversion element 18 for receiving the light scattered on microparticles 6 contained in a fluid 5 to be measured flowing through the vicinity of each focus of three laser beams in the measuring region 4, and a signal processing circuit 19 for detecting a normal signal based on the sequence and time interval of output pulses from the photoelectric conversion element 18 and determining the velocity of the fluid 5 based on the time interval of pulse and the distance between focuses of laser beams.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ光を用いて被測
定流体中の微粒子の速度を測定することで、被測定流体
の流速を測定するように構成した流速計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a velocity meter constructed to measure the flow velocity of a fluid to be measured by measuring the velocity of fine particles in the fluid to be measured using laser light.

【0002】[0002]

【従来の技術】従来から流速を測定する手段としてピト
ー管や熱線流速計などが用いられており、最近ではガス
レーザや半導体レーザを光源とするレーザ流速計が開発
されている。
2. Description of the Related Art Conventionally, a Pitot tube, a hot-wire anemometer or the like has been used as a means for measuring a flow velocity, and recently, a laser anemometer using a gas laser or a semiconductor laser as a light source has been developed.

【0003】このようなレーザ光を利用した従来の流速
計を図6に示す。この流速計はレーザ光が発振されるガ
スレーザ1を有し、このガスレーザ1からのレーザ光
は、ビームスプリッタ2により2つの平行なレーザ光に
分割させられる。このビームスプリッタ2からのレーザ
光は、焦点レンズ3により集光され、測定領域4に干渉
縞を形成する。この測定領域4に流れる被測定流体5に
含まれている微粒子6から反射してくる散乱光の方向は
ミラー7により変えられ、この散乱光はレンズ8により
集光され、この集光された散乱光は光電子倍増管9にて
受光され、散乱光に応じた電気信号を出力する。この光
電子倍増管9の出力は信号処理部10により演算され
る。
A conventional anemometer utilizing such laser light is shown in FIG. This anemometer has a gas laser 1 that oscillates a laser beam, and the laser beam from this gas laser 1 is split by a beam splitter 2 into two parallel laser beams. The laser light from the beam splitter 2 is condensed by the focus lens 3 and forms interference fringes in the measurement area 4. The direction of the scattered light reflected from the fine particles 6 contained in the fluid to be measured 5 flowing in the measurement region 4 is changed by the mirror 7, and this scattered light is condensed by the lens 8 and the condensed scattering is carried out. The light is received by the photomultiplier tube 9 and outputs an electric signal according to the scattered light. The output of the photomultiplier tube 9 is calculated by the signal processing unit 10.

【0004】このように構成された従来の流速計は、ビ
ームスプリッタ2で分割された等強度、かつ同位相の2
つのレーザ光によって測定領域4に干渉縞が形成され
る。そしてこの測定領域4に被測定流体5を流すことに
より、被測定流体5中に存在する微粒子6も同じ速度で
測定領域4、すなわち干渉縞の中を通過する。この干渉
縞を通過する際に、微粒子6は干渉縞に応じて強弱に変
化する散乱光を射出する。この散乱光はレンズ8を通し
て光電子倍増管9上に集光する。そして、光電子倍増管
9は強弱に変化する散乱光に応じた信号、すなわち、ド
ップラー信号を信号処理部10に出力する。この信号処
理部10においては、既知である干渉縞の間隔と上記ド
ップラー信号の時間に基づいて微粒子6の速度を算出す
る。この算出された速度は微粒子6と等速度で流れる被
測定流体5の流速でもあるため、被測定流体5の流れ方
向に予め干渉縞が直角になるように測定領域4を配置す
ることで、被測定流体5の流速を測定することができ
る。
The conventional anemometer constructed in this way is divided into two beams of equal intensity and the same phase by the beam splitter 2.
An interference fringe is formed in the measurement area 4 by the two laser beams. By flowing the fluid to be measured 5 into the measurement area 4, the fine particles 6 existing in the fluid to be measured 5 also pass through the measurement area 4, that is, the interference fringes at the same speed. When passing through the interference fringes, the fine particles 6 emit scattered light that changes in intensity depending on the interference fringes. The scattered light is condensed on the photomultiplier tube 9 through the lens 8. Then, the photomultiplier tube 9 outputs a signal corresponding to the scattered light that changes strongly, that is, a Doppler signal to the signal processing unit 10. In the signal processing unit 10, the velocity of the fine particles 6 is calculated based on the known interval of interference fringes and the time of the Doppler signal. Since the calculated velocity is also the flow velocity of the fluid to be measured 5 that flows at the same velocity as the fine particles 6, by arranging the measurement region 4 in advance so that the interference fringes are perpendicular to the flow direction of the fluid to be measured 5, The flow velocity of the measurement fluid 5 can be measured.

【0005】上述のような従来のレーザドップラー流速
計の光学系は、後方散乱方式であるため、光電子倍増管
9で受光出切る光量が、一般に使用されている前方散乱
方式の光量の100分の1以下である。それ故に、出力
の大きなアルゴンイオンレーザが使用されており、装置
全体が大型となり、測定の機動性に劣り、さらに携帯性
にも欠ける問題点がある。
Since the optical system of the conventional laser Doppler velocimeter as described above is of the backscattering type, the amount of light received and emitted by the photomultiplier tube 9 is 1/100 of the amount of light of the commonly used forward scattering type. It is the following. Therefore, an argon ion laser having a large output is used, the entire apparatus becomes large, the mobility of the measurement is poor, and the portability is poor.

【0006】このような問題点を解決するために、ガス
レーザ1に代えて小型の赤色半導体レーザを、光電子倍
増管9に代えて小型の半導体受光素子、例えばアバラン
シェフォトダイオードの使用が考えられている。しかし
ながら、上記赤色半導体レーザは、ガスレーザ1に比較
して出力が格段に低く、またアバランシェフォトダイオ
ードの増幅率は光電子倍増管9の1000分の1以下で
あるので、現状のレーザドップラー流速計としては動作
せず、そのまま実現し得ない。
In order to solve such a problem, it is considered to use a small red semiconductor laser in place of the gas laser 1 and a small semiconductor light receiving element such as an avalanche photodiode in place of the photomultiplier tube 9. . However, the output of the red semiconductor laser is much lower than that of the gas laser 1, and the amplification factor of the avalanche photodiode is 1/1000 or less of that of the photomultiplier tube 9. Therefore, as the current laser Doppler velocimeter, It does not work and cannot be realized as it is.

【0007】[0007]

【発明が解決しようとする課題】上記のごとく、従来の
レーザドップラー流速計では出力を大きく取るために出
力の大きなアルゴンイオンレーザが使用されており、装
置全体が大型となり、測定の機動性に劣り、さらに携帯
性にも欠ける問題点がある。
As described above, the conventional laser Doppler velocimeter uses an argon ion laser having a large output in order to obtain a large output, and the entire apparatus becomes large, resulting in poor measurement mobility. However, there is a problem that it is not portable.

【0008】このような問題点を解決するために、小型
の赤色半導体レーザおよび小型の半導体受光素子、例え
ばアバランシェフォトダイオードの使用が考えられてい
るが、赤色半導体レーザは、ガスレーザに比較して出力
が格段に低く、またアバランシェフォトダイオードの増
幅率は光電子倍増管9の1000分の1以下であるの
で、現状のレーザドップラー流速計としては動作せず、
そのまま実現し得ない。
In order to solve such a problem, use of a small red semiconductor laser and a small semiconductor light receiving element, such as an avalanche photodiode, has been considered, but the red semiconductor laser outputs as compared with a gas laser. Is extremely low, and the amplification factor of the avalanche photodiode is less than 1/1000 of that of the photomultiplier tube 9, so it does not operate as the current laser Doppler anemometer.
It cannot be realized as it is.

【0009】本発明は、上記のような状況に鑑みてなさ
れたもので、その目的とするところは多くの反射光量が
得られ、小型で測定の機動性および携帯性に優れ、正確
な流速測定が簡単で容易に行える流速計を提供すること
にある。
The present invention has been made in view of the above situation, and its object is to obtain a large amount of reflected light, to be small in size, to be excellent in maneuverability and portability for measurement, and to accurately measure a flow velocity. The object is to provide a velocity meter that is simple and easy to perform.

【0010】[0010]

【課題を解決するための手段】本発明の流速計は、レー
ザ光源と、このレーザ光源から照射されるレーザ光を2
分割し、その一方のレーザ光をさらに2分割して得られ
る3つのレーザ光を測定領域内に略直線的に所定間隔で
集光させる光学系と、前記測定領域内に集光させられた
3つのレーザ光の各焦点近傍を通過する被測定流体から
順次散乱する散乱光を受光するための受光素子と、この
受光素子からのそれぞれの出力パルスの出力順と該パル
スの時間間隔とから正常な信号と判断されるものを検出
し、前記パルスの時間間隔と前記レーザ光の焦点間距離
とに基づいて前記被測定流体の流速を求める演算手段と
を備えることを特徴とするものである。
A velocity meter according to the present invention comprises a laser light source and a laser beam emitted from the laser light source.
An optical system that splits the three laser beams obtained by splitting one of the laser beams into two, and linearly focuses the laser beams in the measurement region at a predetermined interval, and the optical system that converges the laser beams in the measurement region. One of the light receiving elements for receiving scattered light sequentially scattered from the fluid to be measured passing near each focus of one laser beam, the output sequence of each output pulse from this light receiving element, and the time interval of the pulses It is characterized by further comprising: arithmetic means for detecting what is determined as a signal and for obtaining the flow velocity of the fluid to be measured based on the time interval of the pulse and the focal length of the laser light.

【0011】[0011]

【作用】上記のように構成された流速計によれば、レー
ザ光源からのレーザ光を測定領域を形成する3つの焦点
に集光させることにより、干渉縞を形成する従来のレー
ザドップラー流速計より多くの光が受光でき、信号処理
に十分なS/N比が得られる。またレーザ光源と受光素
子のいずれにも半導体素子を使用できるに十分な光量で
あることから、流速計を小型に構成することができ、機
動性が増し、測定のための設定も容易となり、正確な測
定が簡単かつ容易にできる他、長寿命で保守も容易とな
る。
According to the anemometer constructed as described above, the laser beam from the laser light source is focused on the three focal points forming the measurement area, and thus the laser doppler anemometer forming the interference fringes is formed. A large amount of light can be received, and an S / N ratio sufficient for signal processing can be obtained. In addition, since the amount of light is sufficient to use a semiconductor element for both the laser light source and the light receiving element, the anemometer can be configured in a small size, which increases maneuverability and facilitates setting for measurement. In addition to simple and easy measurement, it has a long service life and easy maintenance.

【0012】[0012]

【実施例】以下、本発明の流速計の一実施例について図
面を参照して説明する。図1は、本発明の流速計の一実
施例に係る概略構成図であり、従来の図6と同一部分あ
るいは相当する部分には同一符号を付して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the velocity meter of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram according to an embodiment of a velocity meter of the present invention, and the same or corresponding portions as those of the conventional FIG.

【0013】図1において、本発明の流速計はレーザ光
源として例えば赤色の半導体レーザ11を有し、この半
導体レーザ11は図示しない電源により駆動される。こ
のレーザ11の光軸上にはコリメータレンズ12が設け
られ、このコリメータレンズ12はレーザ光の広がり角
を小さくして平行なレーザ光に成形する。このコリメー
タレンズ12の出力側には第1の分光器13aと、第2
の分光器13bと、反射鏡14とが設けられており、レ
ーザ光源11からのレーザ光は3つの分割光15a、1
5b、15cに分割され、その光量比は略2:1:1と
なる。
In FIG. 1, the velocity meter of the present invention has, for example, a red semiconductor laser 11 as a laser light source, and this semiconductor laser 11 is driven by a power source (not shown). A collimator lens 12 is provided on the optical axis of the laser 11, and the collimator lens 12 reduces the divergence angle of the laser light to form parallel laser light. A first spectroscope 13a and a second spectroscope 13a are provided on the output side of the collimator lens 12.
A spectroscope 13b and a reflecting mirror 14 are provided, and the laser light from the laser light source 11 is divided into three divided lights 15a and 1a.
It is divided into 5b and 15c, and the light amount ratio thereof is approximately 2: 1: 1.

【0014】そして、第1の分光器13a、第2の分光
器13b、反射鏡14の出力側には3つのレーザ光を測
定領域4に3つの焦点として集光させるためのレンズ1
6が設けられ、測定領域4では図2に示すように分割光
15a、15b、15cのそれぞれの焦点が略直線上に
等間隔で並ぶように配置され、その後また拡大する。こ
の測定領域4に被測定流体5を流すことにより、被測定
流体5中に存在する微粒子6も同じ速度で測定領域4、
すなわち3つの焦点の部分を通過する。微粒子6が3つ
の焦点の部分を順次通過すると、レーザ光を散乱させ、
この散乱光はレンズ16で平行光となり、さらにこの平
行光はレンズ17で集光され光電変換素子18で電気信
号に変換される。この光電変換素子18としては例え
ば、半導体受光素子を用いることができる。
On the output side of the first spectroscope 13a, the second spectroscope 13b, and the reflecting mirror 14, the lens 1 for converging three laser beams into the measurement area 4 as three focal points.
6, the focal points of the split lights 15a, 15b, and 15c are arranged in a substantially straight line at equal intervals in the measurement area 4, and then expanded again. By flowing the fluid to be measured 5 into the measurement area 4, the fine particles 6 present in the fluid to be measured 5 are also measured at the same speed in the measurement area 4,
That is, it passes through the three focal points. When the fine particles 6 sequentially pass through the three focal points, the laser light is scattered,
This scattered light becomes parallel light by the lens 16, and this parallel light is condensed by the lens 17 and converted into an electric signal by the photoelectric conversion element 18. As the photoelectric conversion element 18, for example, a semiconductor light receiving element can be used.

【0015】光電変換素子18の出力は、微粒子6が3
つのレーザ光のそれぞれの焦点の部分を通過するときの
散乱光であるため、図3に示すように3つのピークを有
するパルス状の波形となる。信号処理部19ではそのパ
ルス時間間隔を測定し、正規の信号が入力されたときの
み焦点間距離をこの時間間隔で割り、被測定流体の流速
を求める。
The output of the photoelectric conversion element 18 is 3 particles.
Since the laser light is scattered light when passing through respective focal portions, it has a pulse-like waveform having three peaks as shown in FIG. The signal processing unit 19 measures the pulse time interval, and divides the inter-focal distance by this time interval only when a regular signal is input to obtain the flow velocity of the fluid to be measured.

【0016】次に、信号処理部19における正規の信号
かどうかの判断方法について説明する。光電変換素子1
8からの出力は、1個の微粒子6が測定領域4の3つの
焦点の部分を順次通過した場合は図3のように時間的に
等間隔で、しかもその出力の大きさは分割光量比2:
1:1に応じたものとなる。それに対し、複数の微粒子
6が同時に測定領域4を通過した場合や、微粒子6が測
定領域4を斜めに通過し、3つの焦点のうち2つ、ある
いは1つの焦点の部分のみを通過した場合は、例えば図
4に示すように光電変換素子18の出力パルスは時間的
に等間隔にならない。信号処理部19では出力パルスの
大きさと時間間隔を測定することでこの両者を判別し、
1個の微粒子6が測定領域4の3つの焦点の部分を順次
通過した場合のみを正規の信号として流速を算出する。
Next, a method of determining whether the signal is a regular signal in the signal processing section 19 will be described. Photoelectric conversion element 1
The output from 8 is evenly spaced in time as shown in FIG. 3 when one fine particle 6 sequentially passes through the three focal points of the measurement region 4, and the magnitude of the output is equal to the divided light quantity ratio 2. :
It corresponds to 1: 1. On the other hand, when a plurality of fine particles 6 pass through the measurement region 4 at the same time, or when the fine particles 6 pass through the measurement region 4 obliquely and pass through only two of the three focal points or only one focal point. For example, as shown in FIG. 4, the output pulses of the photoelectric conversion element 18 are not evenly spaced in time. The signal processing unit 19 discriminates both by measuring the magnitude and time interval of the output pulse,
The flow velocity is calculated as a normal signal only when one particle 6 sequentially passes through the three focal points of the measurement area 4.

【0017】次に、具体的な判別方法の一例を図5を用
いて説明する。図5は、信号処理部19の機能を示す構
成図である。光電変換素子18の出力はコンパレータ2
0a、コンパレータ20bに入力される。コンパレータ
20aでは基準電圧信号発生回路21からの基準電圧と
比較し、コンパレータ20bでは電圧が基準電圧21の
1/2の基準電圧を発生する1/2基準電圧信号発生回
路22からの1/2基準電圧との比較を行い、それぞれ
が所定の電圧以上になっている間、タイミング回路23
に矩形波を出力する。タイミング回路23はコンパレー
タ20aからの矩形波でタイマ24を一旦クリアし、時
間計測を開始させる。
Next, an example of a specific discriminating method will be described with reference to FIG. FIG. 5 is a block diagram showing the functions of the signal processing unit 19. The output of the photoelectric conversion element 18 is the comparator 2
0a is input to the comparator 20b. The comparator 20a compares it with the reference voltage from the reference voltage signal generation circuit 21, and the comparator 20b generates a reference voltage that is ½ of the reference voltage 21 and the ½ reference voltage from the ½ reference voltage signal generation circuit 22. The timing circuit 23 compares the voltage with a predetermined voltage while the voltage is higher than a predetermined voltage.
Outputs a square wave to. The timing circuit 23 temporarily clears the timer 24 with the rectangular wave from the comparator 20a and starts time measurement.

【0018】次に、コンパレータ20bからの1個目の
矩形波でタイマ24の時間データをメモリ25に保持さ
せるとともに、タイマ24を再度クリアして2回目の時
間計測を開始させる。さらに、コンパレータ20bから
の2個目の矩形波でタイマ24の2回目の時間データと
メモリ25に保持されていた1回目の時間データを比較
部26で比較させ、両者が一致した場合のみ正常な計測
が行われたものとしてメモリ25に保持されていた時間
データを速度演算部27に入力し、速度の演算を行う。
Next, the time data of the timer 24 is held in the memory 25 by the first rectangular wave from the comparator 20b, and the timer 24 is cleared again to start the second time measurement. Further, the comparison unit 26 compares the second time data of the timer 24 with the first time data held in the memory 25 by the second rectangular wave from the comparator 20b. The time data held in the memory 25 as being measured is input to the speed calculator 27 to calculate the speed.

【0019】このように、タイミング回路23はコンパ
レータからの出力が順次出力されるかどうかを判定し、
タイマ24、メモリ25、比較部26は、タイミング回
路23との組合わせで出力パルスが等間隔であるかどう
かを判定する。この両方の判定機能により光電変換素子
18の受光した光が微粒子6からの正規の散乱光である
かどうかを判定する。なお、レーザ光を等間隔で集光さ
せる上記実施例では、出力パルスが等間隔であるかを判
定しているが、レーザ光を等間隔でなくとも任意の所定
間隔で設定し、この所定間隔を判定するようにしても良
い。
In this way, the timing circuit 23 determines whether the output from the comparator is sequentially output,
The timer 24, the memory 25, and the comparison unit 26 determine whether or not the output pulses are at equal intervals in combination with the timing circuit 23. By both of the determination functions, it is determined whether the light received by the photoelectric conversion element 18 is the regular scattered light from the fine particles 6. In the above embodiment in which the laser light is focused at equal intervals, it is determined whether the output pulses are at equal intervals. However, the laser light is set at any given interval even if it is not at equal intervals. May be determined.

【0020】なお、比較部26で両方の時間データを比
較する際に、両者が等しいとする時間差の範囲を持たせ
るために、例えば12ビットの時間データであれば上位
8ビットのみ比較し、下位の4ビットを無視することで
±0.4%のずれ以内の時に正常と判断することができ
る。
When comparing both time data in the comparison unit 26, in order to have a range of time difference in which they are equal to each other, for example, if the time data is 12 bits, only the upper 8 bits are compared, and the lower 8 bits are compared. By ignoring the 4 bits of, it can be judged as normal when the deviation is within ± 0.4%.

【0021】以上により信号処理部19では、コンパレ
ータ20aからの矩形波が入力された後コンパレータ2
0bからの矩形波が2個連続して等間隔で入力された時
にのみ、正常と判定して流速の算出を行う。それに対
し、コンパレータ20aからの矩形波が連続した場合
や、コンパレータ20bの出力が1個しか出なかった場
合、あるいは3個以上連続した場合などは、誤差信号と
して切り捨てられる。
As described above, in the signal processing unit 19, the rectangular wave from the comparator 20a is input, and then the comparator 2
Only when two rectangular waves from 0b are continuously input at equal intervals, the flow velocity is calculated as being determined to be normal. On the other hand, when the rectangular wave from the comparator 20a is continuous, when only one output from the comparator 20b is output, or when three or more are continuous, the signal is truncated as an error signal.

【0022】なお、測定領域4内の微粒子6の流れ方向
が上記説明とは逆方向の場合は、光電変換素子18の出
力パルスも上記説明と逆になるため、それらを総合して
判断できる構成とすればより機動性が向上する。
When the flow direction of the fine particles 6 in the measurement region 4 is opposite to the above description, the output pulse of the photoelectric conversion element 18 is also opposite to the above description, and therefore it can be comprehensively determined. If so, the mobility is further improved.

【0023】以上説明したように、上記実施例によれ
ば、半導体レーザからのレーザ光を測定領域を形成する
3つの焦点に集光させることにより、干渉縞を形成して
測定する従来のレーザドップラー流速計より反射光量が
多く、信号処理に十分なS/N比が得られる。また、光
源として半導体レーザを使用でき、光電変換素子にも半
導体受光素子が使用できるため、装置が小型化され測定
の機動性が向上し、また測定のための設定も容易となる
他、超寿命で保守が容易となる。さらに、流速の測定が
測定領域を通過する1個の微粒子により行われるため、
一定時間の平均流速ではなくその瞬間の流速測定が行
え、短時間の流速変化を検出することができる。なお、
本発明は上記一実施例に限定されること無く、その要旨
を逸脱しない範囲において種々変形して実施することが
できる。
As described above, according to the above-described embodiment, the laser beam from the semiconductor laser is focused on the three focal points forming the measurement area to form interference fringes for measurement. The amount of reflected light is larger than that of a velocity meter, and an S / N ratio sufficient for signal processing can be obtained. In addition, since a semiconductor laser can be used as a light source and a semiconductor light receiving element can be used for a photoelectric conversion element, the device can be downsized, the mobility of the measurement can be improved, and the setting for the measurement can be facilitated. Makes maintenance easier. Furthermore, since the measurement of the flow velocity is performed by one particle passing through the measurement area,
It is possible to measure the flow velocity at that moment rather than the average flow velocity for a certain period of time, and it is possible to detect a change in flow velocity in a short time. In addition,
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

【0024】[0024]

【発明の効果】以上詳述したように、本発明によれば受
光素子で受光される光量を十分多く取れるため、信号処
理に十分なS/N比が得られる。したがって、光源や受
光素子に半導体レーザおよび半導体受光素子を利用する
ことができ、小型で測定の機動性および携帯性に優れ、
正確な流速測定が簡単で容易に行える流速計を提供する
ことができる。
As described in detail above, according to the present invention, a sufficiently large amount of light can be received by the light receiving element, so that an S / N ratio sufficient for signal processing can be obtained. Therefore, the semiconductor laser and the semiconductor light receiving element can be used for the light source and the light receiving element, and they are small and have excellent measurement mobility and portability,
It is possible to provide a flow velocity meter that can easily and easily perform accurate flow velocity measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の流速計の測定系の一実施例を示す概
略構成図。
FIG. 1 is a schematic configuration diagram showing an embodiment of a measurement system of a velocity meter according to the present invention.

【図2】 本発明の流速計の測定領域内のレーザ光の様
子を示す模式図。
FIG. 2 is a schematic diagram showing a state of laser light in a measurement region of the anemometer of the present invention.

【図3】 本発明の流速計において正常な散乱光が受光
素子に照射された時の出力波形図。
FIG. 3 is an output waveform diagram when the light receiving element is irradiated with normal scattered light in the anemometer of the present invention.

【図4】 本発明の流速計において正常ではない散乱光
が受光素子に照射された時の一例を示す出力波形図。
FIG. 4 is an output waveform diagram showing an example when the light receiving element is irradiated with abnormal scattered light in the anemometer of the present invention.

【図5】 本発明の流速計の信号処理部の機能を示す概
略構成図。
FIG. 5 is a schematic configuration diagram showing a function of a signal processing unit of the velocity meter of the present invention.

【図6】 従来の流速計を示す概略構成図である。FIG. 6 is a schematic configuration diagram showing a conventional anemometer.

【符号の説明】[Explanation of symbols]

4 測定領域 5 被測定流体 6 微粒子 11 半導体レーザ(光源) 12 コリメータレンズ 13 分光器(光学系) 14 反射鏡(光学系) 18 光電変換素子(受光素子) 19 信号処理部(演算手段) 4 measurement area 5 fluid to be measured 6 fine particles 11 semiconductor laser (light source) 12 collimator lens 13 spectroscope (optical system) 14 reflecting mirror (optical system) 18 photoelectric conversion element (light receiving element) 19 signal processing unit (arithmetic means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光源と、このレーザ光源から照射
されるレーザ光を2分割し、その一方のレーザ光をさら
に2分割して得られる3つのレーザ光を測定領域内に略
直線的に所定間隔で集光させるための光学系と、前記測
定領域内に集光させられた3つのレーザ光の各焦点近傍
を通過する被測定流体から散乱する散乱光を受光するた
めの受光素子と、この受光素子からのそれぞれの出力パ
ルスの出力順と該パルスの時間間隔とから正常な信号と
判断されるものを検出し、前記パルスの時間間隔と前記
レーザ光の焦点間距離とに基づいて前記被測定流体の流
速を求める演算手段とを備えることを特徴とする流速
計。
1. A laser light source and a laser light emitted from the laser light source are divided into two, and one of the laser light is further divided into two, and three laser lights obtained are predetermined substantially linearly in a measurement region. An optical system for collecting light at intervals, a light receiving element for receiving scattered light scattered from a fluid to be measured passing near each focus of the three laser lights collected in the measurement region, and What is judged to be a normal signal is detected from the output sequence of each output pulse from the light receiving element and the time interval of the pulse, and the object is detected based on the time interval of the pulse and the focal length of the laser light. An anemometer which is provided with a calculating means for obtaining a flow velocity of a measurement fluid.
JP20380293A 1993-08-18 1993-08-18 Current meter Pending JPH0755827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20380293A JPH0755827A (en) 1993-08-18 1993-08-18 Current meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20380293A JPH0755827A (en) 1993-08-18 1993-08-18 Current meter

Publications (1)

Publication Number Publication Date
JPH0755827A true JPH0755827A (en) 1995-03-03

Family

ID=16479981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20380293A Pending JPH0755827A (en) 1993-08-18 1993-08-18 Current meter

Country Status (1)

Country Link
JP (1) JPH0755827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2180556A1 (en) 2008-10-22 2010-04-28 Shanghai Pioneer Speakers, Co., Ltd. Connector and connecting structure of connectors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2180556A1 (en) 2008-10-22 2010-04-28 Shanghai Pioneer Speakers, Co., Ltd. Connector and connecting structure of connectors

Similar Documents

Publication Publication Date Title
US5742379A (en) Device and method for electronically measuring distances
US4664513A (en) Multidimensional vorticity measurement optical probe system
US6285288B1 (en) Remote air detection
JPH02236171A (en) Flow velocity measuring apparatus of laser doppler current meter
CA1176355A (en) Multiple measuring control volume laser doppler anemometer
US5751410A (en) Method for measuring flow vectors in gas flows
US5187538A (en) Laser doppler velocimeter
EP0608634B1 (en) Surface shape measurement device
JP2009544984A (en) Gas velocity sensor
JPH0755827A (en) Current meter
Rudd The laser anemometer-a review
JPH09281134A (en) Laser current meter
JPS60243583A (en) Laser doppler speedometer
JP3096795B2 (en) Tracking ranging system
JP3491975B2 (en) Error signal detecting device and Doppler velocimeter using the same
JPH0381687A (en) Laser distance measuring instrument
US20240094387A1 (en) Optical sensing system, optical sensing device, and optical sensing method
JP3053694B2 (en) Flow velocity measuring device
JP3425232B2 (en) Current meter
JPS62177432A (en) Method and device for measuring particle
SU857812A1 (en) Photoelectric counter of disperced particles
SU1345120A1 (en) Speed meter
JPH07103714A (en) Laser distance measuring method
JP3350113B2 (en) Incident light amount monitor circuit for laser length measuring machine
JPH03142397A (en) Laser distance measuring equipment