JPH0755801B2 - Fuel reforming system - Google Patents

Fuel reforming system

Info

Publication number
JPH0755801B2
JPH0755801B2 JP1203878A JP20387889A JPH0755801B2 JP H0755801 B2 JPH0755801 B2 JP H0755801B2 JP 1203878 A JP1203878 A JP 1203878A JP 20387889 A JP20387889 A JP 20387889A JP H0755801 B2 JPH0755801 B2 JP H0755801B2
Authority
JP
Japan
Prior art keywords
gas
combustion
reforming
fuel
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1203878A
Other languages
Japanese (ja)
Other versions
JPH0369502A (en
Inventor
隆 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1203878A priority Critical patent/JPH0755801B2/en
Publication of JPH0369502A publication Critical patent/JPH0369502A/en
Publication of JPH0755801B2 publication Critical patent/JPH0755801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、燃料改質システムに係り、特に、燃焼用空気
の流量を適切に制御することができるように改良を施し
た燃料改質システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a fuel reforming system, and in particular, is improved so that the flow rate of combustion air can be appropriately controlled. The present invention relates to a fuel reforming system.

(従来の技術) 炭化水素、メタノールなどの原料ガスを燃料電池の燃料
として用いるためには、これらを水素リッチガスに改質
して燃料電池内へ送り込む必要があるため、一般に、燃
料改質システムが用いられている。
(Prior Art) In order to use a raw material gas such as hydrocarbon or methanol as a fuel for a fuel cell, it is necessary to reform these into a hydrogen-rich gas and send them into the fuel cell. It is used.

この様な燃料改質システムの一般的な構成を第2図に示
した。即ち、第2図において、燃料改質装置1の内部に
は、原燃料と水蒸気の混合ガスを触媒と接触させること
により、水素リッチガスに改質する改質管2と、燃料電
池からの排ガスを燃焼する燃焼器3及び燃焼室4が設け
られている。また、前記改質管2の内部には、それぞれ
原燃料調節弁5及び水蒸気調節弁6を通して、天然ガス
などの原燃料及び改質用の水蒸気を混合した反応ガスが
導入されるように構成されている。この反応ガスは、改
質管2内において、燃焼室4内に設けられた燃焼器3で
燃焼された燃焼ガスによって加熱され、水素を主成分と
する改質ガスに改質され、その後、一酸化炭素変成器7
を通して、その中の反応生成物である一酸化炭素が燃料
電池に無害な二酸化炭素に変換される。そして、この改
質ガスは、凝縮器8において、改質反応のために導入さ
れた余分の水蒸気が凝縮により除去され、燃料調節弁9
を介して燃料電池へ供給される。また、燃料電池に導入
された改質ガスは、ここで電気化学反応によって水素を
消費し、排気された後、燃料改質装置1の燃焼器3に導
入され、空気調節弁10を介して供給される燃焼用空気と
共に燃焼され、前記改質用の熱源として利用される。さ
らに、燃料改質装置1より外部に引き出される燃焼排ガ
スライン上には、排ガス中に含まれる酸素濃度を測定す
る酸素濃度測定器11が設けられており、この測定器によ
る測定結果が測定信号として制御装置12に送出され、こ
の制御装置12においては、その測定信号に基づいて、燃
焼器3に供給される燃焼用空気の流量目標値が定めら
れ、その値に応じて、前記空気調節弁10の開度を制御す
る弁開度信号が空気調節弁10に送出されるように構成さ
れている。
A general configuration of such a fuel reforming system is shown in FIG. That is, in FIG. 2, inside the fuel reforming apparatus 1, a reforming pipe 2 for reforming into hydrogen-rich gas by bringing a mixed gas of raw fuel and steam into contact with a catalyst, and exhaust gas from the fuel cell are provided. A combustor 3 and a combustion chamber 4 that burn are provided. In addition, a reaction gas obtained by mixing a raw fuel such as natural gas and steam for reforming is introduced into the reforming pipe 2 through a raw fuel regulating valve 5 and a steam regulating valve 6, respectively. ing. This reaction gas is heated in the reforming pipe 2 by the combustion gas combusted in the combustor 3 provided in the combustion chamber 4, and is reformed into the reformed gas containing hydrogen as a main component, and then the reformed gas is Carbon oxide transformer 7
Through which the reaction product, carbon monoxide, is converted into carbon dioxide, which is harmless to the fuel cell. Then, in the reformed gas, excess steam introduced for the reforming reaction is removed by condensation in the condenser 8, and the fuel control valve 9
Is supplied to the fuel cell via. The reformed gas introduced into the fuel cell consumes hydrogen by an electrochemical reaction here, is exhausted, is then introduced into the combustor 3 of the fuel reformer 1, and is supplied through the air regulating valve 10. And is used as a heat source for the reforming. Further, on the combustion exhaust gas line drawn out from the fuel reformer 1, an oxygen concentration measuring device 11 for measuring the oxygen concentration contained in the exhaust gas is provided, and the measurement result by this measuring device is used as a measurement signal. The target value of the flow rate of the combustion air supplied to the combustor 3 is set on the basis of the measurement signal sent to the control device 12, and the air control valve 10 is set in accordance with the value. A valve opening signal for controlling the opening of the air control valve 10 is sent to the air control valve 10.

この様な燃焼排ガス中の酸素濃度を測定し、この測定値
に応じて、燃焼用空気の流量を調節するという方法は、
特開昭62-97268号公報に提案されており、負荷変動が大
きいことが特徴の燃料電池用燃料改質装置において、負
荷変化の過渡時等に、燃焼室での空気過剰率の低下や、
不完全燃焼を回避すると共に、燃焼用空気の供給量を常
時節約することができるという利点がある。
The method of measuring the oxygen concentration in such combustion exhaust gas and adjusting the flow rate of combustion air according to the measured value is
In the fuel reformer for a fuel cell, which is proposed in JP-A-62-97268 and characterized in that the load fluctuation is large, a decrease in the excess air ratio in the combustion chamber during a transient load change or the like,
There is an advantage that incomplete combustion can be avoided and the supply amount of combustion air can be constantly saved.

(発明が解決しようとする課題) しかしながら、上記の様に構成された従来の燃料改質シ
ステムにおいては、以下に述べる様な解決すべき課題が
あった。
(Problems to be Solved by the Invention) However, the conventional fuel reforming system configured as described above has the following problems to be solved.

即ち、一般に、燃料改質装置1には、その内部における
燃焼状態や火炎状態を外部から観察、監視またはテレビ
モニタする目的で、容器に監視窓を設けることが多い。
また、改質管2の温度を外部から測定するために、容器
に設けられたセンサ窓から赤外線センサでモニタするこ
とも行われている。この様な監視窓やセンサ窓13には、
耐熱ガラスが用いられているが、高温の燃焼ガスが直接
ガラス窓の内側に触れないよう、窓を冷却するための冷
却用空気14を注入する方法が用いられている。
That is, in general, the fuel reforming apparatus 1 is often provided with a monitoring window on the container for the purpose of externally observing, monitoring or television monitoring the combustion state and flame state inside the fuel reforming apparatus 1.
In addition, in order to measure the temperature of the reforming tube 2 from the outside, it is also monitored by an infrared sensor through a sensor window provided in the container. In such a monitoring window and sensor window 13,
Heat-resistant glass is used, but a method of injecting cooling air 14 for cooling the window is used so that the hot combustion gas does not directly contact the inside of the glass window.

ところが、容器に設けられる監視窓やセンサ窓13の数が
多く、冷却用空気14の注入量も多くなると、燃焼排ガス
中に含まれる酸素濃度が、燃焼器3における空気過剰率
を反映しないため、特に、負荷変動に伴う過渡状態にお
いて、燃焼室での空気供給量の低下を招くという問題点
があった。つまり、燃焼排ガス中に含まれる酸素濃度に
は、窓冷却用に供給された空気中の酸素も含まれること
になり、燃焼排ガス中の空気過剰率が大きいと判断さ
れ、空気調節弁10の開度が制限されるため、供給される
空気量が減少することになる。
However, when the number of monitoring windows and sensor windows 13 provided in the container is large and the injection amount of the cooling air 14 is also large, the oxygen concentration contained in the combustion exhaust gas does not reflect the excess air ratio in the combustor 3, In particular, there is a problem that the air supply amount in the combustion chamber is reduced in a transient state due to load fluctuation. That is, the oxygen concentration contained in the combustion exhaust gas also includes oxygen in the air supplied for window cooling, and it is determined that the excess air ratio in the combustion exhaust gas is large, and the air control valve 10 is opened. Due to the limited degree, the amount of air supplied will be reduced.

本発明は、以上の欠点を解消するために提案されたもの
で、その目的は、燃焼室におけるガス中の酸素濃度や空
気過剰率を正確に測定し、燃焼用空気の供給流量を適切
に調節することのできる燃料改質システムを提供するこ
とにある。
The present invention has been proposed in order to solve the above drawbacks, and an object thereof is to accurately measure the oxygen concentration in the gas in the combustion chamber and the excess air ratio, and appropriately adjust the supply flow rate of the combustion air. It is to provide a fuel reforming system that can do the above.

[発明の構成] (課題を解決するための手段) 本発明は、原燃料と水蒸気とを混合した反応ガスを、改
質管の内部に導入すると共に、燃焼器に燃料と燃焼用空
気とを供給して燃焼させて得られる燃焼ガスを、前記改
質管の外面を通過させることにより、前記反応ガスを改
質ガスに改質する燃料改質装置であって、該容器に監視
窓あるいはセンサ窓が設けられ、また、これらの窓を冷
却するために該容器内に冷却用空気が注入されるように
構成された燃料改質装置と、前記燃焼ガス中の酸素濃度
を測定し、その濃度に応じて前記燃焼用空気の流量を調
節するように構成された制御システムとからなる燃料改
質システムにおいて、前記燃焼器から改質管外面に至る
燃焼ガス流路の、前記監視窓あるいはセンサ窓の配設箇
所より上部にガスサンプリング部材を配設し、このガス
サンプリング部材を酸素濃度測定器に接続することによ
って、燃焼ガス流路の中間位置にある燃焼ガス中の酸素
濃度を測定することを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problem) The present invention introduces a reaction gas obtained by mixing a raw fuel and water vapor into a reforming tube, and at the same time, supplies a fuel and combustion air to a combustor. A fuel reforming device for reforming the reaction gas into reformed gas by passing combustion gas obtained by supplying and burning the reformed gas through an outer surface of the reforming pipe, wherein a monitoring window or a sensor is provided in the container. A fuel reforming device provided with windows and configured to inject cooling air into the container to cool the windows, and the oxygen concentration in the combustion gas is measured, and the concentration thereof is measured. A control system configured to adjust the flow rate of the combustion air according to the above, in the combustion gas flow path from the combustor to the outer surface of the reforming pipe, the monitoring window or the sensor window. Gas sump above the installation location Disposed a ring member, by connecting the gas sampling member to the oxygen concentration measuring device, is characterized in that to measure the oxygen concentration in the combustion gas in an intermediate position of the combustion gas flow passage.

(作用) 本発明の燃料改質システムによれば、燃焼器から出た直
後の燃焼ガス中の酸素濃度を測定するので、窓冷却用空
気の影響を受けない、正確な酸素濃度を測定することが
でき、常に適切な量の空気を燃焼器内に供給することが
できる。
(Operation) According to the fuel reforming system of the present invention, the oxygen concentration in the combustion gas immediately after coming out of the combustor is measured, so that it is possible to accurately measure the oxygen concentration without being affected by the window cooling air. Therefore, it is possible to always supply an appropriate amount of air into the combustor.

(実施例) 以下、本発明の一実施例を第1図に基づいて具体的に説
明する。なお、第2図に示した従来型と同一の部材には
同一の符号を付して、説明は省略する。
(Example) Hereinafter, one example of the present invention will be specifically described with reference to FIG. The same members as those of the conventional type shown in FIG. 2 are designated by the same reference numerals and the description thereof will be omitted.

本実施例においては、第1図に示した様に、酸素濃度測
定器20に、燃焼ガス中のガスをサンプリングするための
ガスサンプリング部材21が接続され、このガスサンプリ
ング部材21が、燃焼器3から改質管2の外面に至る燃焼
ガス流路の、監視窓あるいはセンサ窓13の配設箇所より
上部に配設されている。そして、燃焼ガス流路の中間位
置にある燃焼ガス中の酸素濃度を測定することができる
ように構成されている。
In the present embodiment, as shown in FIG. 1, a gas sampling member 21 for sampling the gas in the combustion gas is connected to the oxygen concentration measuring device 20, and this gas sampling member 21 is connected to the combustor 3 Is provided above the location where the monitoring window or sensor window 13 is provided in the combustion gas flow path from the outside to the outer surface of the reforming pipe 2. Then, the oxygen concentration in the combustion gas at the intermediate position of the combustion gas passage can be measured.

なお、前記ガスサンプリング部材21によるサンプリング
は、窓冷却用の空気が混合しない部位で行われるように
構成されている。
The sampling by the gas sampling member 21 is configured to be performed at a site where the air for cooling the window is not mixed.

この様な構成を有する本実施例の燃料改質システムにお
いては、燃焼器3から改質管2に至る燃焼ガス中の酸素
濃度が測定されるので、容器に設けられた監視窓やセン
サ窓13に送られる冷却用の空気14がその測定に影響を与
えることはなく、常に正確な燃焼器における空気過剰率
を測定することができる。従って、本実施例による酸素
濃度測定器20によって測定した燃焼ガス中の酸素濃度の
値をもとにして、燃焼用空気の流量目標値を定め、空気
調節弁10の開度を調節することによって、常に適切な量
の空気を供給することができる。
In the fuel reforming system of this embodiment having such a configuration, since the oxygen concentration in the combustion gas from the combustor 3 to the reforming pipe 2 is measured, the monitoring window and the sensor window 13 provided in the container 13 The cooling air 14 delivered to the does not affect the measurement, and it is always possible to accurately measure the excess air ratio in the combustor. Therefore, based on the value of the oxygen concentration in the combustion gas measured by the oxygen concentration measuring device 20 according to the present embodiment, by setting the flow rate target value of the combustion air, by adjusting the opening of the air control valve 10. , Can always supply the right amount of air.

[発明の効果] 以上述べた様に、本発明によれば、燃焼器から改質管外
面に至る燃焼ガス流路の、監視窓あるいはセンサ窓の配
設箇所より上部にガスサンプリング部材を配設し、この
ガスサンプリング部材を酸素濃度測定器に接続すること
によって、燃焼ガス流路の中間位置にある燃焼ガス中の
酸素濃度を測定するように構成することにより、燃焼室
におけるガス中の酸素濃度や空気過剰率を正確に測定
し、燃焼用空気の供給流量を適切に調節することのでき
る燃料改質システムを提供することができる。
[Effects of the Invention] As described above, according to the present invention, the gas sampling member is provided in the combustion gas passage extending from the combustor to the outer surface of the reforming pipe, above the location where the monitoring window or the sensor window is provided. However, by connecting this gas sampling member to an oxygen concentration measuring device, the oxygen concentration in the combustion gas at the intermediate position of the combustion gas flow path is configured to be measured. It is possible to provide a fuel reforming system capable of accurately measuring the air excess ratio and appropriately adjusting the supply flow rate of combustion air.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の燃料改質システムの一実施例を示す構
成図、第2図は従来の燃料改質システムの一例を示す構
成図である。 1……燃料改質装置、2……改質管、3……燃焼器、4
……燃料室、5……原燃料調節弁、6……水蒸気調節
弁、7……一酸化炭素変成器、8……凝縮器、9……燃
料調節弁、10……空気調節弁、11……酸素濃度測定器、
12……制御装置、13……監視窓あるいはセンサ窓、14…
…窓冷却用空気、20……酸素濃度測定器、21……ガスサ
ンプリング部材。
FIG. 1 is a block diagram showing an embodiment of the fuel reforming system of the present invention, and FIG. 2 is a block diagram showing an example of a conventional fuel reforming system. 1 ... Fuel reforming device, 2 ... Reforming tube, 3 ... Combustor, 4
…… Fuel chamber, 5 …… Raw fuel control valve, 6 …… Steam control valve, 7 …… Carbon monoxide transformer, 8 …… Condenser, 9 …… Fuel control valve, 10 …… Air control valve, 11 ...... Oxygen concentration measuring instrument,
12 ... Control device, 13 ... Monitoring window or sensor window, 14 ...
… Window cooling air, 20… Oxygen concentration measuring instrument, 21… Gas sampling member.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原燃料と水蒸気とを混合した反応ガスを、
改質管の内部に導入すると共に、燃焼器に燃料と燃焼用
空気とを供給して燃焼させて得られる燃焼ガスを、前記
改質管の外面を通過させることにより、前記反応ガスを
改質ガスに改質する燃料改質装置であって、該容器に監
視窓あるいはセンサ窓が設けられ、また、これらの窓を
冷却するために該容器内に冷却用空気が注入されるよう
に構成された燃料改質装置と、 前記燃焼ガス中の酸素濃度を測定し、その濃度に応じて
前記燃焼用空気の流量を調節するように構成された制御
システムとからなる燃料改質システムにおいて、 前記燃焼器から改質管外面に至る燃焼ガス流路の、前記
監視窓あるいはセンサ窓の配設箇所より上部にガスサン
プリング部材を配設し、このガスサンプリング部材を酸
素濃度測定器に接続することによって、燃焼ガス流路の
中間位置にある燃焼ガス中の酸素濃度を測定することを
特徴とする燃料改質システム。
1. A reaction gas obtained by mixing raw fuel and water vapor,
The reaction gas is reformed by introducing the combustion gas into the reforming tube and supplying the fuel and the combustion air to the combustor for combustion to pass the combustion gas through the outer surface of the reforming tube. A fuel reforming device for reforming into gas, wherein the container is provided with a monitoring window or a sensor window, and cooling air is injected into the container to cool these windows. And a control system configured to measure the oxygen concentration in the combustion gas and adjust the flow rate of the combustion air according to the concentration. Of the combustion gas flow path from the reactor to the outer surface of the reforming pipe, a gas sampling member is arranged above the installation location of the monitoring window or the sensor window, and the gas sampling member is connected to an oxygen concentration measuring device. Burning moth The fuel reforming system which is characterized by measuring the oxygen concentration in the combustion gas in an intermediate position of the flow channel.
JP1203878A 1989-08-08 1989-08-08 Fuel reforming system Expired - Lifetime JPH0755801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1203878A JPH0755801B2 (en) 1989-08-08 1989-08-08 Fuel reforming system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1203878A JPH0755801B2 (en) 1989-08-08 1989-08-08 Fuel reforming system

Publications (2)

Publication Number Publication Date
JPH0369502A JPH0369502A (en) 1991-03-25
JPH0755801B2 true JPH0755801B2 (en) 1995-06-14

Family

ID=16481214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1203878A Expired - Lifetime JPH0755801B2 (en) 1989-08-08 1989-08-08 Fuel reforming system

Country Status (1)

Country Link
JP (1) JPH0755801B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020047469A (en) * 2000-12-13 2002-06-22 류정열 Inner structure of wheel for automobiles
JP4922491B2 (en) * 2001-01-12 2012-04-25 株式会社Eneosセルテック Fuel cell power supply

Also Published As

Publication number Publication date
JPH0369502A (en) 1991-03-25

Similar Documents

Publication Publication Date Title
US4118172A (en) Method and apparatus for controlling burner stoichiometry
US4659306A (en) Method of and system for determining the ratio between the oxygen-carrying gas content and the fuel content of a mixture
US3768955A (en) Reactant ratio control process
KR100986246B1 (en) Method for determining an air ratio in a burner for a fuel cell heater, and fuel cell heater
GB1565310A (en) Method and apparatus for controlling fuel to oxidant ratioof a burner
ES478842A1 (en) Method and apparatus for the control of the carbon level of a gas mixture reacting in a furnace chamber
JPH10306286A (en) Automatic control device of endothermic gas generator with low cost oxygen-detecting probe
US20070180769A1 (en) Fuel reformer having closed loop control of air/fuel ratio
JPH0755801B2 (en) Fuel reforming system
JPS63314450A (en) Oxygen sensor evaluator
GB2036290A (en) Fuel sampling system
US5759499A (en) Thermal reactor with direct passage tube for current
US5759862A (en) Measuring heating value using catalytic combustion
US3958937A (en) Method and apparatus for determining total oxygen demand of combustible materials in aqueous dispersion
JPS6345766A (en) Fuel cell power generating system
JPH0249463B2 (en)
JPS6329460A (en) Reformer temperature control device for fuel cell power generation system
JP2008089302A (en) Combustion control method for rotary melting furnace
FR3090825A3 (en) Method of continuously monitoring the temperature of tubes in a steam methane reforming furnace
CN113540525B (en) Device and method for testing hot component of solid oxide fuel cell system
SU1497432A1 (en) Method and apparatus for controlling carbon oixide afterburning
JP3886333B2 (en) Internal combustion engine and air-fuel ratio control device
JP4390246B2 (en) Combustion device for hydrogen production device for fuel cell
JP2002201003A (en) Hydrogen generation apparatus
JPS59140310A (en) Controlling method of air fuel ratio in hot-blast stove