JPH0755674A - Material testing device - Google Patents
Material testing deviceInfo
- Publication number
- JPH0755674A JPH0755674A JP5206124A JP20612493A JPH0755674A JP H0755674 A JPH0755674 A JP H0755674A JP 5206124 A JP5206124 A JP 5206124A JP 20612493 A JP20612493 A JP 20612493A JP H0755674 A JPH0755674 A JP H0755674A
- Authority
- JP
- Japan
- Prior art keywords
- test piece
- material testing
- peeling
- load
- cracks
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、材料の引っ張り試験や
疲労試験などを行う材料試験装置に関し、さらに詳しく
は、試験中に試験片内部の亀裂や剥離などの観察が可能
な材料試験装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material testing device for conducting a tensile test or a fatigue test of a material, and more particularly to a material testing device capable of observing cracks or peeling inside a test piece during the test. .
【0002】[0002]
【従来の技術】従来の材料試験装置には、例えば、引っ
張り試験機にマイクロスコープ(顕微鏡)を組み合わ
せ、引っ張りによる試験片の亀裂や剥離の進み具合を観
察できるようにしたもの、あるいは、疲労試験機にSE
M(走査電子顕微鏡)を組み合わせ、疲労試験による試
験片の亀裂や剥離の度合いを観察できるようにしたもの
がある。2. Description of the Related Art A conventional material testing apparatus is, for example, a tensile testing machine combined with a microscope so that the progress of cracking or peeling of a test piece due to pulling can be observed, or a fatigue test. SE to machine
There is one in which M (scanning electron microscope) is combined so that the degree of cracking or peeling of a test piece by a fatigue test can be observed.
【0003】しかしながら、これらの材料試験装置で
は、いずれも試験片の表面観察しか行うことができず、
このため、試験片内部の観察を行えるようにした材料試
験装置として、引っ張り試験機にX線分析装置を組み合
わせ、引っ張りによる試験片内部の亀裂や剥離の進み具
合を観察できるようにしたものがある。However, in each of these material testing devices, only the surface of the test piece can be observed,
For this reason, as a material testing device capable of observing the inside of the test piece, there is a material testing device in which an X-ray analyzer is combined with a tensile tester so that the progress of cracks and peeling inside the test piece due to pulling can be observed. .
【0004】[0004]
【発明が解決しようとする課題】ところが、このような
材料試験装置では、X線の透過率を利用して分析するの
で、X線の照射方向に対して垂直な方向(試験片の引っ
張り方向)の亀裂などに対しては感度が低くなってしま
い、また、深さ方向の情報も得られないという難点があ
る。However, in such a material testing apparatus, since the X-ray transmittance is utilized for analysis, the direction perpendicular to the X-ray irradiation direction (the direction in which the test piece is pulled). However, there is a problem in that the sensitivity to cracks and the like becomes low, and information in the depth direction cannot be obtained.
【0005】本発明は、上述の点に鑑みて為されたもの
であって、亀裂や剥離などの延在方向に拘わらず、感度
高く、しかも、深さ方向の情報を得ることが可能な材料
試験装置を提供することを目的とする。The present invention has been made in view of the above points, and is a material which has high sensitivity and is capable of obtaining information in the depth direction regardless of the extending direction such as cracks or peeling. The purpose is to provide a test device.
【0006】[0006]
【課題を解決するための手段】本発明では、上述の目的
を達成するために、次のように構成している。In order to achieve the above-mentioned object, the present invention is constructed as follows.
【0007】すなわち、本発明の材料試験装置では、試
験片を把持して該試験片に対して負荷を加える負荷機構
部と、前記負荷および変位を測定する測定部と、前記試
験片に対して超音波を送波するとともに、その反射波を
受波して試験片を探傷する超音波探傷器とを備えてい
る。That is, in the material testing apparatus of the present invention, the load mechanism section for gripping the test piece and applying a load to the test piece, the measuring section for measuring the load and the displacement, and the test piece An ultrasonic flaw detector that transmits ultrasonic waves and receives the reflected waves to detect flaws on the test piece is provided.
【0008】[0008]
【作用】上記構成によれば、試験中に超音波を利用して
試験片内部の亀裂や剥離などの探傷を行うので、X線を
利用した従来例の材料試験装置に比べて、超音波の送波
方向に垂直方向の亀裂や剥離などに対する感度が向上す
るとともに、深さ方向の感度も向上する。According to the above structure, ultrasonic waves are used during the test to detect flaws such as cracks and peeling inside the test piece. Therefore, compared with the conventional material testing apparatus using X-rays, the ultrasonic wave The sensitivity to cracks and peeling in the direction perpendicular to the transmitting direction is improved, and the sensitivity in the depth direction is also improved.
【0009】[0009]
【実施例】以下、図面によって本発明の実施例について
詳細に説明する。Embodiments of the present invention will now be described in detail with reference to the drawings.
【0010】図1は、本発明の一実施例の材料試験試験
装置1の概略構成図であり、この実施例の材料試験装置
1は、引っ張り試験機と超音波探傷器とから構成されて
いる。FIG. 1 is a schematic block diagram of a material testing and testing apparatus 1 according to an embodiment of the present invention. The material testing apparatus 1 of this embodiment is composed of a tensile testing machine and an ultrasonic flaw detector. .
【0011】引っ張り試験機は、試験片2を把持して該
試験片2に対して負荷を加える負荷機構部としての上下
のクロスヘッド3a,3bおよび該ヘッド3a,3bを
駆動するヘッド駆動部4を備えるとともに、ロードセル
5の出力およびクロスヘッド3a,3bの移動に基づい
て、負荷および変位を測定する測定部としての制御計測
部6を備えており、この制御計測部6は、各部の制御も
併せて行う。各クロスヘッド3a,3bは、移動用のね
じ軸7a,7bおよびガイド軸8a,8bに沿って移動
する。The tensile testing machine comprises upper and lower cross heads 3a, 3b as a load mechanism section for gripping the test piece 2 and applying a load to the test piece 2, and a head drive section 4 for driving the heads 3a, 3b. And a control measurement unit 6 as a measurement unit that measures the load and displacement based on the output of the load cell 5 and the movement of the crossheads 3a and 3b. The control measurement unit 6 also controls each unit. Do it together. Each crosshead 3a, 3b moves along the screw shafts 7a, 7b for movement and the guide shafts 8a, 8b.
【0012】引っ張りによる試験片内部の亀裂や剥離な
どの進み具合を観察するための超音波探傷器は、試験片
2に対して平行に適宜の手段によって保持された電子走
査形の超音波探触子9と、この超音波探触子9を駆動す
るとともに、受波信号が与えられる送受波回路10と、
超音波断層像を表示するとともに、引っ張り試験機から
の荷重−変位曲線を表示するCRT等の表示器11とを
備えている。An ultrasonic flaw detector for observing the progress of cracking or peeling inside the test piece due to pulling is an electronic scanning type ultrasonic probe held in parallel with the test piece 2 by an appropriate means. A child 9 and a transmission / reception circuit 10 for driving the ultrasonic probe 9 and receiving a reception signal,
It is provided with a display 11 such as a CRT which displays an ultrasonic tomographic image and also displays a load-displacement curve from the tensile tester.
【0013】この実施例では、超音波探触子9は、音響
整合材としての例えば、水袋12を介して試験片2に超
音波を送波するとともに、その反射波を受波するように
なっている。In this embodiment, the ultrasonic probe 9 transmits ultrasonic waves to the test piece 2 via a water bag 12, which serves as an acoustic matching material, and receives the reflected waves. Has become.
【0014】上記構成を有する材料試験装置1では、引
っ張り試験が開始されると、ヘッド駆動部4によってね
じ軸7a,7bが回転されてクロスヘッド3a,3bが
移動して試験片2に負荷が加えられ、ロードセル5の出
力とクロスヘッド3a,3bの移動に伴って得られるス
トローク変位量とによって荷重および変位を測定して荷
重−変位曲線が表示器11に表示される。In the material testing apparatus 1 having the above-mentioned structure, when the tensile test is started, the screw shafts 7a and 7b are rotated by the head driving section 4 and the cross heads 3a and 3b move to apply a load to the test piece 2. In addition, the load and displacement are measured by the output of the load cell 5 and the stroke displacement obtained with the movement of the crossheads 3a and 3b, and the load-displacement curve is displayed on the display unit 11.
【0015】一方、試験片2に対して、水袋12を介し
て超音波探触子9から超音波が送波されるとともに、試
験片2の亀裂や剥離などの内部特性に応じた反射波が受
波されて表示器11に表示される。On the other hand, an ultrasonic wave is transmitted from the ultrasonic probe 9 to the test piece 2 via the water bag 12, and a reflected wave corresponding to the internal characteristics of the test piece 2 such as cracks or peeling. Is received and displayed on the display unit 11.
【0016】このように、試験片2に対して平行に配置
した超音波探触子9から超音波を送波するとともに、そ
の反射波を受波して断層像を得るようにしたので、超音
波送波方向に垂直な方向(試験片の引っ張り方向)の亀
裂や剥離なども高い感度で検知できるとともに、深さ方
向(試験片の厚み方向)に対する情報を得ることも可能
となる。As described above, since the ultrasonic wave is transmitted from the ultrasonic probe 9 arranged parallel to the test piece 2 and the reflected wave is received to obtain a tomographic image, It is possible to detect cracks and peeling in a direction perpendicular to the acoustic wave transmission direction (tensile direction of the test piece) with high sensitivity, and obtain information in the depth direction (thickness direction of the test piece).
【0017】さらに、フォーカスをかけながら超音波探
触子9の長さに亘る区間の観察ができるので、距離分解
能が高まるとともに、広い範囲を観察することができ
る。Further, since it is possible to observe the section over the length of the ultrasonic probe 9 while applying the focus, the distance resolution is enhanced and a wide range can be observed.
【0018】なお、上述の実施例では、引っ張り試験機
に適用したけれども、本発明は、疲労試験機にも同様に
適用できるのは勿論であり、この場合には、試験片の変
位に応じた走査方法を採ることにより、亀裂や剥離を振
動なしで観察することができる。Although the above-mentioned embodiment was applied to the tensile tester, it is needless to say that the present invention can be applied to the fatigue tester as well, and in this case, it depends on the displacement of the test piece. By adopting the scanning method, cracks and peeling can be observed without vibration.
【0019】[0019]
【発明の効果】以上のように本発明によれば、試験中に
超音波を利用して試験片内部の亀裂や剥離などの探傷を
行うので、X線を利用した従来例の材料試験装置に比べ
て、超音波の送波方向に垂直な方向の亀裂や剥離などに
対する感度が向上するとともに、深さ方向の感度も向上
する。As described above, according to the present invention, ultrasonic waves are used during the test to detect flaws such as cracks and peeling inside the test piece, and therefore, the conventional material testing apparatus using X-rays can be used. In comparison, the sensitivity to cracks and peeling in the direction perpendicular to the ultrasonic wave transmission direction is improved, and the sensitivity in the depth direction is also improved.
【図1】本発明の一実施例の概略構成図である。FIG. 1 is a schematic configuration diagram of an embodiment of the present invention.
1 材料試験装置 2 試験片 3a,3b クロスヘッド 9 超音波探触子 12 水袋 1 Material Testing Equipment 2 Test Pieces 3a, 3b Crosshead 9 Ultrasonic Probe 12 Water Bag
Claims (1)
を加える負荷機構部と、 前記負荷および変位を測定する測定部と、 前記試験片に対して超音波を送波するとともに、その反
射波を受波して試験片を探傷する超音波探傷器と、 を備えることを特徴とする材料試験装置。1. A load mechanism section for gripping a test piece and applying a load to the test piece, a measuring section for measuring the load and displacement, and transmitting ultrasonic waves to the test piece, An ultrasonic flaw detector that receives the reflected wave and flaw-detects a test piece, and a material testing device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5206124A JPH0755674A (en) | 1993-08-20 | 1993-08-20 | Material testing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5206124A JPH0755674A (en) | 1993-08-20 | 1993-08-20 | Material testing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0755674A true JPH0755674A (en) | 1995-03-03 |
Family
ID=16518194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5206124A Pending JPH0755674A (en) | 1993-08-20 | 1993-08-20 | Material testing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0755674A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019078557A (en) * | 2017-10-20 | 2019-05-23 | 株式会社Ihiエアロスペース | Particulate dispersed elastomer separation measuring device and separation measurement method |
-
1993
- 1993-08-20 JP JP5206124A patent/JPH0755674A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019078557A (en) * | 2017-10-20 | 2019-05-23 | 株式会社Ihiエアロスペース | Particulate dispersed elastomer separation measuring device and separation measurement method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060254359A1 (en) | Hand-held flaw detector imaging apparatus | |
US3741004A (en) | Ultrasonic contact scanner | |
KR100355810B1 (en) | Portable ultrasonic detector | |
JP4196643B2 (en) | Method and apparatus for imaging internal defect by ultrasonic wave | |
Dickinson et al. | Acoustic detection of invisible damage in aircraft composite panels | |
CN106770683A (en) | Composite T-shaped bonding pad liquid self coupling ultrasound closes transducer and detection method | |
JP3759110B2 (en) | Ultrasonic flaw detection method and apparatus | |
CN110609083A (en) | Method for detecting internal defects of thin three-dimensional woven laminated plate composite material test piece based on ultrasonic phased array | |
JP6598045B2 (en) | Ultrasonic inspection method | |
KR100542651B1 (en) | Nondestructive Acoustic Evaluation Device and Method by using Nonlinear Acoustic Responses | |
JPH0755674A (en) | Material testing device | |
JP2008261889A (en) | Imaging method of internal defect by ultrasonic wave, and its device | |
JP2002323481A (en) | Ultrasonic flaw detection method and device | |
JP2761928B2 (en) | Non-destructive inspection method and device | |
JPH1123543A (en) | Ultrasonic flaw detection method | |
KR20200011835A (en) | Pulse-echo nonlinear nondestructive inspection device using array type ultrasonic transducers | |
CN112816558B (en) | Variable-frequency ultrasonic detection method and device for silicon carbide fiber reinforced composite material | |
JP2001255310A (en) | Method and apparatus for ultrasonic flaw detection using burst wave | |
JP2545974B2 (en) | Spectrum ultrasound microscope | |
JP2551218Y2 (en) | Ultrasonic microscope equipment | |
JPS61266907A (en) | Detector for surface condition | |
Martin et al. | A comparison of traditional and emerging ultrasonic methods for the nondestructive evaluation of polymer matrix composites subjected to impact damage | |
Fryder et al. | 39057 Somekh, MG; Zhang, D.; Rowe, JM | |
Lasser et al. | Multi-angle low cost ultrasound camera for NDT field applications | |
JPH0313810A (en) | Method for measuring thickness of plate of concrete structure by ultrasonic-wave pulse reflection method |