JPH0755561A - Photosensor - Google Patents

Photosensor

Info

Publication number
JPH0755561A
JPH0755561A JP20074393A JP20074393A JPH0755561A JP H0755561 A JPH0755561 A JP H0755561A JP 20074393 A JP20074393 A JP 20074393A JP 20074393 A JP20074393 A JP 20074393A JP H0755561 A JPH0755561 A JP H0755561A
Authority
JP
Japan
Prior art keywords
light
photodetector
filter
interference filter
imc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20074393A
Other languages
Japanese (ja)
Inventor
Soichiro Hikita
聡一郎 匹田
Kenji Awamoto
健司 粟本
Yoshihiro Miyamoto
義博 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20074393A priority Critical patent/JPH0755561A/en
Publication of JPH0755561A publication Critical patent/JPH0755561A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To provide a photosensor in which an S/N ratio can be improved with a simple structure in the photosensor for detecting a narrow band light while the senser is moving. CONSTITUTION:A detecting position of a photodetector 5 is controlled by rotatably holding an interference filter 3 so provided as to cut a light having an unnecessary band between a condensing lens 2 and the photodetector 5 in a frame 6 fixed to the photodetector 5, driving a piezoelectric element 7 provided between the frame 6 and the filter 3 according to a drive signal from a driving circuit 8 thereby to rotate the filter 3, providing an angle to the photodetector 5, and refracting an incident light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光検知装置に係り、特に
狭帯域の光を移動しつつ検出する光検知装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photodetector, and more particularly to a photodetector for detecting narrow band light while moving.

【0002】近年、可視域、近赤外域、遠赤外域あるい
はマイクロ波域などの光の反射・輻射の現象を利用し
て、人工衛星などによって高空からの超高域探査を行な
うリモートセンシングが行なわれている。
In recent years, remote sensing has been carried out by using artificial satellites or the like to perform ultra-high range exploration from a high sky by utilizing the phenomenon of reflection / radiation of light in the visible range, near infrared range, far infrared range, microwave range, etc. Has been.

【0003】このようなリモートセンシングで用いられ
る光検出器にはSN(シグナル・ノイズ)比の劣化なし
に狭帯域の光バンドの検出及び高空間分解能が要求され
ている。
The photodetector used in such remote sensing is required to detect a narrow optical band and to have high spatial resolution without deterioration of the SN (signal / noise) ratio.

【0004】[0004]

【従来の技術】図5に人工衛星によるリモートセンシン
グを説明するための図を示す。同図中、31は人工衛星
を示す。人工衛星31は光検知装置等を搭載し、例えば
約800〔km〕の上空を地上32に対して約18Km/s
の速度で飛翔しつつ、地上32の画像をその飛翔方向
(矢印C2 方向)に平行な帯状の領域33として獲え、
地上に送信する。
2. Description of the Related Art FIG. 5 is a diagram for explaining remote sensing by an artificial satellite. In the figure, 31 indicates an artificial satellite. The artificial satellite 31 is equipped with a light detection device and the like, and for example, the sky above about 800 km is about 18 km / s with respect to the ground 32.
While flying at a speed of, the image of the ground 32 can be captured as a belt-shaped region 33 parallel to the flight direction (direction of arrow C 2 ),
Send to the ground.

【0005】人工衛星等に搭載され移動しつつ光検知を
行なう光検知装置では信号積分時間をtint ,受光素子
面積をA,単位面積当たりに入射される光量をφとする
と、SN比S/Nの理論限界は一般に S/N=√(φ・A・tint ) ・・・ (1) で表わされる。
In a photodetector mounted on an artificial satellite or the like for detecting light while moving, assuming that the signal integration time is t int , the light receiving element area is A, and the amount of light incident per unit area is φ, the SN ratio S / The theoretical limit of N is generally expressed by S / N = √ (φ · A · t int ) (1).

【0006】このとき、空間分解能の向上は信号積分時
間tint 及び受光素子面積Aが小さくなることを意味
し、光バンドの狭帯域化はφが小さくなることを意味
し、従って、式(1)より空間分解能の向上及び光バン
ドの狭帯域化はS/Nの劣化につながる。
At this time, the improvement of the spatial resolution means that the signal integration time t int and the light receiving element area A become smaller, and the narrowing of the optical band means that φ becomes smaller. ) Further improvement of spatial resolution and narrowing of optical band lead to deterioration of S / N.

【0007】このため、このままでは、高空間分解能及
び光バンドの狭帯域化を計ろうとするとS/Nが劣化し
てしまうため人工衛星に搭載される光検知装置ではS/
Nの向上を計るべくIMC(Image Motion Compensatio
n :画像動作補償)なる補正動作を行ない高空間分解能
化及び光バンドの狭帯域化を計っている。
For this reason, the S / N is deteriorated if the high spatial resolution and the narrowing of the optical band are attempted in this state, and therefore the S / N in the photodetector mounted on the artificial satellite is deteriorated.
In order to improve N, IMC (Image Motion Compensatio
(n: image motion compensation) is performed to achieve high spatial resolution and narrow optical band.

【0008】図6にIMCによる補正の動作説明図を示
す。人工衛星31は矢印C2 方向に一定速度で移動しつ
つ、光の検知を行なう。このとき、時刻t1 〜t3 では
同一の位置P1 ,時刻t4 〜t6 では同一の位置P2
時刻t7 〜t9 では同一位置P3 からの光が搭載された
光検出器の受光面に入射するように光検知装置を制御し
ていた。
FIG. 6 shows an explanatory diagram of the operation of correction by IMC. The artificial satellite 31 detects light while moving at a constant speed in the direction of arrow C 2 . In this case, the time t 1 ~t same position P 1 in 3, the time t 4 ~t same position P 2 at 6,
Light from the time t 7 ~t 9 in the same position P 3 is controlled the light sensing unit to be incident on the light receiving surface of the mounted photodetector.

【0009】IMC補正によれば、同一位置P1
2 ,P3 の光を長い時間検出できるため、式(1)に
おける信号積分時間tint を長くすることができ、従っ
て、S/Nを向上させることができる。
According to the IMC correction, the same position P 1 ,
Since the light of P 2 and P 3 can be detected for a long time, the signal integration time t int in the equation (1) can be lengthened, and thus the S / N can be improved.

【0010】図7に光検知装置の従来の一例の構成図を
示す。従来の光検知装置41は光を電気信号に変換する
リニアイメージセンサ42,必要とする帯域の光のみを
透過させ、リニアイメージセンサ42に供給する干渉フ
ィルタ43,S/Nの大きい信号を得るためのIMC
(Image Motion Compensation )鏡44,入射光を集光
するための集光レンズ45、IMC鏡44を矢印D方向
に回動させ、IMC動作を行なうための駆動装置46等
より構成されていた。
FIG. 7 shows a block diagram of an example of a conventional photodetector. In order to obtain a linear image sensor 42 that converts light into an electrical signal, an interference filter 43 that supplies only light in a required band and supplies the linear image sensor 42 with a large S / N signal, IMC
(Image Motion Compensation) The mirror 44, the condenser lens 45 for condensing the incident light, and the drive device 46 for rotating the IMC mirror 44 in the direction of the arrow D to perform the IMC operation are included.

【0011】撮像対象47からの光は集光レンズ45で
集光された後、IMC鏡44に入射し、IMC鏡44で
反射された後、干渉フィルタ43で不要な高域の光がカ
ットされリニアイメージセンサ42に供給される。
The light from the image pickup object 47 is condensed by the condenser lens 45, then enters the IMC mirror 44, is reflected by the IMC mirror 44, and is cut by the interference filter 43 to eliminate unnecessary high-frequency light. It is supplied to the linear image sensor 42.

【0012】このように、従来の光検知装置41では光
路上にIMC鏡44を設け、IMC鏡44の角度を制御
することによりIMC補正動作を行っていた。
As described above, in the conventional photodetector 41, the IMC mirror 44 is provided on the optical path, and the IMC correction operation is performed by controlling the angle of the IMC mirror 44.

【0013】[0013]

【発明が解決しようとする課題】しかるに、従来のこの
種の光検知装置ではIMC鏡を介して光検出器に径る光
路を形成する必要があったため、光路が長くなってしま
い、小型化が困難であると共にIMC鏡の分コストが上
昇してしまう等の問題点があった。
However, in the conventional photo-detecting device of this type, it is necessary to form an optical path extending through the IMC mirror to the photo-detector, and therefore the optical path becomes long and miniaturization is required. There are problems that it is difficult and the cost of the IMC mirror is increased.

【0014】本発明は上記の点に鑑みてなされたもの
で、IMC鏡なしにIMC補正が可能となる光検知装置
を提供することを目的とする。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a photodetector capable of performing IMC correction without an IMC mirror.

【0015】[0015]

【課題を解決するための手段】本発明は検知対象に対し
て相対的に移動しつつ、該検知対象からの光のうち所定
の帯域の光をフィルタを介して光検知手段に供給し、検
知対象からの光の検知を行なう光検知装置において、前
記フィルタの前記光検知手段に対する傾斜を制御して、
前記検知対象からの光の屈折を制御することにより前記
光検知手段の光検知位置を制御するフィルタ駆動制御手
段をしてなる。
According to the present invention, while moving relative to a detection target, light in a predetermined band of light from the detection target is supplied to a light detection unit through a filter for detection. In a light detection device for detecting light from an object, controlling the inclination of the filter with respect to the light detection means,
The filter drive control unit controls the light detection position of the light detection unit by controlling the refraction of light from the detection target.

【0016】[0016]

【作用】検知対象からの光のうち所定の帯域の光を光検
知手段に供給するフィルタの光検知手段に対する傾斜を
駆動制御することにより、検知対象からの光をフィルタ
により屈折させ、光検知手段の光検知位置を制御する。
このため、光検知手段の光検知位置を制御するための手
段を光路上に別途設ける必要がなくなる。したがって、
装置内の光路を短くできる。
The light from the object to be detected is refracted by the filter by driving and controlling the inclination of the filter for supplying the light in the predetermined band among the light from the object to be detected to the light detecting means. Control the light detection position of.
Therefore, it is not necessary to separately provide a means for controlling the light detection position of the light detection means on the optical path. Therefore,
The optical path in the device can be shortened.

【0017】[0017]

【実施例】図1に本発明の一実施例の構成図を示す。本
実施例の光検知装置1は例えば、人工衛星によるリモー
トセンシングに利用される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a block diagram of an embodiment of the present invention. The light detection device 1 of this embodiment is used for remote sensing by an artificial satellite, for example.

【0018】光検知装置1は主に入射光を集光する集光
レンズ2,集光レンズ2で集光された光より必要とする
帯域の光を透過させる干渉フィルタ3,干渉フィルタ3
を駆動する駆動部4,干渉フィルタ3を透過した光をそ
の光量に応じた電気信号に変換する光検出器5とより構
成される。
The photodetector 1 mainly includes a condenser lens 2 for condensing incident light, an interference filter 3 for transmitting light in a required band from the light condensed by the condenser lens 2, and an interference filter 3
It is composed of a drive unit 4 for driving the optical detector 4 and a photodetector 5 for converting the light transmitted through the interference filter 3 into an electric signal corresponding to the amount of light.

【0019】集光レンズ2は撮像対象10からの入射光
を光検出器5の受光面5a上に集光させる。干渉フィル
タ3は集光レンズ2と光検出器5との間に配設され、必
要とする帯域の光を透過し、他の帯域の光をカットす
る。このとき、透過する光の帯域は干渉フィルタ3を構
成する材料によって決定され、可視光を透過させるため
にはサファイヤガラス等が用いられ、赤外光を透過させ
るためにはシリコン(Si)系やゲルマニウム(Ge)
系のガラス材が用いられる。
The condenser lens 2 condenses the incident light from the image pickup object 10 on the light receiving surface 5a of the photodetector 5. The interference filter 3 is arranged between the condenser lens 2 and the photodetector 5 and transmits light in a required band and cuts light in other bands. At this time, the band of the transmitted light is determined by the material forming the interference filter 3, sapphire glass or the like is used to transmit the visible light, and silicon (Si) -based or the like is used to transmit the infrared light. Germanium (Ge)
A system glass material is used.

【0020】干渉フィルタ3は駆動部4により矢印A方
向に回動自在に保持される。駆動部4は干渉フィルタ3
を回動自在に保持するためのフレーム6,干渉フィルタ
3を矢印A方向に所定の周波数で揺動させる圧電素子
7,圧電素子7に駆動信号を供給する駆動回路8より構
成される。フレーム6は光検出器4に対して固定して設
けられていて、干渉フィルタ3の端面に固着された回転
軸9を軸受けし、干渉フィルタ3を回転軸9を中心に矢
印A方向に回動自在に保持する。
The interference filter 3 is held by the drive unit 4 so as to be rotatable in the arrow A direction. The drive unit 4 is the interference filter 3
A piezoelectric element 7 for swinging the interference filter 3 at a predetermined frequency in the direction of arrow A, and a drive circuit 8 for supplying a drive signal to the piezoelectric element 7. The frame 6 is fixedly provided with respect to the photodetector 4, receives the rotating shaft 9 fixed to the end surface of the interference filter 3, and rotates the interference filter 3 around the rotating shaft 9 in the arrow A direction. Hold freely.

【0021】圧電素子7はフレーム6と干渉フィルタ3
との間に設けられ、駆動回路8から供給される駆動信号
に応じて矢印B方向に振動し、干渉フィルタ3を矢印A
方向に回動させる。干渉フィルタ3が回動することによ
り、干渉フィルタ3が光検出器5に対して傾斜し、入射
光Lを屈折させ、入射光Lの光検出器5の受光面積5a
への入射位置が変位する。
The piezoelectric element 7 includes a frame 6 and an interference filter 3.
And is oscillated in the direction of arrow B in accordance with the drive signal supplied from the drive circuit 8 to drive the interference filter 3 in the direction of arrow A.
Rotate in the direction. As the interference filter 3 rotates, the interference filter 3 tilts with respect to the photodetector 5, refracts the incident light L, and receives the incident light L on the light receiving area 5a of the photodetector 5.
The incident position on is displaced.

【0022】駆動回路8は発振回路等より構成され、得
ようとする空間分解能及び人工衛星の移動速度に応じた
周波数の駆動信号を生成し、圧電素子7に供給する。
The drive circuit 8 is composed of an oscillating circuit or the like, generates a drive signal having a frequency according to the spatial resolution to be obtained and the moving speed of the artificial satellite, and supplies it to the piezoelectric element 7.

【0023】光検出器5はラインイメージセンサ等で構
成され、複数の受光素子5bがライン状に配列されてお
り、撮像対象をライン毎に読み取り、その画像を形成す
るように構成されている。受光素子5bは干渉フィルタ
3を透過した帯域の光を電気信号に効率的に変換できる
材料で構成されており、赤外光を検知しようとする場合
には水銀−カドミウム−テルル(HgCdTe)等の化
合物半導体によりPN接合を形成する構成とされてい
る。
The photodetector 5 is composed of a line image sensor or the like, a plurality of light receiving elements 5b are arranged in a line, and the image pickup object is read line by line to form an image thereof. The light receiving element 5b is made of a material capable of efficiently converting the light in the band transmitted through the interference filter 3 into an electric signal, and when detecting infrared light, mercury-cadmium-tellurium (HgCdTe) or the like is used. A PN junction is formed of a compound semiconductor.

【0024】以上の構成の光検知装置1は人工衛星31
に搭載され、矢印C2 方向に移動しつつ、光検知を行な
う。
The optical detecting device 1 having the above-mentioned structure is an artificial satellite 31.
It is mounted on the board and moves in the direction of arrow C 2 to detect light.

【0025】図2,図3に本発明の一実施例の動作説明
図を示す。圧電素子7が矢印B1 方向に変移した場合に
は干渉フィルタ3が回転軸9を中心に矢印A1 方向に回
動して、干渉フィルタ3は図2(A)に示すように傾斜
し、図3(A)に示すように、光軸LA が矢印C1 方向
にずれる。
2 and 3 are explanatory views of the operation of an embodiment of the present invention. When the piezoelectric element 7 is displaced in the direction of the arrow B 1 , the interference filter 3 is rotated about the rotation shaft 9 in the direction of the arrow A 1 , and the interference filter 3 is inclined as shown in FIG. As shown in FIG. 3A, the optical axis L A is displaced in the direction of arrow C 1 .

【0026】また、圧電素子7が変位しない場合には干
渉フィルタ3は図2(B)に示すように水平に保持さ
れ、図3(B)に示すように、光軸LB にずれは生じな
い。
When the piezoelectric element 7 is not displaced, the interference filter 3 is held horizontally as shown in FIG. 2 (B), and the optical axis L B is displaced as shown in FIG. 3 (B). Absent.

【0027】また、圧電素子7が矢印B2 方向に変位し
た場合には干渉フィルタ3が回転軸9を中心に矢印A2
方向に回動して、干渉フィルタ3は図2(C)に示すよ
うに傾斜し、光軸LC が矢印C2 方向にずれる。
When the piezoelectric element 7 is displaced in the direction of the arrow B 2 , the interference filter 3 moves the arrow A 2 about the rotation shaft 9 as a center.
Rotating in the direction, the interference filter 3 is tilted as shown in FIG. 2C, and the optical axis L C is displaced in the arrow C 2 direction.

【0028】このとき、光軸Lのずれは干渉フィルタ3
の屈折率及び傾斜角により決定される。
At this time, the deviation of the optical axis L is caused by the interference filter 3
It is determined by the refractive index and tilt angle of.

【0029】図4に干渉フィルタ3の動作説明図を示
す。干渉フィルタ3を図6に示す時刻t1 〜t9 に対応
させ図4に示すように傾斜させることにより、図6に示
すように時刻t1 〜t3 で同一位置P1 の光を光検出器
5の受光面5aに入射させ、時刻t4 〜t6 で同一位置
2 の光を光検出器5の受光面5aに入射させ、時刻t
7 〜t9 で同一位置P3 の光を光検出器5の受光面5a
に入射させることができる。
FIG. 4 shows an operation explanatory diagram of the interference filter 3.
You The interference filter 3 is set to the time t shown in FIG.1~ T9Corresponding to
Then, as shown in FIG. 4, tilting it as shown in FIG.
Time t1~ T3At the same position P1The light of the photo detector
5 to the light-receiving surface 5a at time tFour~ T6At the same position
P2Of light is incident on the light-receiving surface 5a of the photodetector 5 at time t
7~ T9At the same position P3Light of the light detector 5a of the photodetector 5
Can be incident on.

【0030】このように、本実施例では干渉フィルタ3
を傾斜させ、その屈折率により光を変位させることによ
りIMCを行なう。このため、IMC鏡等が不要とな
る。
Thus, in this embodiment, the interference filter 3
Is tilted, and the light is displaced by the refractive index thereof to perform IMC. Therefore, an IMC mirror or the like is unnecessary.

【0031】以上のように本実施例によれば、IMC鏡
等の不要な構成なしに図6に示すようなIMCの動作を
行なうことができ、SN比S/Nを向上させることがで
きる。
As described above, according to this embodiment, the operation of the IMC as shown in FIG. 6 can be performed without the unnecessary structure of the IMC mirror or the like, and the SN ratio S / N can be improved.

【0032】従って、簡単な構成でSN比の向上が計
れ、故障や不良の要因の低減及びコストの低減が行なえ
ると共に、入射光の光路も短縮でき、全体として小型化
が計れる。
Therefore, the SN ratio can be improved with a simple structure, the factors of failure and defects and the cost can be reduced, and the optical path of the incident light can be shortened, and the overall size can be reduced.

【0033】なお、本実施例では人工衛星に搭載された
光検知装置について説明したが、これに限ることはな
く、要は検出対象に対して相対的に移動しつつ、光の検
知を行なうものであればよく、また、逆に検出対象側が
移動する構成のものであってもよい。
In this embodiment, the light detecting device mounted on the artificial satellite has been described, but the present invention is not limited to this, and the point is that the light is detected while moving relatively to the detection target. However, it may be configured so that the detection target side moves on the contrary.

【0034】また、本実施例では光検知器5としてリニ
アイメージセンサを用いたが、これに限ることはなく、
エリアアレイイメージセンサを用いた光検出器を用いる
構成も考えられる。
Further, although the linear image sensor is used as the photodetector 5 in this embodiment, the invention is not limited to this.
A configuration using a photodetector using an area array image sensor is also conceivable.

【0035】[0035]

【発明の効果】上述の如く、本発明によれば、駆動手段
によりフィルタを傾斜させ、フィルタの持つ、屈折率に
より光軸をずらすことにより、IMC動作を行なうこと
ができるため、IMC鏡等の不要な構成なく、簡単な構
成でIMC動作を行なえ、故障や不良の発生要因を低減
できると共にコストを低減でき、また、入射光の光路を
短縮できるため、装置の大幅な小型化も計れる等の特長
を有する。
As described above, according to the present invention, the IMC operation can be performed by inclining the filter by the driving means and shifting the optical axis by the refractive index of the filter. The IMC operation can be performed with a simple configuration without unnecessary configuration, and the factors of failure and defects can be reduced and the cost can be reduced. Moreover, since the optical path of incident light can be shortened, the size of the device can be greatly reduced. Has features.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明の一実施例の駆動回路の出力駆動信号波
形図である。
FIG. 2 is an output drive signal waveform diagram of the drive circuit according to the embodiment of the present invention.

【図3】本発明の一実施例の動作説明図である。FIG. 3 is an operation explanatory diagram of the embodiment of the present invention.

【図4】本発明の一実施例の動作説明図である。FIG. 4 is an operation explanatory diagram of the embodiment of the present invention.

【図5】人工衛星によるリモートセンシングを説明する
ための図である。
FIG. 5 is a diagram for explaining remote sensing by an artificial satellite.

【図6】IMCの動作説明図である。FIG. 6 is a diagram illustrating the operation of the IMC.

【図7】従来の一例の構成図である。FIG. 7 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 光検知装置 2 集光レンズ 3 干渉フィルタ 4 光検出器 5 駆動部 6 フレーム 7 圧電素子 8 駆動回路 1 Photodetector 2 Condensing lens 3 Interference filter 4 Photodetector 5 Drive part 6 Frame 7 Piezoelectric element 8 Drive circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 検知対象(10)からの光のうち所定の
帯域の光をフィルタ(3)を介して光検知手段(5)に
供給し、該検知対象(10)からの光の検知を行なう光
検知装置において、 前記フィルタ(3)を回転駆動し、前記フィルタ(3)
の前記光検知手段(5)に対する傾斜を制御して、前記
検知対象からの光の屈折を制御することにより前記光検
知手段(5)の光検知位置を制御するフィルタ駆動制御
手段(4)を有することを特徴とする光検知装置。
1. The light from a detection target (10) is supplied to a light detection means (5) through a filter (3) through a filter (3) to detect the light from the detection target (10). In the photodetection device, the filter (3) is driven to rotate and the filter (3) is rotated.
A filter drive control means (4) for controlling the light detection position of the light detection means (5) by controlling the inclination of the light detection means (5) with respect to the light detection means (5). An optical detection device having.
【請求項2】 前記光検知手段(5)は前記検知対象に
対して相対的に移動しつつ、光検知を行なう構成とされ
ており、前記フィルタ駆動制御手段(4)は前記光検知
手段(5)の光検知位置(P1 ,P2 ,P3 )が所定の
時間(t1 〜t3 ,t4 〜t6 ,t6 〜t9 )同一とな
るように前記フィルタ(3)の傾斜を制御することを特
徴とする請求項1記載の光検知装置。
2. The light detection means (5) is configured to detect light while moving relative to the detection target, and the filter drive control means (4) is configured to detect the light detection means (5). 5) The light detection positions (P 1 , P 2 , P 3 ) of the filter (3) are set to be the same for a predetermined time (t 1 to t 3 , t 4 to t 6 , t 6 to t 9 ). The photodetector according to claim 1, wherein the inclination is controlled.
JP20074393A 1993-08-12 1993-08-12 Photosensor Withdrawn JPH0755561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20074393A JPH0755561A (en) 1993-08-12 1993-08-12 Photosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20074393A JPH0755561A (en) 1993-08-12 1993-08-12 Photosensor

Publications (1)

Publication Number Publication Date
JPH0755561A true JPH0755561A (en) 1995-03-03

Family

ID=16429438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20074393A Withdrawn JPH0755561A (en) 1993-08-12 1993-08-12 Photosensor

Country Status (1)

Country Link
JP (1) JPH0755561A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292487A (en) * 2005-04-08 2006-10-26 Dainippon Screen Mfg Co Ltd Device and method for inspection of unevenness
JP2011013630A (en) * 2009-07-06 2011-01-20 Ricoh Co Ltd Imaging apparatus
CN114353830A (en) * 2021-12-27 2022-04-15 北京遥感设备研究所 Light path switching device and switching method for fixed star calibration

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292487A (en) * 2005-04-08 2006-10-26 Dainippon Screen Mfg Co Ltd Device and method for inspection of unevenness
JP2011013630A (en) * 2009-07-06 2011-01-20 Ricoh Co Ltd Imaging apparatus
CN114353830A (en) * 2021-12-27 2022-04-15 北京遥感设备研究所 Light path switching device and switching method for fixed star calibration
CN114353830B (en) * 2021-12-27 2023-11-14 北京遥感设备研究所 Optical path switching device and switching method for constant star calibration

Similar Documents

Publication Publication Date Title
JP7277461B2 (en) Rotating Compact Optical Ranging System
US8503046B2 (en) Rotating prism scanning device and method for scanning
EP1014111A2 (en) Photodetecting system for surveying instrument
US5525793A (en) Optical head having an imaging sensor for imaging an object in a field of view and a tracking sensor for tracking a star off axis to the field of view of the imaging sensor
EP0033679A1 (en) Laser object-designation system
NZ201222A (en) Altitude and azimuth mounting of sunlight collector:coupling of light guides
JPH0755561A (en) Photosensor
JP2000186928A (en) Light wave range finder
JPH08223117A (en) Optical space transmission equipment
EP2388646B1 (en) Method for capturing an image
JP2002111590A (en) Receiver by optical signal transmission
JPH05347591A (en) Remote control photodetecting device
JPH09230021A (en) Target detecting device
JPH0219404B2 (en)
JPH1174842A (en) Photo detector unit, light arrival direction detector and optical transmitter-receiver
JPS6020110A (en) Detecting mechanism for distance of object
JPH11245443A (en) Imaging apparatus
JPH01121816A (en) Solid-state image pickup device
JPH06121221A (en) Image pickup device
JPH1174845A (en) Slave set for optical radio communication system
FR2551194A1 (en) DEVICE FOR GUIDING A MISSILE ON A GOAL
JPH09280842A (en) Light beam angle detector
FR2676823A1 (en) DEVICE FOR MEASURING THE DISTANCE OF A PROJECTILE.
JPH09224197A (en) Wide area scanning image pickup device
CN115876118A (en) Measuring device comprising a sighting unit and a scanning module

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031