JPH0755521A - Ultrasonic flow rate measuring instrument - Google Patents

Ultrasonic flow rate measuring instrument

Info

Publication number
JPH0755521A
JPH0755521A JP5197608A JP19760893A JPH0755521A JP H0755521 A JPH0755521 A JP H0755521A JP 5197608 A JP5197608 A JP 5197608A JP 19760893 A JP19760893 A JP 19760893A JP H0755521 A JPH0755521 A JP H0755521A
Authority
JP
Japan
Prior art keywords
angle
flow rate
ultrasonic
pedestal
variator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5197608A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakurai
洋 桜井
Akio Miyamoto
明夫 宮本
Yasuhiro Takahashi
康弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5197608A priority Critical patent/JPH0755521A/en
Publication of JPH0755521A publication Critical patent/JPH0755521A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To dispense from fine adjustment of the fitting position of a pair of transducers to a conduit. CONSTITUTION:Each transducer 7 is composed of an ultrasonic sensor 1, angle variagle device 2, pedestal 4, and matching medium 5. The device 2 is formed by cutting a cylindrical member made of the same material as that of the pedestal 4 into halves along a plane containing its central axis and the sensor 1 is fitted to the central part of the flat section of the device 2. The pedestal 4 has such a concave surface that the outer peripheral surface of the device 2 can be brought into face-contact with and swung on the concave surface on its slope and the device 2 is put in the concave section with a matching medium 5 in between. Therefore, when the device 2 is rotationally adjusted, the direction of transmitting and receiving directions of a pair of transducers 7 can be accurately made coincident with each other even when the fitting positions of the transducers 7 are not finely adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、送受波方向が可調整
な送受波器を用いて、一対の各送受波器の導管に対する
取付け位置の微細調整を不要にするとともに、流量を正
確に測定する超音波流量測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention eliminates the need for fine adjustment of the mounting positions of a pair of wave transmitters / receivers with respect to the conduit by using a wave transmitter / receiver whose wave transmission / reception direction is adjustable, and accurately measures the flow rate. The present invention relates to an ultrasonic flow rate measuring device.

【0002】[0002]

【従来の技術】従来一般の超音波流量測定装置では、一
対の超音波送受波器を流体の流れる導管の外周に設置
し、流体の流れ方向に成分をもつ順方向と、その逆方向
に成分をもつ逆方向との双方向にそれぞれ超音波を伝播
させ、そのときの各伝播時間の時間差に基づいて流体の
流速流量を測定する。図4は従来例の動作を示す側断面
図である。図において、導管6をその軸線を含む平面
(紙面)で切断し、流体が矢印方向に流れるとしたと
き、導管6の外周上部の流れの上流側に一方の送受波器
10を、外周下部の下流側に他方の送受波器10をそれぞれ
設置する。ここで、各送受波器10は、台座9の斜面に超
音波センサ (振動子)1が付設される。なお、超音波セン
サ1 と台座9 の斜面との間、また台座9 の下面と導管9
の外周面との間には、それぞれ超音波の伝播効率を上げ
るために整合媒質が挿設される。さて、上側の送受波器
10から入射角Φo で超音波が送波されると、導管6 と流
体との各境界で、スネルの法則にしたがって、各屈折角
Φ1,Φ2 で屈折しながら伝播し、次には逆の関係で屈折
して下側の送受波器10で受波される。このときの順方向
の伝播時間と、下流側の送受波器10から上流側の送受波
器10に超音波が伝播されるときの逆方向の伝播時間との
時間差をΔTとすると、流速V=ΔTc2 /2L で表
される。ここで、cは流体内の音速、Lは流体内の超音
波伝播経路長の軸線方向成分、である。なお、一対の送
受波器を同じ側の外周面に設置し、一方からの送波を導
管内面で反射させた後に他方で受波する方式もあるが、
本質的な違いはないから、以下ここで説明した方式で考
えることにする。
2. Description of the Related Art In a conventional general ultrasonic flow rate measuring device, a pair of ultrasonic wave transmitters / receivers are installed on the outer periphery of a conduit through which a fluid flows, and a forward direction having a component in the fluid flow direction and a component in the reverse direction have a component. The ultrasonic waves are propagated in both directions, i.e., in the opposite direction, and the flow velocity and flow rate of the fluid are measured based on the time difference between the propagation times. FIG. 4 is a side sectional view showing the operation of the conventional example. In the figure, when the conduit 6 is cut in a plane (paper surface) including its axis and the fluid flows in the direction of the arrow, one of the transducers is provided upstream of the flow on the outer periphery of the conduit 6 in the upstream direction.
The other transducer 10 is installed on the downstream side of the lower part of the outer circumference. Here, in each of the wave transmitters / receivers 10, an ultrasonic sensor (vibrator) 1 is attached to the slope of the pedestal 9. In addition, between the ultrasonic sensor 1 and the slope of the pedestal 9, and also between the bottom surface of the pedestal 9 and the conduit 9
A matching medium is inserted between the outer peripheral surface and the outer peripheral surface to improve the propagation efficiency of ultrasonic waves. Now, the upper transducer
When an ultrasonic wave is transmitted from 10 at an incident angle Φ o, it propagates while refracting at each refraction angle Φ 1, Φ 2 at each boundary between the conduit 6 and the fluid according to Snell's law, and then the opposite relationship. It is refracted by and is received by the lower wave transmitter / receiver 10. If the time difference between the forward propagation time at this time and the backward propagation time when the ultrasonic wave is propagated from the downstream side transducer 10 to the upstream side transducer 10 is ΔT, the flow velocity V = It is represented by ΔTc 2 / 2L. Here, c is the speed of sound in the fluid, and L is the axial component of the ultrasonic wave propagation path length in the fluid. There is also a method in which a pair of wave transmitters / receivers are installed on the outer peripheral surface on the same side, and a wave transmitted from one is reflected on the inner surface of the conduit and then received by the other.
Since there is no essential difference, the method explained here will be considered.

【0003】[0003]

【発明が解決しようとする課題】従来例には次のような
問題点がある。各送受波器10を導管6 に設置するときの
間隔は、送受波器10の送波に係る入射角Φo と、導管6
の内径, 管厚とに基づいて設計される。実際の導管6 の
内径, 管厚が設計値に対し誤差をもつときには、その寸
法誤差に応じて設置間隔を調整する必要がある。そうし
なければ、一方の送受波器10からの送波を他方で正確に
受波できず、ひいては正確な流量測定が不可能になる。
この各送受波器10の設置間隔の調整は非常に面倒で、か
つ熟練を要する。この調整が不完全であれば、それだけ
流量測定が不正確になる。しかも、実際の導管6 の内
径, 管厚と設計値との間に誤差を生じるのは、程度の差
はあるものの通常しばしば起こることである。この設置
間隔の調整を不要にできないか以前から要望されてき
た。
The conventional example has the following problems. The intervals at which each transducer 10 is installed in the conduit 6 are determined by the incident angle Φo related to the transmission of the transducer 10 and the conduit 6
It is designed based on the inner diameter of the tube and the tube thickness. If the actual inner diameter and thickness of the conduit 6 have errors with respect to the design values, it is necessary to adjust the installation interval according to the dimensional error. If this is not done, the transmission from one of the wave transmitters / receivers 10 cannot be accurately received by the other, which in turn makes accurate flow measurement impossible.
The adjustment of the installation intervals of the respective transducers 10 is very troublesome and requires skill. The less accurate this adjustment, the more inaccurate the flow measurement. Moreover, the error between the inner diameter and the pipe thickness of the actual conduit 6 and the design value is usually caused to some extent but usually to some extent. There has been a long-standing need for adjustment of this installation interval.

【0004】この発明の課題は、従来の技術がもつ以上
の問題点を解消し、一対の各送受波器の導管に対する取
付け位置の微細調整を不要にするとともに、流量を正確
に測定する超音波流量測定装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, to eliminate the need for fine adjustment of the mounting positions of the pair of transducers with respect to the conduits, and to ultrasonically measure the flow rate accurately. It is to provide a flow rate measuring device.

【0005】[0005]

【課題を解決するための手段】請求項1に係る超音波流
量測定装置は、一対の超音波送受波器を流体の流れる導
管の外周に設置し、流体の流れ方向に成分をもつ順方向
と、その逆方向に成分をもつ逆方向との双方向にそれぞ
れ超音波を伝播させたときの、各伝播時間の時間差に基
づいて流体の流速流量を測定する装置において、各送受
波器は、円柱が軸線を通る平面で切断されてなる部分を
有する形状の角度可変器と;この角度可変器の円柱外周
面と音響整合媒質を介して揺動可能に面接触する円筒状
凹面を有し、角度可変器と同じ材料からなり、導管外周
に設置された台座と;角度可変器の平面部分中心箇所
に、その半径方向と送受波方向を一致させて設けられた
超音波センサと;を備える。
An ultrasonic flow rate measuring apparatus according to a first aspect of the present invention has a pair of ultrasonic wave transmitters / receivers installed on the outer circumference of a conduit through which a fluid flows, and has a forward direction having a component in the fluid flow direction. , In a device that measures the flow velocity and flow rate of a fluid based on the time difference of each propagation time when ultrasonic waves are propagated bidirectionally with the opposite direction having a component in the opposite direction, each transducer is a cylinder An angle variator having a shape in which is cut by a plane passing through the axis; and a cylindrical concave surface that is in oscillating surface contact with a cylindrical outer peripheral surface of the angle variator through an acoustic matching medium, A pedestal made of the same material as the variator and installed on the outer circumference of the conduit; and an ultrasonic sensor provided at the central portion of the plane portion of the angle variator with its radial direction and the transmitting / receiving direction aligned.

【0006】請求項2に係る超音波流量測定装置は、請
求項1に記載の装置において、流量測定の前に、受波信
号が最大値になるように、台座に対する角度可変器の回
転位置決めをするアクチュエータを備える。請求項3に
係る超音波流量測定装置は、一対の超音波送受波器を流
体の流れる導管の外周に設置し、流体の流れ方向に成分
をもつ順方向と、その逆方向に成分をもつ逆方向との双
方向にそれぞれ超音波を伝播させたときの、各伝播時間
の時間差に基づいて流体の流速流量を測定する装置にお
いて、送受波器は、球が中心を通る平面で切断されてな
る部分を有する形状の角度可変器と;この角度可変器の
球面と音響整合媒質を介して自在に揺動可能に面接触す
る球面状凹面を有し、角度可変器と同じ材料からなり、
導管外周に設置された台座と;角度可変器の平面部分中
心箇所に、その半径方向と送受波方向を一致させて設け
られた超音波センサと;を備える。
An ultrasonic flow rate measuring device according to a second aspect is the device according to the first aspect, in which the rotational position of the angle varying device with respect to the pedestal is set so that the received signal has a maximum value before the flow rate measurement. The actuator is provided. In the ultrasonic flow rate measuring device according to claim 3, a pair of ultrasonic wave transmitters / receivers are installed on the outer circumference of a conduit through which a fluid flows, and a forward direction having a component in the fluid flow direction and a reverse direction having a component in the reverse direction. In a device that measures the flow velocity and flow rate of a fluid based on the time difference of each propagation time when ultrasonic waves are propagated bidirectionally, the transducer is cut in a plane through which a sphere passes An angle variator having a shape having a portion; and a spherical concave surface that is in surface contact with the spherical surface of the angle variator so as to freely swing through an acoustic matching medium, and is made of the same material as the angle variator,
A pedestal installed on the outer circumference of the conduit; and an ultrasonic sensor provided at the central portion of the plane portion of the angle varying device so that the radial direction and the transmitting / receiving direction coincide with each other.

【0007】[0007]

【作用】請求項1または2に係る超音波流量測定装置で
は、超音波センサが、角度可変器の平面部分中心箇所に
設けられ、この角度可変器は、その円柱外周面で音響整
合媒質を介して台座の円筒状凹面と面接触しながら揺動
変位可能である。したがって、超音波センサの送受波方
向が平面的に調整可能である。この送受波方向の調整に
よって、一方からの送波を他方で正確に受波できる。
In the ultrasonic flow rate measuring device according to the first or second aspect, the ultrasonic sensor is provided at the central portion of the plane portion of the angle varying device, and the angle varying device is provided on the outer peripheral surface of the cylinder through the acoustic matching medium. The rocking displacement is possible while making surface contact with the cylindrical concave surface of the pedestal. Therefore, the transmitting / receiving direction of the ultrasonic sensor can be adjusted in a plane. By adjusting the transmission / reception direction, the transmission from one can be accurately received by the other.

【0008】とくに請求項2に係る超音波流量測定装置
では、各送受波器は、流量測定前にアクチュエータによ
って、受波信号が最大値になるように、台座に対する角
度可変器の回転位置決めがなされて、一方からの送波を
他方で正確に受波できる。請求項3に係る超音波流量測
定装置では、超音波センサが、角度可変器の平面部分中
心箇所に設けられ、この角度可変器は、その球面で音響
整合媒質を介して台座の球面状凹面と面接触しながら自
在に揺動変位可能である。したがって、超音波センサの
送受波方向が自在に調整可能である。この送受波方向の
調整によって、一方からの送波を他方で正確に受波でき
る。
Particularly, in the ultrasonic flow rate measuring device according to the second aspect, each transducer is rotationally positioned with respect to the pedestal by the actuator before the flow rate measurement so that the received signal becomes the maximum value. Thus, the transmission from one side can be accurately received by the other. In the ultrasonic flow rate measuring device according to claim 3, an ultrasonic sensor is provided at a central portion of a plane portion of the angle varying device, and the angle varying device serves as a spherical concave surface of the pedestal with a spherical surface thereof through an acoustic matching medium. It is possible to freely swing and displace while making surface contact. Therefore, the transmitting / receiving direction of the ultrasonic sensor can be freely adjusted. By adjusting the transmission / reception direction, the transmission from one can be accurately received by the other.

【0009】[0009]

【実施例】この発明に係る超音波流量測定装置の実施例
について、以下に図を参照しながら説明する。図1は、
第1実施例における送受波器の側面図である。第1実施
例である送受波器7 は主として、超音波センサ1 と、角
度可変器2 と、台座4 と、整合媒質5 とからなる。角度
可変器2 は、台座4 と同じ材料の円柱状部材を軸線を含
む平面で半分に切った形状で、その平面部分の中央部に
超音波センサ1 を付設する。したがって、超音波センサ
1 の送受波方向は角度可変器2 の半径方向と一致する。
台座4 は、従来例におけると同様に導管の外周面に直接
設置される部材で、その斜面に角度可変器2 の外周面が
面接触して揺動可能な円筒状凹面を有する。この台座4
の凹部に、整合媒質5 を介して角度可変器2 を嵌める。
超音波センサ1 の送受波方向は、角度可変器2 が台座4
の凹部に嵌まって、角度可変器2 の平面中心を通り紙面
と直角な軸Pの回りに揺動可能に案内される。したがっ
て、角度可変器2 が実線位置のときは、実線矢印が送受
波方向になり、また二点鎖線位置のときは二点鎖線矢印
が送受波方向になる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an ultrasonic flow rate measuring device according to the present invention will be described below with reference to the drawings. Figure 1
It is a side view of the wave transceiver in a 1st example. The transducer 7 according to the first embodiment mainly comprises an ultrasonic sensor 1, an angle varying device 2, a pedestal 4, and a matching medium 5. The angle varying device 2 has a shape in which a cylindrical member made of the same material as the pedestal 4 is cut in half in a plane including the axis, and the ultrasonic sensor 1 is attached to the central portion of the plane portion. Therefore, the ultrasonic sensor
The transmission and reception direction of 1 coincides with the radial direction of the angle variable device 2.
The pedestal 4 is a member directly installed on the outer peripheral surface of the conduit as in the conventional example, and has a cylindrical concave surface on which the outer peripheral surface of the angle varying device 2 is in surface contact with and can swing. This pedestal 4
The angle varying device 2 is fitted into the concave portion of the via the matching medium 5.
In the direction of transmission and reception of the ultrasonic sensor 1, the angle variable device 2 is mounted on the base 4
It is fitted into the concave portion of the angle varying device 2 and is guided so as to be swingable around an axis P which passes through the center of the plane of the angle varying device 2 and is perpendicular to the paper surface. Therefore, when the angle variable device 2 is in the solid line position, the solid arrow indicates the wave transmission / reception direction, and when the angle variable device 2 is in the two-dot chain line position, the two-dot chain line arrow indicates the wave transmission / reception direction.

【0010】図2は第1実施例における送受波器の動作
を示す側断面図である。一方の送受波器7 を導管6 の外
周面の左上側に、また他方のそれを同じくその右下側に
設置する。さて、導管6 の内径, 管厚が設計値通りであ
れば、一対の各送受波器7 を図の実線位置に設置し、角
度可変器2 の平面を台座4 の斜面と一致させる位置決め
をしたとき、相互に正確に送受波される。もし、導管6
の内径, 管厚の実際値が設計値に対し若干誤差をもつ
と、一対の各送受波器7 をそのままにして相互に正確に
送受波させるためには、下右側の送受波器7 は破線位置
に設置される必要がある。すなわち、取付け位置の微細
調整が必要になってくる。このとき、各角度可変器2 を
対応する台座4 に対して時計方向に若干回転し、実線の
ように位置決めすると、取付け位置の微細調整をしなく
ても、一対の各送受波器7 相互に正確に送受波されるよ
うになる。
FIG. 2 is a side sectional view showing the operation of the wave transceiver in the first embodiment. One of the transducers 7 is installed on the upper left side of the outer peripheral surface of the conduit 6, and the other is installed on the lower right side of the same. If the inner diameter and tube thickness of the conduit 6 are as designed, the pair of transducers 7 are installed at the positions indicated by the solid lines in the figure, and the flat surface of the angle variable device 2 is aligned with the slope of the pedestal 4. At this time, the waves are transmitted and received accurately. If conduit 6
If the actual values of the inner diameter and tube thickness of the tube have some errors with respect to the design values, in order to transmit and receive accurately with each pair of transducers 7 as they are, the transducer 7 on the lower right side Must be installed in position. That is, it becomes necessary to finely adjust the mounting position. At this time, if each angle variable device 2 is slightly rotated clockwise with respect to the corresponding pedestal 4 and positioned as shown by the solid line, the pair of transducers 7 can be connected to each other without fine adjustment of the mounting position. It will be transmitted and received accurately.

【0011】ところで、第2実施例は、図示してない
が、第1実施例における角度可変器2と異なって、中心
を通り平面で半分に切断した半球体状の角度可変器を用
いる。また、これに対応して半球面状凹部が彫り込まれ
た台座を用いる。超音波センサ1 は、角度可変器の平面
中心部に付設され、角度可変器が台座に対して自在に揺
動するのに応じて、送受波の方向を立体的に変化させ
る、言いかえれば立体的に調整可能にする。すなわち、
第1実施例では、送受波の方向を平面内で変化させるだ
けであったのに対して、第2実施例では、送受波の方向
を平面から逸脱させて立体的に変化させることができ
る。このことは、一対の各送受波器の取付け位置調整
が、第1実施例では導管の軸線方向だけであったのに比
べて、第2実施例では導管の軸線方向とともに、それと
直角にも可能になるから、調整可能範囲が拡大され、そ
れだけ現場の調整作業が適切かつ容易になる。なお第2
実施例は、第1実施例と異なって、アクチュエータによ
る自動的回動調整が非常に困難で、少なくともコスト的
に引き合わないから、あくまで手動による調整方法に徹
するのが実際的である。
Although not shown in the drawings, the second embodiment uses a hemispherical angle changer that is cut in half in a plane passing through the center, unlike the angle changer 2 in the first embodiment. In addition, a pedestal corresponding to this is engraved with a hemispherical recess. The ultrasonic sensor 1 is attached to the center of the plane of the angle varying device, and changes the direction of the transmitted and received waves in three dimensions as the angle varying device freely swings with respect to the pedestal. Adjustable. That is,
In the first embodiment, the direction of the transmitted / received wave is only changed within the plane, whereas in the second example, the direction of the transmitted / received wave can be deviated from the plane and changed three-dimensionally. This means that the mounting positions of the pair of transducers can be adjusted not only in the axial direction of the conduit in the first embodiment but also in the axial direction of the conduit in the second embodiment and at a right angle thereto. Therefore, the adjustable range is expanded, and the adjustment work on site becomes appropriate and easy. The second
In the embodiment, unlike the first embodiment, the automatic rotation adjustment by the actuator is very difficult, and at least the cost does not match, so it is practical to stick to the manual adjustment method.

【0012】図3は第1実施例の構成図である。第1実
施例では、本番の流量測定に先立って、一対の各送受波
器7 の角度可変器2 の自動位置決め調整によって、各送
受波器7 相互間の送受波の伝播の適正化がおこなわれ
る。図において、導管6 の外周面に一対の各送受波器7
が設置され、その角度可変器2 には、アクチュエータ18
が連結される。このアクチュエータ18は、角度可変器2
の回転位置を適正にするための制御信号によって駆動さ
れる。さて、通常の流量測定時には、送受信回路11によ
って、各送受波器7 が送波側, 受波側の役割を交換しな
がら動作する。すなわち、各送受波器7 からの超音波の
伝播方向が、順方向, 逆方向に交互に切り替えられる。
順方向,逆方向それぞれの受波信号は、受信波増幅回路
12によって増幅される。この増幅信号は、切替器15の一
方の側への切替えに基づいて、時間測定回路13に入力さ
れ、ここで順方向, 逆方向の各伝播時間が測定される。
次の流量演算回路14によって、先の各伝播時間の差が求
められた後、さらに先に述べた演算式を用いて流量( 正
確には流速流量) が求められる。さて、角度可変器2の
回転位置決め調整時には、切替器15を測定時とは逆側に
切り替え、受信波増幅回路12の出力信号を微分器16に入
力させる。なお、この場合には、送受波の適正方向だけ
を調整するのが目的であるから、送受信回路11を介して
伝播方向が順方向, 逆方向いずれか一方の超音波だけ
が、受信波増幅回路12に入力される。この受信波増幅回
路12の出力信号は、微分器16によって時間的変化率が求
められ、次の制御回路17によって、この時間的変化率が
零、つまり出力信号値が最大になるように、アクチュエ
ータ18に対する駆動指令がおこなわれる。受信波増幅回
路12の出力信号値が最大になることは、各送受波器7 の
相互の送受波方向が適正であることを意味する。
FIG. 3 is a block diagram of the first embodiment. In the first embodiment, before the actual flow rate measurement, the propagating of the transmitted and received waves between the respective transducers 7 is optimized by the automatic positioning adjustment of the angle variable device 2 of the pair of the respective transducers 7. . In the figure, a pair of transducers 7 are provided on the outer peripheral surface of the conduit 6.
Is installed, and the actuator 18 is
Are connected. This actuator 18 is an angle variable device 2
Is driven by a control signal for optimizing the rotational position of the. By the way, at the time of normal flow rate measurement, each transmitter / receiver 7 is operated by the transmitting / receiving circuit 11 while exchanging the roles of the transmitting side and the receiving side. That is, the propagation direction of the ultrasonic wave from each transducer 7 is alternately switched between the forward direction and the reverse direction.
The received signals in the forward and backward directions are received wave amplification circuits.
Amplified by 12. This amplified signal is input to the time measuring circuit 13 based on the switching to one side of the switch 15, and the forward and backward propagation times are measured here.
After the difference between the respective propagation times is obtained by the next flow rate calculation circuit 14, the flow rate (to be exact, the flow velocity flow rate) is calculated using the above-described calculation formula. Now, when adjusting the rotational positioning of the angle varying device 2, the switching device 15 is switched to the side opposite to that at the time of measurement, and the output signal of the received wave amplifying circuit 12 is input to the differentiator 16. In this case, since the purpose is to adjust only the proper direction of the transmitted / received wave, only the ultrasonic wave whose propagation direction is either the forward direction or the reverse direction via the transmission / reception circuit 11 is the received wave amplification circuit. Entered in 12. The output signal of the received wave amplifying circuit 12 has a temporal change rate obtained by a differentiator 16, and the next control circuit 17 controls the actuator so that the temporal change rate becomes zero, that is, the output signal value becomes maximum. A drive command is issued to 18. The maximum output signal value of the reception wave amplification circuit 12 means that the transmission and reception directions of the respective wave transceivers 7 are proper.

【0013】[0013]

【発明の効果】請求項1または2に係る超音波流量測定
装置では、超音波センサが、角度可変器の平面部分中心
箇所に設けられ、この角度可変器は、その円柱外周面で
音響整合媒質を介して台座の円筒状凹面と面接触しなが
ら揺動変位可能である。したがって、超音波センサの送
受波方向が平面的に調整可能である。この送受波方向の
調整によって、一方からの送波を他方で正確に受波でき
る。その結果、実際の導管の内径,管厚が設計値に対し
誤差をもつことに起因して、各送受波器の導管に対する
取付け位置を微細調整することが不要になり、はるかに
簡単な送波,受波の各進行方向の調整ですむから、流量
測定のための準備工数が削減されるとともに、調整が良
好におこなわれることによって、流量測定が正確にな
る。
In the ultrasonic flow rate measuring device according to the first or second aspect of the invention, the ultrasonic sensor is provided at the central portion of the plane portion of the angle varying device, and the angle varying device has an acoustic matching medium on the outer peripheral surface of the cylinder. It is possible to oscillate and displace while making surface contact with the cylindrical concave surface of the pedestal. Therefore, the transmitting / receiving direction of the ultrasonic sensor can be adjusted in a plane. By adjusting the transmission / reception direction, the transmission from one can be accurately received by the other. As a result, it is not necessary to finely adjust the mounting position of each transducer to the conduit due to the fact that the actual inner diameter and thickness of the conduit have errors with respect to the design values. Since the adjustment of each direction of the received wave is sufficient, the number of preparation steps for measuring the flow rate is reduced, and the flow rate measurement becomes accurate by the good adjustment.

【0014】とくに請求項2に係る超音波流量測定装置
では、各送受波器は、流量測定前にアクチュエータによ
って、受波信号が最大値になるように、台座に対する角
度可変器の回転位置決めがなされて、一方からの送波を
他方で正確に受波できる。したがって、適正な回転位置
決めが自動的かつ迅速におこなわれる。請求項3に係る
超音波流量測定装置では、超音波センサが、角度可変器
の平面部分中心箇所に設けられ、この角度可変器は、そ
の球面で音響整合媒質を介して台座の球面状凹面と面接
触しながら自在に揺動変位可能である。したがって、超
音波センサの送受波方向が自在に調整可能である。この
送受波方向の調整によって、一方からの送波を他方で正
確に受波できる。その結果、実際の導管の内径,管厚が
設計値に対し誤差をもつことに起因して、各送受波器の
導管に対する取付け位置を微細調整することが不要にな
り、はるかに簡単な送受波方向の調整ですむから、流量
測定のための準備工数が削減されるとともに、とくに立
体的な調整であるから、さらに調整が適正,良好におこ
なわれることによって、流量測定が正確になる。
Particularly, in the ultrasonic flow rate measuring device according to the second aspect of the present invention, each transducer is rotationally positioned with respect to the pedestal by the actuator before the flow rate measurement so that the received signal becomes the maximum value. Thus, the transmission from one side can be accurately received by the other. Therefore, proper rotational positioning can be performed automatically and quickly. In the ultrasonic flow rate measuring device according to claim 3, an ultrasonic sensor is provided at a central portion of a plane portion of the angle varying device, and the angle varying device serves as a spherical concave surface of the pedestal with a spherical surface thereof through an acoustic matching medium. It is possible to freely swing and displace while making surface contact. Therefore, the transmitting / receiving direction of the ultrasonic sensor can be freely adjusted. By adjusting the transmission / reception direction, the transmission from one can be accurately received by the other. As a result, because the actual inner diameter and thickness of the conduit have errors with respect to the design values, it becomes unnecessary to finely adjust the mounting position of each transducer to the conduit, and a much simpler transmission / reception is performed. Since the adjustment of the direction is sufficient, the number of preparation steps for the flow rate measurement is reduced, and since the adjustment is particularly three-dimensional, the flow rate can be measured accurately by performing the adjustment properly and satisfactorily.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る第1実施例における送受波器の
側面図
FIG. 1 is a side view of a transceiver according to a first embodiment of the present invention.

【図2】第1実施例における送受波器の動作を示す側断
面図
FIG. 2 is a side sectional view showing the operation of the wave transceiver in the first embodiment.

【図3】第1実施例の構成図FIG. 3 is a configuration diagram of the first embodiment.

【図4】従来例の動作を示す側断面図FIG. 4 is a side sectional view showing an operation of a conventional example.

【符号の説明】[Explanation of symbols]

1 超音波センサ 2 角度可変器 4 台座 5 整合媒質 6 導管 7 送受波器 11 送受信回路 12 受信波増幅回路 13 時間測定回路 14 流量演算回路 15 切替器 16 微分器 17 制御回路 18 アクチュエータ DESCRIPTION OF SYMBOLS 1 Ultrasonic sensor 2 Angle variable device 4 Pedestal 5 Matching medium 6 Conduit 7 Transducer 11 Transmitter / receiver circuit 12 Received wave amplifier circuit 13 Time measurement circuit 14 Flow rate calculation circuit 15 Switcher 16 Differentiator 17 Control circuit 18 Actuator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一対の超音波送受波器を流体の流れる導管
の外周に設置し、流体の流れ方向に成分をもつ順方向
と、その逆方向に成分をもつ逆方向との双方向にそれぞ
れ超音波を伝播させたときの、各伝播時間の時間差に基
づいて流体の流速流量を測定する装置において、各送受
波器は、円柱が軸線を通る平面で切断されてなる部分を
有する形状の角度可変器と;この角度可変器の円柱外周
面と音響整合媒質を介して揺動可能に面接触する円筒状
凹面を有し、角度可変器と同じ材料からなり、導管外周
に設置された台座と;角度可変器の平面部分中心箇所
に、その半径方向と送受波方向を一致させて設けられた
超音波センサと;を備えることを特徴とする超音波流量
測定装置。
1. A pair of ultrasonic wave transmitters / receivers are installed on the outer circumference of a conduit through which a fluid flows, and the ultrasonic wave is transmitted in both directions, a forward direction having a component in the fluid flow direction and a reverse direction having a component in the reverse direction. In a device that measures the flow velocity and flow rate of a fluid based on the time difference of each propagation time when ultrasonic waves are propagated, each transducer is an angle of a shape having a part formed by cutting a cylinder in a plane passing through the axis. A variator; a pedestal made of the same material as the angle variator, which has a cylindrical concave surface that oscillates in plane contact with the outer circumferential surface of the angle variator through an acoustic matching medium, An ultrasonic flow rate measuring device, comprising: an ultrasonic sensor provided at the center of a plane portion of the angle varying device so that the radial direction thereof matches the transmitting and receiving directions.
【請求項2】請求項1に記載の装置において、流量測定
前に、受波信号が最大値になるように、台座に対する角
度可変器の回転位置決めをするアクチュエータを備える
ことを特徴とする超音波流量測定装置。
2. The ultrasonic device according to claim 1, further comprising an actuator for rotationally positioning the angle varying device with respect to the pedestal so that the received signal has a maximum value before measuring the flow rate. Flow rate measuring device.
【請求項3】一対の超音波送受波器を流体の流れる導管
の外周に設置し、流体の流れ方向に成分をもつ順方向
と、その逆方向に成分をもつ逆方向との双方向にそれぞ
れ超音波を伝播させたときの、各伝播時間の時間差に基
づいて流体の流速流量を測定する装置において、各送受
波器は、球が中心を通る平面で切断されてなる部分を有
する形状の角度可変器と;この角度可変器の球面と音響
整合媒質を介して自在に揺動可能に面接触する球面状凹
面を有し、角度可変器と同じ材料からなり、導管外周に
設置される台座と;角度可変器の平面部分中心箇所に、
その半径方向と送受波方向を一致させて設けられた超音
波センサと;を備えることを特徴とする超音波流量測定
装置。
3. A pair of ultrasonic wave transmitters / receivers are installed on the outer circumference of a conduit through which a fluid flows, and the ultrasonic wave is transmitted in both directions, a forward direction having a component in the fluid flow direction and a reverse direction having a component in the reverse direction. In a device that measures the flow velocity and flow rate of a fluid based on the time difference of each propagation time when ultrasonic waves are propagated, each transducer has an angle of a shape with a part cut by a plane through which a sphere passes A variator; a pedestal that is made of the same material as the angle variator and has a spherical concave surface that is in surface contact with the sphere of the angle variator so that it can freely swing through an acoustic matching medium, ; At the center of the plane of the angle changer,
An ultrasonic flow rate measuring device, comprising: an ultrasonic sensor provided in such a manner that the radial direction and the transmitting / receiving direction are matched.
JP5197608A 1993-08-10 1993-08-10 Ultrasonic flow rate measuring instrument Pending JPH0755521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5197608A JPH0755521A (en) 1993-08-10 1993-08-10 Ultrasonic flow rate measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5197608A JPH0755521A (en) 1993-08-10 1993-08-10 Ultrasonic flow rate measuring instrument

Publications (1)

Publication Number Publication Date
JPH0755521A true JPH0755521A (en) 1995-03-03

Family

ID=16377307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5197608A Pending JPH0755521A (en) 1993-08-10 1993-08-10 Ultrasonic flow rate measuring instrument

Country Status (1)

Country Link
JP (1) JPH0755521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015181800A (en) * 2014-03-25 2015-10-22 テルモ株式会社 Flow sensor, extracorporeal circulation apparatus having flow sensor and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015181800A (en) * 2014-03-25 2015-10-22 テルモ株式会社 Flow sensor, extracorporeal circulation apparatus having flow sensor and control method thereof

Similar Documents

Publication Publication Date Title
US5228347A (en) Method and apparatus for measuring flow by using phase advance
US7523677B2 (en) Apparatus for ascertaining and/or monitoring volume-or mass-flow of a medium
US9097567B2 (en) Ultrasonic, flow measuring device
US4748857A (en) Ultrasonic apparatus for measuring the flow velocity of a fluid
US20060117867A1 (en) Flowmeter
US9140594B2 (en) Ultrasonic, flow measuring device
CA2100749A1 (en) Measurement system
US10634531B2 (en) Ultrasonic, flow measuring device
JP2001356034A (en) Method and apparatus for ultrasonic flow measurement
RU2006101683A (en) METHOD FOR CALIBRATING AN ULTRASONIC FLOW METER AND CUSTOMIZED SENSOR (OPTIONS)
JPH0755521A (en) Ultrasonic flow rate measuring instrument
DK0762086T3 (en) Method for ultrasound measurement of flow rates of flowing fluids
JP4333098B2 (en) Flow measuring device
JP2004028994A5 (en)
JPH05281006A (en) Ultrasonic flow measuring device
JPH1151722A (en) Gas meter and its gas flow velocity measuring tube
JPS5836292B2 (en) ultrasonic flow meter
JPS58811Y2 (en) ultrasonic flow meter
KR100317954B1 (en) Ultrasonic Flow Measurement Method Using Variable Delay
JPH08278176A (en) Ultrasonic flow meter
JP2008014833A (en) Ultrasonic flowmeter
JP3458460B2 (en) Flow measurement device
JP4213449B2 (en) Ultrasonic flow meter
JP2004045425A (en) Flow rate measuring device
JPWO2005064289A1 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter