JPH0755457Y2 - Photoelectric encoder - Google Patents

Photoelectric encoder

Info

Publication number
JPH0755457Y2
JPH0755457Y2 JP1991092225U JP9222591U JPH0755457Y2 JP H0755457 Y2 JPH0755457 Y2 JP H0755457Y2 JP 1991092225 U JP1991092225 U JP 1991092225U JP 9222591 U JP9222591 U JP 9222591U JP H0755457 Y2 JPH0755457 Y2 JP H0755457Y2
Authority
JP
Japan
Prior art keywords
grating
lattice
portion length
transmission type
photoelectric encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1991092225U
Other languages
Japanese (ja)
Other versions
JPH058427U (en
Inventor
宗次 市川
幹男 鈴木
渡 石橋
真吾 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP1991092225U priority Critical patent/JPH0755457Y2/en
Priority to US07/848,116 priority patent/US5204524A/en
Priority to GB9205410A priority patent/GB2254690B/en
Priority to DE4209149A priority patent/DE4209149C2/en
Publication of JPH058427U publication Critical patent/JPH058427U/en
Application granted granted Critical
Publication of JPH0755457Y2 publication Critical patent/JPH0755457Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】本考案は光電型エンコーダ、特に
2次元方向の変位を検出可能な光電型エンコーダの改良
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric encoder, and more particularly to an improvement of a photoelectric encoder capable of detecting displacement in two dimensions.

【0002】[0002]

【従来の技術】各種測定機、工作機械、更に最近は各種
情報機械等で、相対移動する二つの部材の変位量を検出
するために各種エンコーダが用いられており、特に非接
触で変位量検出が必要なところから光電型エンコーダが
汎用される。この光電型エンコーダは、相対移動するそ
れぞれの部材にメインスケール、インデックススケール
を設け、例えばインデックススケールに設けられた格子
を介してメインスケールに光を照射し、更にメインスケ
ールの格子を介した光を受光器にて受光し、その位相変
化等から前記部材の相対移動量を検出するものである。
2. Description of the Prior Art Various encoders are used in various measuring machines, machine tools, and more recently various information machines to detect the amount of displacement of two members that move relative to each other. The photoelectric encoders are widely used because they are required. This photoelectric encoder is provided with a main scale and an index scale on each of the members that move relative to each other. For example, the main scale is irradiated with light through a grating provided on the index scale, and the light through the grating of the main scale is further emitted. Light is received by a light receiver, and the relative movement amount of the member is detected from the phase change and the like.

【0003】[0003]

【考案が解決しようとする課題】しかしながら従来の一
般的な光電型エンコーダは、直線変位或いは回転変位を
一次元的に測定するのみであり、二次元方向に相対移動
する2つの部材間の相対変位を単一のエンコーダで検出
することはできないものであった。
However, the conventional general photoelectric encoder only measures linear displacement or rotational displacement one-dimensionally, and the relative displacement between two members relatively moving in two-dimensional directions. Could not be detected by a single encoder.

【0004】本考案は前記従来技術の課題に鑑みなされ
たものであり、その目的は構成が簡易であり、しかも広
範囲の二次元方向変位の検出を行なうことのできる光電
型エンコーダを提供することにある。
The present invention has been made in view of the above problems of the prior art, and an object thereof is to provide a photoelectric encoder having a simple structure and capable of detecting a wide range of two-dimensional displacement. is there.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に本出願の請求項1記載の光電型エンコーダは、マトリ
ックス状の島状第一格子が形成されるメインスケール
と、前記メインスケールに対し二次元方向に相対移動可
能に並列配置され、十字状に相直交する第二格子が形成
されるインデックススケールと、を含むことを特徴とす
る。
In order to achieve the above-mentioned object, a photoelectric encoder according to claim 1 of the present application has a main scale on which a matrix-shaped first grid of islands is formed and the main scale. And an index scale which is arranged in parallel so as to be relatively movable in a two-dimensional direction and in which second lattices that are orthogonal to each other in a cross shape are formed.

【0006】また、請求項2記載の光電型エンコーダ
は、第一格子が反射式島状格子よりなり、またインデッ
クススケールには透過式十字状第二格子と、第二格子の
外周部に設けられた透過式第三格子が設けられ、前記透
過式十字状第二格子の裏面に発光素子が、また透過式第
三格子の裏面に受光素子が設けられたことを特徴とす
る。
According to a second aspect of the photoelectric encoder, the first grating is a reflection island grating, and the index scale is provided with a transmission cross second grating and an outer peripheral portion of the second grating. Further, a transmission type third grating is provided, a light emitting element is provided on the back surface of the transmission type cross-shaped second grating, and a light receiving element is provided on the back surface of the transmission type third grating.

【0007】[0007]

【作用】本考案にかかる光電型エンコーダは、前述した
ようにインデックススケールに十字状格子が設けられて
おり、一方メインスケールにはマトリックス状の島状格
子が設けられている。このため、十字状第二格子の一方
向の格子が島状第一格子のマトリックスの行方向に対応
し、その方向への移動量を検出する。また、十字状第二
格子の他方向への格子が島状第一格子のマトリックスの
列方向に対応し、その方向への移動量を検出する。この
ように本考案にかかる光電型エンコーダによれば、直交
する方向への相対移動量を一のエンコーダで検出するこ
とができる。
In the photoelectric encoder according to the present invention, as described above, the index scale is provided with the cross-shaped grid, while the main scale is provided with the matrix-shaped island grid. Therefore, the grid in one direction of the cross-shaped second grid corresponds to the row direction of the matrix of the island-shaped first grid, and the amount of movement in that direction is detected. The lattice in the other direction of the cross-shaped second lattice corresponds to the column direction of the matrix of the island-shaped first lattice, and the amount of movement in that direction is detected. As described above, according to the photoelectric encoder of the present invention, the relative movement amount in the orthogonal direction can be detected by one encoder.

【0008】[0008]

【実施例】以下、図面に基づき本考案の好適な実施例を
説明する。図1には本考案の一実施例にかかる光電型エ
ンコーダの基本構成を示す縦断面図が示されており、ま
た図2には図1II−II線での断面図が示されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a vertical sectional view showing a basic structure of a photoelectric encoder according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line II-II of FIG.

【0009】同図において、光電型エンコーダ10は、
そのメインスケール12が移動部材14に設けられ、又
インデックススケール16が移動部材18に設けられて
いる。そして、移動部材14,18の相対移動量を検出
するものである。
In the figure, the photoelectric encoder 10 is
The main scale 12 is provided on the moving member 14, and the index scale 16 is provided on the moving member 18. Then, the relative movement amount of the moving members 14 and 18 is detected.

【0010】インデックススケール16の図1中下面に
は、一個の発光素子20及び八個の受光素子22a,2
2b,…22hが配置されている。発光素子20及び各
受光素子22のリード線は、プリント基板24に固定さ
れている。前記メインスケール12には、図3に示す第
一格子26が設けられ、該第一格子26はマトリックス
状の長方形島状反射格子部2811,2812…281n、2
821,2822…282n、…、28m1,28m2,…28mn
を含む十字状反射式格子よりなる。格子部28のX軸
(列)方向への並びはY軸に平行なピッチP1の格子を
構成し、格子部28のY軸(行)方向への並びはX軸に
平行なピッチP1'の格子を構成する。
On the lower surface of the index scale 16 in FIG. 1, one light emitting element 20 and eight light receiving elements 22a, 2 are provided.
22h are arranged. The lead wires of the light emitting element 20 and each light receiving element 22 are fixed to the printed board 24. Wherein the main scale 12, the first grating 26 is provided as shown in FIG. 3, wherein the first grating 26 is a matrix of rectangular islands reflective grating portion 28 11, 28 12 ... 28 1n , 2
8 2 1 , 28 22 ... 28 2n , ..., 28 m1 , 28 m2 , ... 28 mn
It consists of a cross-shaped reflective grating including. The arrangement of the lattice portions 28 in the X-axis (column) direction constitutes a lattice having a pitch P 1 parallel to the Y-axis, and the arrangement of the lattice portions 28 in the Y-axis (row) direction is a pitch P 1 parallel to the X-axis. 'Constitute the lattice.

【0011】一方、インデックススケール16は、図4
から明らかなように、第二格子30及び第三格子32
a,32b,…32hを備えている。そして、第二格子
30は前記発光素子20に対応する各三角形状の透過格
子部34a,34b,…34dを含む十字状透過式格子
よりなる。また第三格子32a,32b,…32hはそ
れぞれ受光素子22a,22b,…22hに対応する透
過格子よりなる。このため、発光素子20から出光した
光Lは第二格子部34a,34b,…34dを介して第
一格子26に反射され、該反射光は第三格子32a,3
2b,…32hを介して受光素子22a,22b,…2
2hに受光される。
On the other hand, the index scale 16 is shown in FIG.
As is clear from the above, the second grating 30 and the third grating 32
. 32h. The second grating 30 is a cross-shaped transmission grating including the triangular transmission grating portions 34a, 34b, ... 34d corresponding to the light emitting device 20. .. 32h are transmission gratings corresponding to the light receiving elements 22a, 22b ,. Therefore, the light L emitted from the light emitting element 20 is reflected by the first grating 26 via the second grating portions 34a, 34b, ... 34d, and the reflected light is reflected by the third gratings 32a, 3d.
2b, ... 32h through the light receiving elements 22a, 22b ,.
It is received at 2h.

【0012】以上のように、本実施例にかかる光電型エ
ンコーダは、X方向への相対移動に対しては第二格子部
34a,34b、第一格子部28の列方向への並び、第
三格子部32a,32b,32c,32d、受光素子2
2a,22b,22c,22dが、それぞれ三格子型変
位検出器として機能する。また、Y方向への相対移動に
対しては第二格子部34c,34d、第一格子部28の
行方向への並び、第三格子部32e,32f,32g,
32hがそれぞれ三格子型変位検出器として機能する。
As described above, in the photoelectric encoder according to the present embodiment, the second grating portions 34a and 34b, the first grating portion 28 are arranged in the column direction, and the third grating portion is arranged with respect to the relative movement in the X direction. Lattice portions 32a, 32b, 32c, 32d, light receiving element 2
2a, 22b, 22c and 22d each function as a three-lattice type displacement detector. Further, with respect to the relative movement in the Y direction, the second lattice portions 34c, 34d, the first lattice portion 28 are arranged in the row direction, the third lattice portions 32e, 32f, 32g,
Each of 32h functions as a three-lattice displacement detector.

【0013】すなわち、三格子型変位検出器は図5に示
すように3枚の格子の重なり合いの変化により変位量を
検出するものである(Journal of the optical society
of America, 1965, vol.55, No.4, p373-381)。
That is, the three-grating type displacement detector detects the amount of displacement by the change in the overlapping of three gratings as shown in FIG. 5 (Journal of the optical society).
of America, 1965, vol.55, No.4, p373-381).

【0014】図5に示す三格子型変位検出器は、平行配
置された第二格子30及び第三格子32と、両格子3
0,32の間に相対移動可能に平行配置された第一格子
26と、前記第二格子30の図中左側に配置された発光
素子20と、前記第三格子32の図中右側に配置された
受光素子22と、を含む。そして、発光素子20から出
射された光は第二格子30、第一格子26、第三格子3
2を介して受光素子22に至り、該受光素子22は各格
子30,26,32で制限された照明光を光電変換し、
更にプリアンプ52で増幅して検出信号sを得る。
The three-lattice type displacement detector shown in FIG. 5 has a second grating 30 and a third grating 32 arranged in parallel, and both gratings 3.
0 and 32 are arranged in parallel so as to be movable relative to each other, the light emitting element 20 is arranged on the left side of the second grating 30 in the figure, and is arranged on the right side of the third grating 32 in the figure. And a light receiving element 22. Then, the light emitted from the light emitting element 20 receives the second grating 30, the first grating 26, and the third grating 3.
2 to the light receiving element 22, which photoelectrically converts the illumination light limited by the gratings 30, 26 and 32,
Further, it is amplified by the preamplifier 52 to obtain the detection signal s.

【0015】ここで、第一格子26が、第二格子30及
び第三格子32に対して例えばx方向に相対移動する
と、発光素子20からの照明光のうち、格子30,2
6,32により遮蔽される光量が徐々に変化し、検出信
号sは略正弦波として出力される。そして、前記第一格
子26のピッチP1と検出信号sの波長Pが対応し、該
検出信号sの波長及びその分割値より前記基準格子26
の相対移動量を測定するものである。
Here, when the first grating 26 moves relative to the second grating 30 and the third grating 32, for example, in the x direction, the gratings 30 and 2 of the illumination light from the light emitting element 20.
The amount of light blocked by 6, 32 gradually changes, and the detection signal s is output as a substantially sine wave. The pitch P 1 of the first grating 26 and the wavelength P of the detection signal s correspond to each other, and the reference grating 26 is obtained from the wavelength of the detection signal s and its division value.
The amount of relative movement of is measured.

【0016】従って、第一格子26を移動部材14に、
第二格子30及び第三格子32を移動部材18にそれぞ
れ設置することにより、両移動部材の相対移動量を検出
することができる。そして、本実施例においては第一格
子26の格子部28のX軸方向への並びはY軸に平行で
ピッチP1の格子が構成し、格子部28のY軸方向への
並びはX軸に平行でピッチP1'の格子を構成している。
Therefore, the first grating 26 is attached to the moving member 14,
By disposing the second grating 30 and the third grating 32 on the moving member 18, the relative movement amount of both moving members can be detected. In this embodiment, the grid portions 28 of the first grid 26 are arranged in the X-axis direction so as to be parallel to the Y-axis and have a pitch P 1. The grid portions 28 are arranged in the Y-axis direction in the X-axis direction. To form a grating having a pitch P 1 'parallel to.

【0017】また、第二格子30の格子部34a,34
bにはY軸に平行でピッチP2の格子が形成され、格子
部24c,34dにはX軸に平行でピッチP2'の格子が
形成されている。更に、第三格子32aにはAx相用の
格子、第三格子32bにはAx'相用の格子、第三格子
32cにはBx相用の格子、第三格子32dにはBx'
相用の格子がそれぞれY軸に平行にピッチP3で形成さ
れ、第三格子32eにはAy相用の格子、第三格子32
fにはAy'相用の格子、第三格子32gにはBy相用
の格子、第三格子32hにはBy'相用の格子がそれぞ
れX軸に平行にピッチP3'で形成されている。
The lattice portions 34a, 34 of the second lattice 30 are also provided.
A lattice having a pitch P 2 is formed in b in parallel with the Y axis, and a lattice having a pitch P 2 ′ in parallel with the X axis is formed in the lattice portions 24c and 34d. Further, the third lattice 32a has an Ax phase lattice, the third lattice 32b has an Ax 'phase lattice, the third lattice 32c has a Bx phase lattice, and the third lattice 32d has Bx' phase.
The phase gratings are formed in parallel with the Y-axis at a pitch P 3 , and the third grating 32e includes the Ay phase grating and the third grating 32.
are formed in parallel with a pitch P 3 'on the' lattice, grating for By phase Third grid 32 g, By the third grating 32h for phase 'X-axis respectively grating for phase Ay to f .

【0018】従って、Ax=0゜とすると、Axに対
し、 Ax'=180゜(1/2P3異なる) Bx=90゜(1/4P3異なる) Bx'=270゜(3/4P3異なる) また、Ay=O゜とすると、Ayに対して Ay'=180゜(1/2P3'異なる) By=90゜(1/4P3'異なる) By'=270゜(3/4P3'異なる) となるように目盛が付けられている。
Therefore, assuming that Ax = 0 °, Ax ′ = 180 ° (1 / 2P 3 different) Bx = 90 ° (1 / 4P 3 different) Bx ′ = 270 ° (3 / 4P 3 different) with respect to Ax. ) also, when Ay = O °, different Ay '= 180 ° (1 / 2P 3' relative to Ay) By A = 90 ° (1 / 4P 3 'differs) By A' = 270 ° (3 / 4P 3 ' Different) are graduated.

【0019】この結果、受光素子22a,22b,22
c,22dからは、それぞれπ/2ずつ位相のずれたA
x相、Ax'相、Bx相、Bx'相の信号を得ることがで
き、Ax相−Ax'相より差動振幅増幅されたAx相出
力を、またBx相−Bx'相より差動振幅増幅されたB
x相出力を得る。そして、該Ax相出力及びBx相出力
の位相のずれ方向等よりスケールのX方向への相対移動
方向の弁別を行なうと共に、電気的に検出信号の分割を
行ない、分解能の高い変位量検出を行なっている。一
方、受光素子22e,22f,22g,22hからはそ
れぞれπ/2ずつ位相のずれたAy相、Ay'相、By
相、By'相の信号を得ることができ、前記X方向と同
様にして移動部材14,18のY方向の位相弁別及び相
対移動距離を検出することができる。以上のように、第
一実施例にかかる光電型エンコーダによれば、X方向及
びY方向の移動方向及び移動距離を検出することができ
る。
As a result, the light receiving elements 22a, 22b, 22
A shifted by π / 2 from A and C, respectively.
Signals of x phase, Ax 'phase, Bx phase, and Bx' phase can be obtained, and Ax phase output which is differential amplitude amplified from Ax phase-Ax 'phase and differential amplitude from Bx phase-Bx' phase. Amplified B
Obtain the x-phase output. Then, the relative displacement direction of the scale in the X direction is discriminated from the phase shift direction of the Ax phase output and the Bx phase output, and the detection signal is electrically divided to detect the displacement amount with high resolution. ing. On the other hand, from the light receiving elements 22e, 22f, 22g, and 22h, there are Ay phase, Ay ′ phase, and By phase shifted by π / 2.
Phase and By ′ phase signals can be obtained, and the phase discrimination and relative movement distance of the moving members 14 and 18 in the Y direction can be detected in the same manner as in the X direction. As described above, the photoelectric encoder according to the first embodiment can detect the moving direction and the moving distance in the X direction and the Y direction.

【0020】また、本実施例ではX方向の移動検出を行
なう列方向格子部28と、Y方向の移動検出を行なう行
方向格子部28のピッチが異なって設けられている。す
なわち、列方向へのピッチは比較的粗いピッチP1が刻
まれており、X方向への移動の高速読取りが可能であ
る。一方、行方向へのピッチは比較的細かいピッチP1'
が刻まれており、Y方向への移動の高分解能読取りが可
能である。このように移動部材の移動特性に応じてそれ
ぞれのピッチを決定することが可能であり、しかもその
ピッチに従った格子の形成は従来と同じ製法により極め
て正確に行なうことができる。
Further, in the present embodiment, the pitch of the column directional grid portion 28 for detecting the movement in the X direction and the pitch of the row directional grid portion 28 for detecting the movement in the Y direction are provided differently. That is, the pitch in the column direction is a relatively coarse pitch P 1 , and high-speed reading of movement in the X direction is possible. On the other hand, the pitch in the row direction is relatively fine P 1 '
Is engraved, and high-resolution reading of movement in the Y direction is possible. In this way, it is possible to determine the respective pitches according to the movement characteristics of the moving member, and furthermore, the formation of the grating according to the pitch can be performed extremely accurately by the same manufacturing method as the conventional one.

【0021】尚、例えば次のようにピッチを構成するこ
とが好適である。 P1=40μm(明部長=暗部長=20μm) P2=160μm(明部長=40μm、暗部長=120μ
m) P3=80μm(明部長=暗部長=40μm) P1'=20μm(明部長=暗部長=10μm) P2'=80μm(明部長=20μm、暗部長=60μm) P3'=40μm(明部長=暗部長=20μm) このように第二格子のピッチを第一格子のピッチより大
とすると共に、その光透過部の長さを第一格子のピッチ
の長さ以下とすることにより、第二格子を透過した照明
光間の独立性(インコヒーレンシイ)が向上し、検出信
号のSN比が高くなる。このため、信号処理が容易とな
り、高精度の変位検出が可能となる。
It is preferable that the pitch be configured as follows, for example. P 1 = 40 μm (light portion length = dark portion length = 20 μm) P 2 = 160 μm (bright portion length = 40 μm, dark portion length = 120 μ
m) P 3 = 80 μm (light portion length = dark portion length = 40 μm) P 1 ′ = 20 μm (bright portion length = dark portion length = 10 μm) P 2 ′ = 80 μm (light portion length = 20 μm, dark portion length = 60 μm) P 3 ′ = 40 μm (Bright portion length = Dark portion length = 20 μm) By thus setting the pitch of the second grating to be larger than the pitch of the first grating and setting the length of the light transmitting portion to be equal to or less than the pitch of the first grating. , The independence (incoherency) between the illumination light transmitted through the second grating is improved, and the SN ratio of the detection signal is increased. Therefore, signal processing becomes easy, and highly accurate displacement detection becomes possible.

【0022】また、ピッチ構成は次のようにすることも
好適である。 P1=100μm(明部長=暗部長=50μm) P2=400μm(明部長=100μm、暗部長=300
μm) P3=200μm(明部長=暗部長=100μm) P1'=40μm(明部長=暗部長=20μm) P2'=160μm(明部長=40μm、暗部長=120μ
m) P3'=80μm(明部長=暗部長=40μm)
It is also preferable that the pitch structure be as follows. P 1 = 100 μm (light portion length = dark portion length = 50 μm) P 2 = 400 μm (light portion length = 100 μm, dark portion length = 300
μm) P 3 = 200 μm (light portion length = dark portion length = 100 μm) P 1 ′ = 40 μm (bright portion length = dark portion length = 20 μm) P 2 ′ = 160 μm (bright portion length = 40 μm, dark portion length = 120 μm
m) P 3 '= 80 μm (light portion length = dark portion length = 40 μm)

【0023】さらに、例えば次のようにピッチを構成す
ることが好適である。 P1=20μm(明部長=暗部長=10μm) P2=20μm(明部長=暗部長=10μm) P3=20μm(明部長=暗部長=10μm) P1'=10μm(明部長=暗部長=5μm) P2'=10μm(明部長=暗部長=5μm) P3'=10μm(明部長=暗部長=5μm) このように第一格子、第二格子、第三格子のピッチを等
しくし、さらに可動スケール26とインデックススケー
ル16の格子間隔をdとすると、この例では P1=20μm>P1'=10μm であるから、可動スケール26とインデックススケール
16の格子間隔dを、 d≧P1 2/2λ に設定すれば、格子間隔dの変動に対して出力がほとん
ど変動しないXYエンコーダが実現できる。なお、P1
=P1'のときは、どちらを採用してもよい。この構成の
特徴として、 (1)X方向へ1ピッチP1送ると、出力信号は2ピッ
チP1出力され、光学的な2分割信号が得られるため、
電気分割回路が容易に構成される。 (2)格子間隔dの変動に対して寛容なため、例えばP
1又はP1'が40μm以下の細かいピッチのシステムに適
する。
Further, it is preferable to configure the pitch as follows, for example. P 1 = 20 μm (light portion length = dark portion length = 10 μm) P 2 = 20 μm (bright portion length = dark portion length = 10 μm) P 3 = 20 μm (bright portion length = dark portion length = 10 μm) P 1 ′ = 10 μm (bright portion length = dark portion length) = 5 μm) P 2 '= 10 μm (light portion length = dark portion length = 5 μm) P 3 ' = 10 μm (bright portion length = dark portion length = 5 μm) In this way, the pitches of the first grating, the second grating, and the third grating are made equal. Further, assuming that the lattice spacing between the movable scale 26 and the index scale 16 is d, in this example, P 1 = 20 μm> P 1 '= 10 μm. Therefore, the lattice spacing d between the movable scale 26 and the index scale 16 is d ≧ P By setting 1 2 / 2λ, it is possible to realize an XY encoder whose output hardly fluctuates in response to fluctuations in the lattice spacing d. Note that P 1
When = P 1 ', either one may be adopted. The features of this configuration are as follows: (1) When 1 pitch P 1 is sent in the X direction, the output signal is output by 2 pitches P 1 and an optical split signal is obtained.
The electric division circuit is easily configured. (2) Since it is tolerant of fluctuations in the lattice spacing d, for example, P
Suitable for systems with fine pitch where 1 or P 1 'is 40 μm or less.

【0024】また、ピッチ構成は同様に次のようにする
ことも好適である。 P1=40μm(明部長=暗部長=20μm) P2=80μm(明部長=暗部長=40μm) P3=80μm(明部長=暗部長=40μm) P1'=10μm(明部長=暗部長=5μm) P2'=10μm(明部長=暗部長=5μm) P3'=10μm(明部長=暗部長=5μm) このように構成すると、X軸方向に1ピッチ送った場
合、1ピッチP1の出力信号が得られる。Y軸方向に1
ピッチP1'送ると、2ピッチP1'の出力信号が得られ
る。従って、X軸方向は分解能が粗く、高速度の検出、
Y軸方向は分解能が高く低速度の検出に適する。
Further, it is also preferable that the pitch constitution is as follows. P 1 = 40 μm (light portion length = dark portion length = 20 μm) P 2 = 80 μm (bright portion length = dark portion length = 40 μm) P 3 = 80 μm (bright portion length = dark portion length = 40 μm) P 1 ′ = 10 μm (bright portion length = dark portion length) = 5 μm) P 2 '= 10 μm (light portion length = dark portion length = 5 μm) P 3 ' = 10 μm (bright portion length = dark portion length = 5 μm) With this configuration, when one pitch is sent in the X-axis direction, 1 pitch P An output signal of 1 is obtained. 1 in the Y-axis direction
When the pitch P 1 'is sent, an output signal of 2 pitches P 1 ' is obtained. Therefore, the resolution is coarse in the X-axis direction, high-speed detection,
The Y-axis direction has high resolution and is suitable for low-speed detection.

【0025】更に本考案においては、第一格子26を広
範囲にわたって形成することができ、検出の広範囲化も
可能である。また、第一格子26の形状は、メインスケ
ール及びインデックススケールの相対移動距離等を考慮
して任意に決定することができる。また、メインスケー
ルに設けられたマトリックス状の島状格子28を透過部
とし、島状格子でない部分29を反射部として構成する
ことも可能である。
Further, in the present invention, the first grating 26 can be formed over a wide range, and the detection range can be widened. Further, the shape of the first grid 26 can be arbitrarily determined in consideration of the relative movement distance of the main scale and the index scale. It is also possible to configure the matrix-shaped island-shaped grating 28 provided on the main scale as a transmissive portion and the non-island-shaped grating portion 29 as a reflective portion.

【0026】[0026]

【考案の効果】以上説明したように本考案にかかる光電
型エンコーダによれば、メインスケールにマトリックス
状の島状第一格子を、またインデックススケールに直交
する格子を十字状に設けたので、簡易な構成でしかも広
範囲のX,Y方向変位検出を行なうことが可能となる。
As described above, according to the photoelectric encoder according to the present invention, the main scale is provided with the matrix-shaped island-shaped first grating, and the grid orthogonal to the index scale is provided in a cross shape. With such a configuration, it is possible to detect displacement in the X and Y directions over a wide range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例にかかる光電型エンコーダの
概略構成の説明図である。
FIG. 1 is an explanatory diagram of a schematic configuration of a photoelectric encoder according to an embodiment of the present invention.

【図2】前記実施例にかかる光電型エンコーダの発光素
子及び受光素子の配置の説明図である。
FIG. 2 is an explanatory diagram of an arrangement of light emitting elements and light receiving elements of the photoelectric encoder according to the embodiment.

【図3】前記実施例にかかる光電型エンコーダのメイン
スケール(第一格子)の説明図である。
FIG. 3 is an explanatory diagram of a main scale (first grating) of the photoelectric encoder according to the embodiment.

【図4】前記実施例にかかる光電型エンコーダのインデ
ックススケール(第二格子及び第三格子)の説明図であ
る。
FIG. 4 is an explanatory diagram of index scales (second grating and third grating) of the photoelectric encoder according to the embodiment.

【図5】前記実施例にかかる光電型エンコーダの移動検
出原理の説明図である。
FIG. 5 is an explanatory diagram of a movement detection principle of the photoelectric encoder according to the embodiment.

【符号の説明】[Explanation of symbols]

10 光電型エンコーダ 12 メインスケール 16 インデックススケール 20 発光素子 22 受光素子 26,126 第一格子 30 第二格子 32 第三格子 10 Photoelectric encoder 12 Main scale 16 Index scale 20 Light emitting element 22 Light receiving element 26,126 First grating 30 Second grating 32 Third grating

───────────────────────────────────────────────────── フロントページの続き (72)考案者 黒木 真吾 神奈川県川崎市高津区坂戸165番地 株式 会社 ミツトヨ 開発研究所内 (56)参考文献 特開 平1−272917(JP,A) 特開 平2−98630(JP,A) 特開 平2−232520(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shingo Kuroki, 165 Sakado, Takatsu-ku, Kawasaki-shi, Kanagawa Inside Mitutoyo R & D Laboratories, Inc. (56) Reference JP-A-1-272917 (JP, A) JP-A-2-27 98630 (JP, A) JP-A-2-232520 (JP, A)

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】マトリックス状に島状第一格子が形成され
るメインスケールと、 前記メインスケールに対し二次元方向に相対移動可能に
並列配置された透過式第二格子と、該第二格子の外周部
に透過式第三格子が設けられているインデックススケー
ルと、 を含む光電型エンコーダにおいて、 前記第一格子は反射式島状格子よりなり、前記透過式第二格子は頂点を中心部に向けた同型の三角
形状の四片の格子からなり前記三角形状の四片の格子の向きは三角形の頂点から底
辺に向けて並行となり格子の向きが同じで点対称となる二片一組の前記三角形
状格子を二組で十字状に交差させ、互いに隣接させるこ
とによって方形状となっており透過式第三格子は、前記透過式第二格子の外周部に、該
第二格子の三角形状の各格子の向きと並行になるように
設けられ 、 前記透過式第二格子の裏面に一つの発光素子が、また透
過式第三格子の裏面に受光素子が設けられたことを特徴
とする三格子型の光電型エンコーダ。
1. A main scale in which island-shaped first gratings are formed in a matrix, a transmissive second grating arranged in parallel so as to be relatively movable in a two-dimensional direction with respect to the main scale, and a second grating of the second gratings. In a photoelectric encoder including an index scale having a transmission type third grating provided on an outer peripheral portion thereof, the first grating includes a reflection type island grating, and the transmission type second grating has a vertex directed toward a central portion. Same shape triangle
It consists of a four-sided grid of shapes, and the orientation of the four-sided grid of triangles is
A pair of triangles that are parallel to each other and point-symmetrical with the same lattice orientation
Two sets of lattices should be crossed in a cross and adjacent to each other.
The transmission-type third grating is formed in a square shape by and is formed on the outer periphery of the transmission-type second grating.
So that it is parallel to the orientation of each triangular lattice of the second lattice
A three-grating photoelectric encoder, wherein one light emitting element is provided on the back surface of the transmission type second grating and one light receiving element is provided on the back surface of the transmission type third grating.
【請求項2】 請求項1記載のエンコーダにおいて、 第一格子は反射式島状格子よりなり、 またインデックススケールには透過式十字状第二格子
と、第二格子の外周部に設けられた透過式第三格子が設
けられ、 前記透過式十字状第二格子の裏面に発光素子が、また透
過式第三格子の裏面に受光素子が設けられたことを特徴
とする光電型エンコーダ。
2. The encoder according to claim 1, wherein the first grating comprises a reflective island grating, the index scale has a transmissive cross-shaped second grating, and a transmissive element provided on the outer periphery of the second grating. An optoelectronic encoder characterized in that an expression third grating is provided, a light emitting element is provided on a back surface of the transmission type cross-shaped second grating, and a light receiving element is provided on a back surface of the transmission type third grating.
JP1991092225U 1991-03-22 1991-10-14 Photoelectric encoder Expired - Fee Related JPH0755457Y2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1991092225U JPH0755457Y2 (en) 1991-05-13 1991-10-14 Photoelectric encoder
US07/848,116 US5204524A (en) 1991-03-22 1992-03-09 Two-dimensional optical encoder with three gratings in each dimension
GB9205410A GB2254690B (en) 1991-03-22 1992-03-12 Two-dimensional optical encoder
DE4209149A DE4209149C2 (en) 1991-03-22 1992-03-20 Displacement detectors for detecting two-dimensional displacements

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4326691 1991-05-13
JP3-43266 1991-05-13
JP1991092225U JPH0755457Y2 (en) 1991-05-13 1991-10-14 Photoelectric encoder

Publications (2)

Publication Number Publication Date
JPH058427U JPH058427U (en) 1993-02-05
JPH0755457Y2 true JPH0755457Y2 (en) 1995-12-20

Family

ID=26383014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991092225U Expired - Fee Related JPH0755457Y2 (en) 1991-03-22 1991-10-14 Photoelectric encoder

Country Status (1)

Country Link
JP (1) JPH0755457Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4444469B2 (en) 2000-08-07 2010-03-31 株式会社ミツトヨ Optical displacement measuring device
JP6664155B2 (en) * 2015-06-11 2020-03-13 株式会社ミツトヨ Optical encoder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2562479B2 (en) * 1988-04-25 1996-12-11 株式会社 ミツトヨ Reflective XY encoder
JPH06103193B2 (en) * 1988-10-05 1994-12-14 株式会社ミツトヨ Photoelectric encoder

Also Published As

Publication number Publication date
JPH058427U (en) 1993-02-05

Similar Documents

Publication Publication Date Title
JPH07888Y2 (en) Optical displacement detector
US5204524A (en) Two-dimensional optical encoder with three gratings in each dimension
US5576537A (en) Photoelectric position measuring system using gratings having specified dimensions to suppress harmonics
EP2607858B1 (en) Adaptable resolution optical encoder
US5448358A (en) Optical apparatus and displacement-information measuring apparatus using the same
JPH0132450B2 (en)
JP3644687B2 (en) Photoelectric distance and angle measuring device for measuring the relative displacement of two objects
JPH09196705A (en) Displacement measuring apparatus
EP1477776B1 (en) Photoelectric encoder
JPH05248895A (en) Light-electron type graticule reader
EP0591832A1 (en) Signal processing method and displacement information measuring device
JPH04157319A (en) Encoder utilizing silhouette pattern
CN101300462B (en) Opto-electrical angle measuring apparatus
JPH0755457Y2 (en) Photoelectric encoder
WO1993021639A1 (en) X-y table apparatus
JPH01272917A (en) Reflection type xy encoder
JPH0747694Y2 (en) Photoelectric encoder
JPS5822914A (en) Zero point detecting device of photoelectric encoder
JPS61182522A (en) Linear scale measuring device
JPS63290916A (en) Optical linear scale device
JPH0650754A (en) Inclination-angle and vibration sensor and inclination-angle measuring method using the same
JP2576791Y2 (en) XY table
JPH0617045Y2 (en) Optical displacement detector
JP2822225B2 (en) Optical displacement detector
JPS5927846B2 (en) Photoelectric encoder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees