JPH0755224A - Room temperature adjustment control method - Google Patents

Room temperature adjustment control method

Info

Publication number
JPH0755224A
JPH0755224A JP5226559A JP22655993A JPH0755224A JP H0755224 A JPH0755224 A JP H0755224A JP 5226559 A JP5226559 A JP 5226559A JP 22655993 A JP22655993 A JP 22655993A JP H0755224 A JPH0755224 A JP H0755224A
Authority
JP
Japan
Prior art keywords
temperature
room temperature
compressor
room
delay time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5226559A
Other languages
Japanese (ja)
Other versions
JP3129050B2 (en
Inventor
Hironobu Fujita
博信 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP05226559A priority Critical patent/JP3129050B2/en
Publication of JPH0755224A publication Critical patent/JPH0755224A/en
Application granted granted Critical
Publication of JP3129050B2 publication Critical patent/JP3129050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To ensure comfortable heating and cooling by estimating operation-off temperature based upon a room temperature change between the room temperature upon operation-off and that after the lapse of delay time of compressor operation starting and based upon a temperature difference between set temperature and the room temperature after the lapse of the delay time of the operation starting. CONSTITUTION:A compressor 10 is rotated at predetermined revolutions in operation, and starts its operation as room temperature Tr becomes operation-on temperature Ton while it stops its operation as the room temperature Tr becomes operation-off temperature Toff. A room temperature control part corrects the operation-off temperature Toff until that by estimating the proper operation-off temperature Toff until predetermined delay time Td is lapsed since the compressor 10 stops after the room temperature Tr becomes the operation-off temperature Toff. Then, the corrected operation-off temperature Toff is used to judge whether or not the room temperature Tr reaches the operation-off temperature Toff. Operation and interruption of the compressor 10 is fuzzy-controlled by correcting the operation-off temperature Toff at all times in such a manner, whereby the room temperature Tr is adjusted to about set temperature Ts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は室温調節制御方法に関す
る。具体的には、一定回転数の圧縮機を用いて冷房運転
や暖房運転を行なう空調機(空気調和機)による室温調
節制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a room temperature control method. Specifically, the present invention relates to a room temperature adjustment control method by an air conditioner (air conditioner) that performs a cooling operation and a heating operation using a compressor having a constant rotation speed.

【0002】[0002]

【従来の技術】一定速の空調機、すなわち一定回転数の
圧縮機を用い圧縮機をオン/オフ制御するタイプの空調
機においては、設定温度に応じて一定の運転オン温度及
び運転オフ温度が決められ、室温が運転オン温度に達す
ると圧縮機を運転し、室温が運転オフ温度に達すると圧
縮機を停止させ、室温を設定温度近辺に調節している。
2. Description of the Related Art In a constant speed air conditioner, that is, in an air conditioner of a type in which a compressor having a constant rotation speed is used for on / off control of the compressor, a constant operation on-temperature and operation off-temperature depend on a set temperature. When the room temperature reaches the operation-on temperature, the compressor is operated, and when the room temperature reaches the operation-off temperature, the compressor is stopped and the room temperature is adjusted to the vicinity of the set temperature.

【0003】図6は従来の空調機における室温制御のよ
うすを示す図であって、図6(a)は暖房運転時におけ
る室温の変化の状態を示し、図6(b)は圧縮機の制御
状態(運転,停止)を示している。図6に従って暖房運
転時における室温制御のようすを説明する。空調機を暖
房オンにすると室温が上昇し、室温が運転オフ温度に達
すると圧縮機が停止し、室温は徐々に低下する。室温が
低下して運転オン温度になると、圧縮機が再び運転を開
始するが、圧縮機の停止直後に再起動すると圧縮機に過
大な圧力がかかるので、運転停止から一定の遅延時間T
d(3分程度)が経過するまではたとえ運転オン温度に
なっても圧縮機を運転させないようにし、圧縮機を保護
している。従って、空調機を暖房オンにした始めのうち
は、室温が運転オン温度になっても圧縮機が運転せず、
遅延時間Tdを経過した時に圧縮機が運転を開始する。
空調機を暖房オンにした直後では、部屋の壁や床、天井
等が冷え込んでいるので、圧縮機が停止した後遅延時間
Tdの間に室温が急激に低下するが、部屋の壁や床、天
井等が暖まってくると遅延時間Td中における室温低下
は緩和され、ついには遅延時間Tdの後に室温が運転オ
ン温度に到達するようになる。この後は運転オン温度と
運転オフ温度との間で圧縮機が運転及び停止され、室温
も運転オフ温度と運転オン温度との間に保たれる。
FIG. 6 is a diagram showing the room temperature control in a conventional air conditioner. FIG. 6 (a) shows the state of room temperature change during heating operation, and FIG. 6 (b) shows the compressor control. The status (running, stop) is shown. The room temperature control during the heating operation will be described with reference to FIG. When heating the air conditioner is turned on, the room temperature rises, and when the room temperature reaches the operation-off temperature, the compressor stops and the room temperature gradually decreases. When the room temperature decreases to the operation-on temperature, the compressor restarts operation, but if restarted immediately after the compressor is stopped, excessive pressure is applied to the compressor.
Until d (about 3 minutes) has elapsed, the compressor is not operated even if it reaches the operating ON temperature, and the compressor is protected. Therefore, at the beginning of heating the air conditioner on, the compressor does not operate even when the room temperature reaches the operation on temperature,
When the delay time Td has passed, the compressor starts operating.
Immediately after the air conditioner is turned on, the room walls, floor, ceiling, etc. are cold, so the room temperature drops sharply during the delay time Td after the compressor stops, but the room walls and floor, When the ceiling or the like is heated, the decrease in room temperature during the delay time Td is alleviated, and finally the room temperature reaches the operation-on temperature after the delay time Td. After this, the compressor is operated and stopped between the operation-on temperature and the operation-off temperature, and the room temperature is also maintained between the operation-off temperature and the operation-on temperature.

【0004】[0004]

【発明が解決しようとする課題】上記のような従来の空
調機の室温調節制御方法においては、空調機を暖房オン
にした直後では、部屋の壁や床、天井等が冷え込んだ状
態となっており、たとえ室温が設定温度に達したとして
も部屋の壁や床、天井等はまだまだ冷たく、圧縮機が停
止すると周囲からの輻射で室温が急激に低下してしまう
(図6のイ領域)。室温が低下すれば直ちに圧縮機を運
転すれば良いが、圧縮機を一旦停止すると圧縮機保護の
ために遅延機能が働き、一定の遅延時間Tdが経過する
までは圧縮機の運転を再開できないので、圧縮機が停止
している間かなり肌寒く感じるという欠点があった。
In the conventional method for controlling the room temperature of the air conditioner as described above, immediately after the air conditioner is turned on, the walls, floor, ceiling, etc. of the room are cooled. However, even if the room temperature reaches the set temperature, the walls, floor, ceiling, etc. of the room are still cold, and when the compressor stops, the room temperature drops sharply due to radiation from the surroundings (area B in FIG. 6). When the room temperature drops, the compressor may be operated immediately, but once the compressor is stopped, the delay function works to protect the compressor, and the operation of the compressor cannot be resumed until a certain delay time Td elapses. There was a drawback that it felt quite chilly while the compressor was stopped.

【0005】同様に、冷房運転している場合には、暖房
運転の場合と丁度逆になり、冷房オン直後においては、
部屋の壁や床、天井などの熱により圧縮機の停止後遅延
時間Tdが経過するまでの間に室内の温度が上がり過
ぎ、暑く感じるという欠点があった。
Similarly, when the cooling operation is performed, the situation is exactly the same as the heating operation, and immediately after the cooling is turned on,
Due to the heat of the walls, floor, and ceiling of the room, the temperature of the room has risen too much until the delay time Td elapses after the compressor is stopped.

【0006】本発明は叙上の従来例の欠点に鑑みてなさ
れたものであり、その目的とするところは、部屋の壁や
床、天井等の冷え込み具合や暖まり具合などに応じて空
調機によって快適な暖房や冷房を行なうことができる室
温調節制御方法を提供することにある。
The present invention has been made in view of the above-mentioned drawbacks of conventional examples, and an object thereof is to provide an air conditioner according to how cold or warm the wall, floor, or ceiling of a room is. It is an object of the present invention to provide a room temperature adjustment control method capable of comfortable heating and cooling.

【0007】[0007]

【課題を解決するための手段】本発明による室温調節制
御方法は、室温を検出して運転オン温度で圧縮機を運転
し、運転オフ温度で圧縮機を停止する室温調節制御方法
において、運転オフ時と圧縮機運転開始遅延時間経過後
との室温変化、および設定温度と前記運転開始遅延時間
経過後の室温との温度差から前記運転オフ温度を求め、
求めた運転オフ温度によって圧縮機を停止させるように
したことを特徴としている。
SUMMARY OF THE INVENTION A room temperature control method according to the present invention is a room temperature control method for detecting a room temperature to operate a compressor at an operation-on temperature and stopping the compressor at an operation-off temperature. Time and the room temperature change after the compressor operation start delay time has elapsed, and the operation off temperature is obtained from the temperature difference between the set temperature and the room temperature after the operation start delay time has elapsed,
The feature is that the compressor is stopped according to the obtained operation-off temperature.

【0008】また、上記方法においては、ファジイ推論
により前記室温変化及び温度差から室内の冷え込み具合
や暖まり具合と快適感とをそれぞれ推論し、その推論結
果から運転オフ温度を求めるようにすることが好まし
い。
Further, in the above method, it is possible to infer the degree of coldness or warmth of the room and the feeling of comfort from the room temperature change and the temperature difference by fuzzy inference, and obtain the operation-off temperature from the inference result. preferable.

【0009】[0009]

【作用】本発明は、圧縮機の運転オフ時と運転開始遅延
時間経過後との室温変化、および設定温度と前記空調機
運転開始遅延時間経過後の室温との温度差から求めた運
転オフ温度によって圧縮機を制御するものであって、室
内の冷え込み具合や暖まり具合と快適感とを考慮しなが
ら常に適正な運転オフ温度で圧縮機を停止させることが
できる。従って、暖房運転の場合でいえば、運転開始当
初の室内がまだまだ冷えている状態では設定オフ温度を
高く設定して遅延時間後に室温が大きく低下するのを防
止することができ、室内が暖まってくるとその暖まり具
合に応じて運転オフ温度を設定温度に近づけてゆくこと
ができる。また、冷房運転の場合には、運転開始当初の
室内にまだ熱がこもっている状態では設定オフ温度を低
く設定して遅延時間後に室温が急に高くなるのを防止で
き、室内が冷えてくるとその冷え具合に応じて運転オフ
温度を設定温度に近づけてゆくことができる。
According to the present invention, the operation-off temperature obtained from the change in room temperature between when the compressor is off and after the operation start delay time has elapsed, and the temperature difference between the set temperature and the room temperature after the air-conditioner operation start delay time has elapsed. The compressor is controlled by the method, and the compressor can always be stopped at an appropriate operation-off temperature in consideration of how cold or warm the room is and how comfortable it is. Therefore, in the case of heating operation, when the room is still cold at the beginning of operation, the set off temperature can be set high to prevent the room temperature from dropping significantly after the delay time, and the room warms up. Then, the operation-off temperature can be brought closer to the set temperature according to the degree of warming. Also, in the case of cooling operation, if the heat is still trapped inside the room at the beginning of operation, the set off temperature can be set low to prevent the room temperature from suddenly rising after the delay time, and the room becomes cool. It is possible to bring the operation-off temperature closer to the set temperature according to the degree of cooling.

【0010】従って、本発明によれば、運転開始直後か
ら室温を快適な温度に保つことができ、快適感が向上す
る。また、すばやく室温を設定温度近辺に近づけること
ができ、室温を速やかに安定させることができる。
Therefore, according to the present invention, the room temperature can be kept at a comfortable temperature immediately after the start of operation, and the comfort feeling is improved. Further, the room temperature can be quickly brought close to the set temperature, and the room temperature can be quickly stabilized.

【0011】[0011]

【実施例】図1は本発明の一実施例による空調機Aを示
す概略構成図である。当該空調機Aは、室内機1と室外
機2からなる。室外機2の内部においては、四方弁3
と、室外熱交換器4と、キャピラリチューブ5と、逆止
弁6及びキャピラリチューブ7を並列接続したものとを
接続して熱媒循環回路8が構成されている。また、四方
弁3の別な流入口及び流出口にはアキュムレータ9及び
圧縮機10を含むサブ回路11が接続されている。12
は送風ファンである。室内機1の内部には、吸込口16
と対向させて室温センサ13及び室内熱交換器14が配
設されており、室内熱交換器14は室外機2の熱媒循環
回路8に接続されている。また、15は吸込口16から
吸引され室内熱交換器14と熱交換した空気を吹出口1
7から強制的に吹き出させるための送風ファン、18は
室内熱交換器14から落ちる水滴を受けて排出するため
のドレンパンである。
1 is a schematic configuration diagram showing an air conditioner A according to an embodiment of the present invention. The air conditioner A includes an indoor unit 1 and an outdoor unit 2. Inside the outdoor unit 2, the four-way valve 3
The outdoor heat exchanger 4, the capillary tube 5, and the check valve 6 and the capillary tube 7 connected in parallel are connected to form a heat medium circulation circuit 8. A sub-circuit 11 including an accumulator 9 and a compressor 10 is connected to another inflow port and outflow port of the four-way valve 3. 12
Is a blower fan. A suction port 16 is provided inside the indoor unit 1.
A room temperature sensor 13 and an indoor heat exchanger 14 are disposed so as to face each other, and the indoor heat exchanger 14 is connected to the heat medium circulation circuit 8 of the outdoor unit 2. In addition, 15 is the air that is sucked from the suction port 16 and exchanges heat with the indoor heat exchanger 14,
A blower fan for forcibly blowing out from 7 and a drain pan 18 for receiving and discharging water drops falling from the indoor heat exchanger 14.

【0012】冷房運転時においては、四方弁3の流通方
向は図1に破線で示す方向に切り替えられ、一般的な冷
房装置と同様な作用によって室内冷房を行なう。すなわ
ち、冷房運転時には熱媒(冷媒)は図1の破線矢印で示
す方向に循環し、圧縮機10及びキャピラリチューブ5
間の室外熱交換器4側の区間の熱媒が圧縮機10によっ
て凝縮させられると共に熱媒の凝縮熱が送風ファン12
によって室外熱交換器4から屋外へ排出される。この凝
縮された熱媒をキャピラリチューブ5及び逆止弁6を通
過させて室内熱交換器14へ循環させて室内熱交換器1
4側で気化させる熱力学的サイクルを繰り返すと、キャ
ピラリチューブ5を通過した熱媒は室内熱交換器14側
で膨張して気化し、熱媒が気化する際に気化熱として周
囲の熱を奪う。従って、室内機1の吸込口16から室内
機1内へ吸引された空気は室内熱交換器14と熱交換し
て冷却され、送風ファン15によって室内機1の吹出口
17から室内へ冷風が吹き出され、室内の冷房が行なわ
れる。
During the cooling operation, the flow direction of the four-way valve 3 is switched to the direction shown by the broken line in FIG. 1, and the indoor cooling is performed by the same operation as a general cooling device. That is, during the cooling operation, the heat medium (refrigerant) circulates in the direction shown by the broken line arrow in FIG. 1, and the compressor 10 and the capillary tube 5
The heat medium in the section on the outdoor heat exchanger 4 side is condensed by the compressor 10 and the heat of condensation of the heat medium is blown by the blower fan 12.
Is discharged from the outdoor heat exchanger 4 to the outside. The condensed heat medium is passed through the capillary tube 5 and the check valve 6 and circulated to the indoor heat exchanger 14 to generate the indoor heat exchanger 1.
When the thermodynamic cycle of vaporization on the 4th side is repeated, the heat medium that has passed through the capillary tube 5 expands and vaporizes on the indoor heat exchanger 14 side, and when the heat medium vaporizes, it deprives the surrounding heat as vaporization heat. . Therefore, the air sucked into the indoor unit 1 from the suction port 16 of the indoor unit 1 is cooled by exchanging heat with the indoor heat exchanger 14, and the blower fan 15 blows cold air into the room from the outlet 17 of the indoor unit 1. Then, the room is cooled.

【0013】暖房運転時においては、四方弁3の流通方
向は図1に実線で示す方向に切り替えられ、室内熱交換
器14と室外熱交換器4の機能が冷房運転時と逆にな
る。すなわち、暖房運転時には熱媒は図1の実線矢印方
向に循環し、圧縮機10及びキャピラリチューブ7間の
室内熱交換器14側の区間の熱媒が圧縮機10によって
凝縮させられ、凝縮熱を発生する。室内機1の吸込口1
6から吸引された空気は室内熱交換器14によって熱媒
と熱交換して加熱され、送風ファン15によって吹出口
17から温風が吹き出され、室内の暖房が行なわれる。
一方、凝縮した熱媒は2箇所のキャピラリチューブ7,
5を通過して室外熱交換器4側へ循環し、室外熱交換器
4側で膨張して気化する。気化した熱媒は室外熱交換器
4で外気と熱交換して吸熱し、再び圧縮機10へ戻る。
During the heating operation, the flow direction of the four-way valve 3 is switched to the direction shown by the solid line in FIG. 1, and the functions of the indoor heat exchanger 14 and the outdoor heat exchanger 4 are opposite to those in the cooling operation. That is, during the heating operation, the heat medium circulates in the direction of the solid line arrow in FIG. 1, and the heat medium in the section on the indoor heat exchanger 14 side between the compressor 10 and the capillary tube 7 is condensed by the compressor 10 and the heat of condensation is condensed. Occur. Suction port 1 of indoor unit 1
The air sucked from 6 is heated by exchanging heat with the heat medium by the indoor heat exchanger 14, and the blower fan 15 blows out warm air from the air outlet 17 to heat the room.
On the other hand, the condensed heat medium is stored in two capillary tubes 7,
It passes through 5 and circulates to the outdoor heat exchanger 4 side, and expands and vaporizes on the outdoor heat exchanger 4 side. The vaporized heat medium exchanges heat with the outside air in the outdoor heat exchanger 4, absorbs heat, and returns to the compressor 10 again.

【0014】なお、上記熱媒循環回路8で逆止弁6とキ
ャピラリチューブ7とを並列に接続しているのは、冷房
運転時と暖房運転時における熱媒の圧縮比率の違いに応
じて、冷房運転時には1箇所のキャピラリチューブ5に
よって圧縮側と膨張側とを分離し、暖房運転時には2箇
所のキャピラリチューブ5,7によって圧縮側と膨張側
とを分離するためである。
The check valve 6 and the capillary tube 7 are connected in parallel in the heat medium circulation circuit 8 according to the difference in the compression ratio of the heat medium during the cooling operation and the heating operation. This is because the capillary tube 5 at one location separates the compression side and the expansion side during the cooling operation, and the capillary tubes 5 and 7 at two locations separate the compression side and the expansion side during the heating operation.

【0015】つぎに、この空調機Aにおける室温調節制
御方法について説明する。上記圧縮機10は運転中は一
定回転数で回転しており、室温Trが運転オン温度TON
になると運転を開始し、運転オフ温度TOFFになると停
止する。そして、室温制御部(図示せず)は、室温Tr
が運転オフ温度TOFFになって圧縮機10が停止してか
ら一定の遅延時間Tdが経過するまでの間に適正な運転
オフ温度TOFFを求めてそれまでの運転オフ温度TOFF
補正し、つぎに室温Trが運転オフ温度TOFFに達したか
どうかを判断するのに補正された運転オフ温度TOFF
用いる。このようにして常に運転オフ温度TOFFを補正
しながら圧縮機10の運転及び停止をファジイ制御する
ことにより、室温Trを設定温度Ts近辺に調節する。以
下に、この室温調節制御方法を詳しく説明する。
Next, a method for controlling room temperature in the air conditioner A will be described. The compressor 10 rotates at a constant rotation speed during operation, and the room temperature Tr is equal to the operation ON temperature T ON.
Then, the operation is started, and when the operation-off temperature T OFF is reached , the operation is stopped. The room temperature controller (not shown) controls the room temperature Tr.
Becomes the operation-off temperature T OFF and the compressor 10 is stopped until a certain delay time Td elapses, and then an appropriate operation-off temperature T OFF is obtained to correct the operation-off temperature T OFF up to that point. , then use the corrected operating off temperature T oFF to determine whether the room temperature Tr has reached operating off temperature T oFF. In this way, the room temperature Tr is adjusted to the vicinity of the set temperature Ts by fuzzyly controlling the operation and stop of the compressor 10 while always correcting the operation-off temperature T OFF . The room temperature control method will be described in detail below.

【0016】まず室温制御部は、コントロールパネル等
で設定された設定温度Tsと、室温センサ13によって
検出された圧縮機停止時の室温Traと、圧縮機停止から
遅延時間Td経過時の室温Trbを取り込む。ついで、圧
縮機停止時の室温Traと遅延時間Td経過時の室温Trb
との室温変化 ΔTr=Tra−Trb … を求める。同時に、設定温度Tsと遅延時間Td経過時の
室温Trbとの温度差 ΔTs=Ts−Trb … を求める。
First, the room temperature control unit sets the set temperature Ts set by the control panel and the like, the room temperature Tra when the compressor is stopped, detected by the room temperature sensor 13, and the room temperature Trb when the delay time Td elapses after the compressor is stopped. take in. Next, the room temperature Tra when the compressor is stopped and the room temperature Trb when the delay time Td elapses.
Room temperature change ΔTr = Tra−Trb ... At the same time, a temperature difference ΔTs = Ts−Trb ... Between the set temperature Ts and the room temperature Trb when the delay time Td has elapsed is obtained.

【0017】つぎに、図2のメンバーシップ関数を参照
して室温変化ファジイデータを求める。図2において横
軸は式で定義した室温変化ΔTrを示し、縦軸はファ
ジイ変数のグレードを示しており、ZOは「室温変化Δ
Trなし」を示すファジイ変数、SMは「室温変化ΔTr
が小さい」ことを示すファジイ変数、MDは「室温変化
ΔTrがやや大きい」ことを示すファジイ変数、BGは
「室温変化ΔTrが大きい」ことを示すファジイ変数で
ある。従って、図2の各メンバーシップ関数を参照すれ
ば、室温変化ΔTrにおける各ファジイ変数ZO、S
M、MD、BGの各グレードを求めることができる。ま
た、図3のメンバーシップ関数を参照して温度差ファジ
イデータを求める。図3において横軸は式で定義した
温度差ΔTsを示し、縦軸はファジイ変数のグレードを
示しており、Nは「温度差ΔTsが負である」ことを示
すファジイ変数、Zは「温度差ΔTsなし」を示すファ
ジイ変数、Mは「温度差ΔTsが正で小さい」ことを示
すファジイ変数、Bは「温度差ΔTsが正で大きい」こ
とを示すファジイ変数である。従って、図3の各メンバ
ーシップ関数を参照すれば、温度差ΔTsにおける各フ
ァジイ変数N、Z、M、Bの各グレードを求めることが
できる。
Next, the room temperature change fuzzy data is obtained with reference to the membership function of FIG. In FIG. 2, the horizontal axis represents the room temperature change ΔTr defined by the formula, and the vertical axis represents the grade of the fuzzy variable.
The fuzzy variable indicating "no Tr", SM is "room temperature change ΔTr
Is a fuzzy variable indicating that “room temperature change ΔTr is slightly large”, and BG is a fuzzy variable indicating that room temperature change ΔTr is large. Therefore, referring to the membership functions in FIG. 2, the fuzzy variables ZO and S in the room temperature change ΔTr
Each grade of M, MD and BG can be obtained. Further, the temperature difference fuzzy data is obtained by referring to the membership function of FIG. In FIG. 3, the horizontal axis represents the temperature difference ΔTs defined by the formula, the vertical axis represents the grade of the fuzzy variable, N is the fuzzy variable indicating that the temperature difference ΔTs is negative, and Z is the temperature difference. A fuzzy variable indicating “no ΔTs”, M is a fuzzy variable indicating “temperature difference ΔTs is positive and small”, and B is a fuzzy variable indicating “temperature difference ΔTs is positive and large”. Therefore, by referring to the membership functions of FIG. 3, the grades of the fuzzy variables N, Z, M, B at the temperature difference ΔTs can be obtained.

【0018】例えば、設定温度Ts=23℃、圧縮機停
止時の室温Tra=23.7℃、遅延時間Td経過時の室温
Trb=20.55℃とすると、式より室温変化ΔTr=
3.15℃であるから、図2のメンバーシップ関数を参
照すると、各ファジイ変数のグレード値は、 ZO=0, SM=0, MD=1.0, BG=0 となる。一方、式より、温度差ΔTs=2.45℃であ
るから、図3のメンバーシップ関数を参照すると、各フ
ァジイ変数のグレード値は、 N=0, Z=0, M=0.5, B=0.5 となる。
For example, if the set temperature Ts = 23 ° C., the room temperature Tra when the compressor is stopped Tra = 23.7 ° C., and the room temperature Trb when the delay time Td elapses Trb = 20.55 ° C., the room temperature change ΔTr =
Since it is 3.15 ° C., referring to the membership function of FIG. 2, the grade values of each fuzzy variable are ZO = 0, SM = 0, MD = 1.0, BG = 0. On the other hand, since the temperature difference ΔTs = 2.45 ° C. from the formula, referring to the membership function of FIG. 3, the grade values of each fuzzy variable are N = 0, Z = 0, M = 0.5, B = 0.5.

【0019】つぎに、室温制御部は、表1に示す16個
の制御ルールR1〜R16を参照して、上記のようにし
て算出した室温変化ファジイデータ及び温度差ファジイ
データから出力メンバーシップ値を求める。
Next, the room temperature control unit refers to the 16 control rules R1 to R16 shown in Table 1 to obtain the output membership value from the room temperature change fuzzy data and the temperature difference fuzzy data calculated as described above. Ask.

【0020】[0020]

【表1】 [Table 1]

【0021】この運転オフ温度TOFFの補正に関する出
力メンバーシップ関数は4つのファジイ変数ZOv,S
Mv,MDv,BGvを持ち、ZOvは「運転オフ温度T
OFFの補正量を0にする」ことを示すファジイ変数、S
Mvは「運転オフ温度TOFFの補正量を小さくする」こと
を示すファジイ変数、MDvは「運転オフ温度TOFFの補
正量をやや大きくする」ことを示すファジイ変数、BG
vは「運転オフ温度TOFFの補正量を大きくする」ことを
示すファジイ変数であって、例えば図4のような補正量
Gを割当てられている。表1の制御ルール(ファジイル
ール)はR1〜R16まであり、例えば、ルールR1
は、「室温変化ΔTrのファジイ変数がZO(室温変化
ΔTrが無く、部屋の壁や床、天井等がよく暖まってい
る)で、かつ、温度差ΔTsのファジイ変数がN(温度
差ΔTsが負で、暑く感じる)であれば、出力メンバー
シップ関数のファジイ変数をZOv(運転オフ温度TOFF
の補正量を0にする)にする。」というルールであり、
またルールR16は、「室温変化ΔTrのファジイ変数
がBG(室温変化ΔTrが大きく、部屋の壁や床、天井
等が冷え込んでいる)で、かつ、温度差ΔTsのファジ
イ変数がB(温度差ΔTsが大きく、肌寒く感じる)で
あれば、出力メンバーシップ関数のファジイ変数をBG
v(運転オフ温度TOFFの補正量を大きくする)にす
る。」というルールであり、求めた室温変化ファジイデ
ータ及び温度差ファジイデータがこれらのルールR1〜
R16をどの程度満たすかはmin演算により求める。す
なわち、出力メンバーシップ値のグレードとして、室温
変化ΔTrを示すファジイ変数のグレードと温度差ΔTs
を示すファジイ変数のグレードとのうち小さい方の値を
とる。例えば、上記数値を用いてR1のルールを具体的
に説明すると、室温変化ΔTrを示すファジイ変数ZO
のグレード値はZO=0、温度差ΔTsを示すファジイ
変数Nのグレード値はN=0であるから、出力メンバー
シップ値のグレードはZOv=0となる。また、ルール
R16については、ファジイ変数BGのグレード値はB
G=0、ファジイ変数Bのグレード値はB=0.5であ
るから、出力メンバーシップ値のグレードはBGv=0
となる。このようにしてルールR1からR16までmin
演算することにより、つぎのような16個の出力メンバ
ーシップ値が得られる。 R1: ZOv=0 R2: ZOv=0 R3: SMv=0 R4: SMv=0 R5: SMv=0 R6: SMv=0 R7: MDv=0 R8: MDv=0 R9: MDv=0 R10: MDv=0 R11: MDv=0.5 R12: BGv=0 R13: MDv=0 R14: BGv=0 R15: BGv=0.5 R16: BGv=0 つぎに、出力メンバーシップ値をmax演算(同じファジ
イ変数のグレード値のうち最大値を求める)する。例え
ば、上記16個の出力メンバーシップ値をZOv、SM
v、MDv、BGv毎にmax演算すると、つぎのような出力
メンバーシップ合成値、 ZOvm=0 SMvm=0 MDvm=0.5 BGvm=0.5 が得られる。こうしてmin-max演算により得られた合成
値は、1点化演算(重みづけ平均)される。すなわち、
つぎの式に従って補正量Gが演算される。
The output membership function relating to the correction of the operation-off temperature T OFF has four fuzzy variables ZOv, S.
It has Mv, MDv, and BGv, and ZOv is "operation-off temperature T
Fuzzy variable that indicates that the correction amount of OFF is set to 0, S
Mv is "operating off temperature T to reduce the correction amount of OFF" fuzzy variable indicating that, MDV are fuzzy variable indicating that "somewhat to increase the correction amount of the driver-off temperature T OFF", BG
v is a fuzzy variable indicating “to increase the correction amount of the operation-off temperature T OFF ”, and the correction amount G as shown in FIG. 4, for example, is assigned. The control rules (fuzzy rules) in Table 1 are from R1 to R16. For example, rule R1
Is "the fuzzy variable of the room temperature change ΔTr is ZO (there is no room temperature change ΔTr, and the wall, floor, ceiling, etc. of the room are well warmed), and the fuzzy variable of the temperature difference ΔTs is N (the temperature difference ΔTs is negative. If it is hot, the fuzzy variable of the output membership function is set to ZOv (operation off temperature T OFF
To 0). The rule is
Further, the rule R16 is that “the fuzzy variable of the room temperature change ΔTr is BG (the room temperature change ΔTr is large and the room wall, floor, ceiling, etc. are cold), and the fuzzy variable of the temperature difference ΔTs is B (the temperature difference ΔTs. Is large and feels chilly), set the fuzzy variable of the output membership function to BG
Set to v ( Increase the correction amount of the operation OFF temperature T OFF ). The calculated room temperature change fuzzy data and temperature difference fuzzy data are the rules R1 to R1.
How much R16 is satisfied is determined by min operation. That is, as the grade of the output membership value, the grade of the fuzzy variable indicating the room temperature change ΔTr and the temperature difference ΔTs
Takes the smaller of the grades of the fuzzy variables indicating. For example, when the rule of R1 is specifically explained using the above numerical values, the fuzzy variable ZO indicating the room temperature change ΔTr is shown.
Of the fuzzy variable N indicating the temperature difference ΔTs is N = 0, so the grade of the output membership value is ZOv = 0. Also, regarding rule R16, the grade value of the fuzzy variable BG is B
Since G = 0 and the fuzzy variable B grade value is B = 0.5, the output membership value grade is BGv = 0.
Becomes In this way, rules R1 to R16 min
By calculation, the following 16 output membership values are obtained. R1: ZOv = 0 R2: ZOv = 0 R3: SMv = 0 R4: SMv = 0 R5: SMv = 0 R6: SMv = 0 R7: MDv = 0 R8: MDv = 0 R9: MDv = 0 R10: MDv = 0 R11: MDv = 0.5 R12: BGv = 0 R13: MDv = 0 R14: BGv = 0 R15: BGv = 0.5 R16: BGv = 0 Then, the output membership value is calculated max (the same fuzzy variable grade). Find the maximum of the values). For example, if the above 16 output membership values are ZOv, SM
When the max operation is performed for each of v, MDv and BGv, the following output membership composite value, ZOvm = 0 SMvm = 0 MDvm = 0.5 BGvm = 0.5, is obtained. The combined value thus obtained by the min-max calculation is subjected to a one-point calculation (weighted average). That is,
The correction amount G is calculated according to the following equation.

【0022】[0022]

【数1】 [Equation 1]

【0023】1点演算式(式)における重みづけ係数
は、例えばa=0、b=4、c=8、d=12というよ
うに、予め決められている。従って、出力メンバーシッ
プ値として上記の値を用いると、補正量GはG=10と
なる。
The weighting coefficient in the one-point calculation formula (formula) is predetermined, for example, a = 0, b = 4, c = 8, d = 12. Therefore, when the above value is used as the output membership value, the correction amount G becomes G = 10.

【0024】このように、ファジイ推論で求めた補正量
G=10を表2のテーブルを用いて運転オフ温度TOFF
の補正量ΔTOFFに換算すると、ΔTOFF=4.0℃とな
る。元の運転オフ温度TOFFは23.7℃であったから、
新たな運転オフ温度TOFFは27.7℃となる。
As described above, the correction amount G = 10 obtained by the fuzzy inference is used by using the table of Table 2 as the operation off temperature T OFF
When converted to the correction amount ΔT OFF of, ΔT OFF = 4.0 ° C. Since the original operation-off temperature T OFF was 23.7 ° C,
The new operation-off temperature T OFF becomes 27.7 ° C.

【0025】[0025]

【表2】 [Table 2]

【0026】尚、上記の説明では、設定温度Tsを一定
として運転オフ温度TOFFを補正したが、運転オフ温度
OFFを設定温度Tsに一定温度を加えた値とし、上記の
ようにして設定温度Tsの補正量を求め、設定温度Tsを
補正するようにしても、同じことである。
In the above description, the operation-off temperature T OFF is corrected by setting the set temperature Ts constant, but the operation-off temperature T OFF is set as a value obtained by adding a constant temperature to the set temperature Ts and set as described above. The same applies when the correction amount of the temperature Ts is calculated and the set temperature Ts is corrected.

【0027】図5(a)(b)は本発明の方法により室
温調節されている室温Trの変化と圧縮機10の運転、
停止状態を示す図である。上述の室温変化ΔTrを表わ
すファジイ変数ZO、SM、MD、BGは運転オフ温度
OFFに達して圧縮機10が停止した後の室温変化ΔTr
から室内機1を設置された部屋の壁や床、天井等の暖ま
り具合をファジイ推論するものであり、また温度差ΔT
sを表わすファジイ変数N、Z、M、Bは遅延時間Td経
過時の室温Trbと設定温度Tsとの温度差ΔTsから室内
の快適感をファジイ推論するものであり、本室温調節制
御方法においては室内の暖まり具合や快適感を考慮しな
がら、図5(a)に示すように室温調節するものであ
る。すなわち、空調機Aの暖房オン直後の室内が十分に
暖まっていない場合には、運転オフ温度TOFFを高く設
定することにより、遅延時間Td経過後に室温Trが肌寒
く感じるほど低くなるのを防止し、室内が暖まってきて
遅延時間Td経過後に室内温度が大きく低下しないよう
になると、快適感を考慮しながら徐々に運転オフ温度T
OFFを低くしてゆき、最終的には一定の運転オフ温度T
OFFで圧縮機10が停止させられるようになる。従っ
て、室温低下時にも設定温度Tsに比較して大きく室温
Trが低下することがなくなり、空調機Aの暖房オン当
初から快適な暖房を行なえるようになる。また、室温T
rを速く設定温度Ts近辺で安定させることができる。一
方、始めのうちは運転オフ温度TOFFが高く設定される
ので、運転オフ温度TOFFでは室温Trがオーバーシュー
トして高くなるが、部屋の壁や床、天井等が冷え込んで
いると、輻射の影響で空気温度が高くても暑く感じない
ので、不快感を与えることはない。
FIGS. 5 (a) and 5 (b) show changes in the room temperature Tr controlled by the method of the present invention and the operation of the compressor 10,
It is a figure which shows a stopped state. The fuzzy variables ZO, SM, MD and BG representing the room temperature change ΔTr described above reach the operation-off temperature T OFF and the room temperature change ΔTr after the compressor 10 is stopped.
Is used to fuzzyly infer the degree of warming of the wall, floor, ceiling, etc. of the room in which the indoor unit 1 is installed, and the temperature difference ΔT
The fuzzy variables N, Z, M, and B representing s are for fuzzy inferring the comfort of the room from the temperature difference ΔTs between the room temperature Trb and the set temperature Ts when the delay time Td elapses. The room temperature is adjusted as shown in FIG. 5A while considering the warmth and comfort of the room. That is, when the room immediately after the air conditioner A is turned on is not sufficiently warmed, the operation off temperature T OFF is set high to prevent the room temperature Tr from becoming so low as to feel chilly after the delay time Td elapses. If the room temperature does not drop significantly after the delay time Td elapses as the room warms up, the operation-off temperature T gradually increases while considering the comfort.
Turn OFF to a low value, and finally turn off at a constant operating temperature T
When turned off , the compressor 10 can be stopped. Therefore, even when the room temperature is lowered, the room temperature Tr does not drop largely compared to the set temperature Ts, and comfortable heating can be performed from the beginning of the heating of the air conditioner A. Also, room temperature T
It is possible to quickly stabilize r near the set temperature Ts. On the other hand, since the operation-off temperature T OFF is set high at the beginning, the room temperature Tr is overshooted and becomes high at the operation-off temperature T OFF , but if the room walls, floor, ceiling, etc. are cooled, radiation occurs. Even if the air temperature is high, it does not feel hot, so it does not cause any discomfort.

【0028】なお、上記説明においては、暖房運転の場
合について述べたが、冷房運転の場合にも同様にして室
温Trを調整することができる。冷房運転の場合には、
設定温度Tsもしくは設定温度Tsよりも若干高い温度に
運転オン温度TONが設定され、設定温度Tsよりも低い
温度に運転オフ温度TOFFが設定が設定されているの
で、当初は室内の暖まり具合を考慮して設定温度Tsを
低い値に設定しておき、室内の快適感をファジイ推論し
ながら運転オフ温度TOFFを少しづつ高くしてゆき、最
後に本来の運転オフ温度TOFFに安定させるようにする
とよい。
In the above description, the heating operation is described, but the room temperature Tr can be adjusted similarly in the cooling operation. In the case of cooling operation,
Since the operation ON temperature T ON is set to the set temperature Ts or a temperature slightly higher than the set temperature Ts, and the operation OFF temperature T OFF is set to a temperature lower than the set temperature Ts, the warming condition in the room is initially set. In consideration of the above, the set temperature Ts is set to a low value, and the operation off temperature T OFF is gradually increased while fuzzy inferring the indoor comfort, and finally the original operation off temperature T OFF is stabilized. It is good to do so.

【0029】[0029]

【発明の効果】本発明によれば、室内の冷え込み具合や
暖まり具合と快適感とを考慮しながら常に適正な運転オ
フ温度で圧縮機を停止させることができるので、運転開
始直後から室温を快適な温度に保つことができ、快適感
が向上する。また、すばやく室温を設定温度近辺に近づ
けることができ、室温を速やかに安定させることができ
る。
According to the present invention, the compressor can always be stopped at an appropriate operation-off temperature while taking into consideration the degree of cooling and warming in the room and the feeling of comfort. The temperature can be maintained at a high temperature, and comfort is improved. Further, the room temperature can be quickly brought close to the set temperature, and the room temperature can be quickly stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による空調機を示す概略構成
図である。
FIG. 1 is a schematic configuration diagram showing an air conditioner according to an embodiment of the present invention.

【図2】運転オフ時と遅延時間経過後の室温変化を表現
するメンバーシップ関数を示す図である。
FIG. 2 is a diagram showing a membership function that expresses a change in room temperature when the operation is off and after a delay time has elapsed.

【図3】設定温度と遅延時間経過後の室温との温度差を
表現するメンバーシップ関数を示す図である。
FIG. 3 is a diagram showing a membership function expressing a temperature difference between a set temperature and a room temperature after a delay time has elapsed.

【図4】出力メンバーシップ関数を示す図である。FIG. 4 is a diagram showing an output membership function.

【図5】暖房運転時の制御動作を示す図であって、
(a)は室温の変化を示す図、(b)は圧縮機の制御状
態を示す図である。
FIG. 5 is a diagram showing a control operation during heating operation,
(A) is a figure which shows the change of room temperature, (b) is a figure which shows the control state of a compressor.

【図6】従来例における暖房運転時の制御動作を示す図
であって、(a)は室温の変化を示す図、(b)は圧縮
機の制御状態を示す図である。
6A and 6B are diagrams showing a control operation during heating operation in a conventional example, wherein FIG. 6A is a diagram showing a change in room temperature, and FIG. 6B is a diagram showing a control state of a compressor.

【符号の説明】[Explanation of symbols]

1 室内機 2 室外機 4 室外熱交換器 10 圧縮機 13 室温センサ 14 室内熱交換器 1 Indoor unit 2 Outdoor unit 4 Outdoor heat exchanger 10 Compressor 13 Room temperature sensor 14 Indoor heat exchanger

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 室温を検出して運転オン温度で圧縮機を
運転し、運転オフ温度で圧縮機を停止する室温調節制御
方法において、 運転オフ時と圧縮機運転開始遅延時間経過後との室温変
化、および設定温度と前記運転開始遅延時間経過後の室
温との温度差から前記運転オフ温度を求め、求めた運転
オフ温度によって圧縮機を停止させるようにしたことを
特徴とする室温調節制御方法。
1. A room temperature control method for detecting a room temperature, operating a compressor at an operation-on temperature, and stopping a compressor at an operation-off temperature, wherein the room temperature is at the time of operation off and after a lapse of a compressor operation start delay time. A method for controlling room temperature, characterized in that the operation off temperature is obtained from a change and a temperature difference between a set temperature and a room temperature after the operation start delay time has elapsed, and the compressor is stopped according to the obtained operation off temperature. .
【請求項2】 ファジイ推論により前記室温変化及び温
度差から室内の冷え込み具合や暖まり具合と快適感とを
それぞれ推論し、その推論結果から運転オフ温度を求め
るようにしたことを特徴とする請求項1に記載の室温調
節制御方法。
2. The fuzzy inference is used to infer the degree of cooling and warming in the room and the feeling of comfort from the room temperature change and the temperature difference, and the operation-off temperature is obtained from the inference result. 1. The room temperature control method according to 1.
JP05226559A 1993-08-18 1993-08-18 Room temperature adjustment control method Expired - Fee Related JP3129050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05226559A JP3129050B2 (en) 1993-08-18 1993-08-18 Room temperature adjustment control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05226559A JP3129050B2 (en) 1993-08-18 1993-08-18 Room temperature adjustment control method

Publications (2)

Publication Number Publication Date
JPH0755224A true JPH0755224A (en) 1995-03-03
JP3129050B2 JP3129050B2 (en) 2001-01-29

Family

ID=16847065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05226559A Expired - Fee Related JP3129050B2 (en) 1993-08-18 1993-08-18 Room temperature adjustment control method

Country Status (1)

Country Link
JP (1) JP3129050B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7051824B1 (en) 2003-11-03 2006-05-30 Accessible Technologies, Inc. Supercharged motorcycle
JP2008209029A (en) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd Air conditioner and automatic heating operation control method
JP2010521647A (en) * 2007-03-15 2010-06-24 キョントン ネットワーク カンパニー リミテッド Heating device control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7051824B1 (en) 2003-11-03 2006-05-30 Accessible Technologies, Inc. Supercharged motorcycle
JP2008209029A (en) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd Air conditioner and automatic heating operation control method
JP2010521647A (en) * 2007-03-15 2010-06-24 キョントン ネットワーク カンパニー リミテッド Heating device control method

Also Published As

Publication number Publication date
JP3129050B2 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
US10962249B2 (en) Air conditioning apparatus and air conditioning control method
JPS60188743A (en) Control of heat pump type air conditioner
JP3720220B2 (en) Air conditioner
JP2000283535A (en) Radiation air conditioner
JP3239110B2 (en) Control method of air conditioner
JP4592599B2 (en) Air conditioner
JP3206245B2 (en) Air conditioner
JP3129050B2 (en) Room temperature adjustment control method
JPH11294871A (en) Air conditioner
JPH0755234A (en) Air conditioner
JP3110593B2 (en) Control device for air conditioner
JP2576354B2 (en) Air flow control method for air conditioner
JP3901624B2 (en) Heating operation method of air conditioning system
JP2000161685A (en) Hot air floor heating system
JP2679202B2 (en) Air conditioning system
JPH08193742A (en) Air conditioner
JPH0527014B2 (en)
JP2007192479A (en) Air conditioner
JPH07332729A (en) Air-conditioning machine
JP2877677B2 (en) Control device for air conditioner
JP2001201149A (en) Air conditioner
JP2607018B2 (en) Operating method of air conditioner
JP2776588B2 (en) Air conditioner
JPH07280323A (en) Air conditioner and control method in defrosting operation of air conditioner
JPH0350434A (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees